{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from utils import Scalar, draw_graph\n",
"from linear_model import Linear, mse"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 定义训练数据\n",
"x1 = Scalar(1.5, label='x1', requires_grad=False)\n",
"y1 = Scalar(1.0, label='y1', requires_grad=False)\n",
"x2 = Scalar(2.0, label='x2', requires_grad=False)\n",
"y2 = Scalar(4.0, label='y2', requires_grad=False)\n",
"# 定义正常的计算图\n",
"model = Linear()\n",
"k = model.forward(x1)\n",
"l = y1 - k\n",
"loss = mse([l, model.error(x2, y2)])\n",
"# 反向传播\n",
"loss.backward()\n",
"draw_graph(loss, 'backward')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x1 = Scalar(1.5, label='x1', requires_grad=False)\n",
"y1 = Scalar(1.0, label='y1', requires_grad=False)\n",
"x2 = Scalar(2.0, label='x2', requires_grad=False)\n",
"y2 = Scalar(4.0, label='y2', requires_grad=False)\n",
"model = Linear()\n",
"k = model.forward(x1)\n",
"# 将k失活\n",
"k_out = k * 0\n",
"l = y1 - k_out\n",
"loss = mse([l, model.error(x2, y2)])\n",
"# 反向传播\n",
"loss.backward()\n",
"draw_graph(loss, 'backward')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 为了减少计算图的歧义,将x1的标签省略掉\n",
"x1 = Scalar(1.5, requires_grad=False)\n",
"y1 = Scalar(1.0, label='y1', requires_grad=False)\n",
"x2 = Scalar(2.0, label='x2', requires_grad=False)\n",
"y2 = Scalar(4.0, label='y2', requires_grad=False)\n",
"# 将变量x1失活\n",
"x1_out = x1 * 0\n",
"model = Linear()\n",
"loss = mse([model.error(x1_out, y1), model.error(x2, y2)])\n",
"# 反向传播\n",
"loss.backward()\n",
"draw_graph(loss, 'backward')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}