{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn import metrics\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.model_selection import train_test_split\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | label | \n", "label_code | \n", "
|---|---|---|
| 0 | \n", "<=50K | \n", "0 | \n", "
| 1 | \n", "<=50K | \n", "0 | \n", "
| 2 | \n", "<=50K | \n", "0 | \n", "
| 3 | \n", "<=50K | \n", "0 | \n", "
| 4 | \n", "<=50K | \n", "0 | \n", "
| ... | \n", "... | \n", "... | \n", "
| 32556 | \n", "<=50K | \n", "0 | \n", "
| 32557 | \n", ">50K | \n", "1 | \n", "
| 32558 | \n", "<=50K | \n", "0 | \n", "
| 32559 | \n", "<=50K | \n", "0 | \n", "
| 32560 | \n", ">50K | \n", "1 | \n", "
32561 rows × 2 columns
\n", "LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression()