|
|
@@ -0,0 +1,294 @@
|
|
|
+{
|
|
|
+ "cells": [
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 1,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "<torch._C.Generator at 0x1388443b0>"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 1,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "import torch\n",
|
|
|
+ "import torch.nn as nn\n",
|
|
|
+ "import torch.nn.functional as F\n",
|
|
|
+ "import torch.optim as optim\n",
|
|
|
+ "from torch.utils.data import DataLoader, random_split\n",
|
|
|
+ "from torchvision import datasets\n",
|
|
|
+ "import torchvision.transforms as transforms\n",
|
|
|
+ "import matplotlib.pyplot as plt\n",
|
|
|
+ "%matplotlib inline\n",
|
|
|
+ "\n",
|
|
|
+ "\n",
|
|
|
+ "torch.manual_seed(12046)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 2,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/plain": [
|
|
|
+ "(50000, 10000, 10000)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 2,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "# 准备数据\n",
|
|
|
+ "dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())\n",
|
|
|
+ "# 将数据划分成训练集、验证集、测试集\n",
|
|
|
+ "train_set, val_set = random_split(dataset, [50000, 10000])\n",
|
|
|
+ "test_set = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())\n",
|
|
|
+ "len(train_set), len(val_set), len(test_set)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 3,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "# 构建数据读取器\n",
|
|
|
+ "train_loader = DataLoader(train_set, batch_size=500, shuffle=True)\n",
|
|
|
+ "val_loader = DataLoader(val_set, batch_size=500, shuffle=True)\n",
|
|
|
+ "test_loader = DataLoader(test_set, batch_size=500, shuffle=True)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 4,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "class CNN(nn.Module):\n",
|
|
|
+ " \n",
|
|
|
+ " def __init__(self):\n",
|
|
|
+ " super().__init__()\n",
|
|
|
+ " self.conv1 = nn.Conv2d(1, 20, (5, 5))\n",
|
|
|
+ " self.pool1 = nn.MaxPool2d(2, 2)\n",
|
|
|
+ " self.conv2 = nn.Conv2d(20, 40, (5, 5))\n",
|
|
|
+ " self.pool2 = nn.MaxPool2d(2, 2)\n",
|
|
|
+ " self.fc1 = nn.Linear(40 * 4 * 4, 120)\n",
|
|
|
+ " self.fc2 = nn.Linear(120, 10)\n",
|
|
|
+ "\n",
|
|
|
+ " def forward(self, x):\n",
|
|
|
+ " B = x.shape[0] # (B, 1, 28, 28)\n",
|
|
|
+ " x = self.pool1(F.relu(self.conv1(x))) # (B, 20, 12, 12)\n",
|
|
|
+ " x = self.pool2(F.relu(self.conv2(x))) # (B, 40, 4, 4)\n",
|
|
|
+ " x = x.view(B, -1) # (B, 40 * 4 * 4)\n",
|
|
|
+ " x = F.relu(self.fc1(x)) # (B, 120)\n",
|
|
|
+ " x = self.fc2(x) # (B, 10)\n",
|
|
|
+ " return x\n",
|
|
|
+ "\n",
|
|
|
+ "model = CNN()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 5,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "eval_iters = 10\n",
|
|
|
+ "\n",
|
|
|
+ "def estimate_loss(model):\n",
|
|
|
+ " re = {}\n",
|
|
|
+ " # 将模型切换至评估模式\n",
|
|
|
+ " model.eval()\n",
|
|
|
+ " re['train'] = _loss(model, train_loader)\n",
|
|
|
+ " re['val'] = _loss(model, val_loader)\n",
|
|
|
+ " re['test'] = _loss(model, test_loader)\n",
|
|
|
+ " # 将模型切换至训练模式\n",
|
|
|
+ " model.train()\n",
|
|
|
+ " return re\n",
|
|
|
+ "\n",
|
|
|
+ "@torch.no_grad()\n",
|
|
|
+ "def _loss(model, data_loader):\n",
|
|
|
+ " \"\"\"\n",
|
|
|
+ " 计算模型在不同数据集下面的评估指标\n",
|
|
|
+ " \"\"\"\n",
|
|
|
+ " loss = []\n",
|
|
|
+ " accuracy = []\n",
|
|
|
+ " data_iter = iter(data_loader)\n",
|
|
|
+ " for k in range(eval_iters):\n",
|
|
|
+ " inputs, labels = next(data_iter)\n",
|
|
|
+ " B = inputs.shape[0]\n",
|
|
|
+ " logits = model(inputs)\n",
|
|
|
+ " # 计算模型损失\n",
|
|
|
+ " loss.append(F.cross_entropy(logits, labels))\n",
|
|
|
+ " # 计算预测的准确率\n",
|
|
|
+ " _, predicted = torch.max(logits, 1)\n",
|
|
|
+ " accuracy.append((predicted == labels).sum() / B)\n",
|
|
|
+ " re = {\n",
|
|
|
+ " 'loss': torch.tensor(loss).mean().item(),\n",
|
|
|
+ " 'accuracy': torch.tensor(accuracy).mean().item()\n",
|
|
|
+ " }\n",
|
|
|
+ " return re"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 6,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "def train_cnn(model, optimizer, data_loader, epochs=10, penalty=[]):\n",
|
|
|
+ " lossi = []\n",
|
|
|
+ " for epoch in range(epochs):\n",
|
|
|
+ " for i, data in enumerate(data_loader, 0):\n",
|
|
|
+ " inputs, labels = data\n",
|
|
|
+ " optimizer.zero_grad()\n",
|
|
|
+ " logits = model(inputs)\n",
|
|
|
+ " loss = F.cross_entropy(logits, labels)\n",
|
|
|
+ " lossi.append(loss.item())\n",
|
|
|
+ " # 增加惩罚项\n",
|
|
|
+ " for p in penalty:\n",
|
|
|
+ " loss += p(model)\n",
|
|
|
+ " loss.backward()\n",
|
|
|
+ " optimizer.step()\n",
|
|
|
+ " # 评估模型,并输出结果\n",
|
|
|
+ " stats = estimate_loss(model)\n",
|
|
|
+ " train_loss = f'train loss {stats[\"train\"][\"loss\"]:.4f}'\n",
|
|
|
+ " val_loss = f'val loss {stats[\"val\"][\"loss\"]:.4f}'\n",
|
|
|
+ " test_loss = f'test loss {stats[\"test\"][\"loss\"]:.4f}'\n",
|
|
|
+ " print(f'epoch {epoch:>2}: {train_loss}, {val_loss}, {test_loss}')\n",
|
|
|
+ " train_acc = f'train acc {stats[\"train\"][\"accuracy\"]:.4f}'\n",
|
|
|
+ " val_acc = f'val acc {stats[\"val\"][\"accuracy\"]:.4f}'\n",
|
|
|
+ " test_acc = f'test acc {stats[\"test\"][\"accuracy\"]:.4f}'\n",
|
|
|
+ " print(f'{\"\":>10}{train_acc}, {val_acc}, {test_acc}')\n",
|
|
|
+ " return lossi"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 7,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "stats = {}"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 8,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "name": "stdout",
|
|
|
+ "output_type": "stream",
|
|
|
+ "text": [
|
|
|
+ "epoch 0: train loss 0.0558, val loss 0.0485, test loss 0.0498\n",
|
|
|
+ " train acc 0.9798, val acc 0.9834, test acc 0.9856\n",
|
|
|
+ "epoch 1: train loss 0.0419, val loss 0.0455, test loss 0.0342\n",
|
|
|
+ " train acc 0.9860, val acc 0.9854, test acc 0.9892\n",
|
|
|
+ "epoch 2: train loss 0.0303, val loss 0.0396, test loss 0.0305\n",
|
|
|
+ " train acc 0.9914, val acc 0.9878, test acc 0.9886\n",
|
|
|
+ "epoch 3: train loss 0.0209, val loss 0.0335, test loss 0.0359\n",
|
|
|
+ " train acc 0.9942, val acc 0.9898, test acc 0.9894\n",
|
|
|
+ "epoch 4: train loss 0.0193, val loss 0.0402, test loss 0.0344\n",
|
|
|
+ " train acc 0.9930, val acc 0.9876, test acc 0.9902\n"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "stats['cnn'] = train_cnn(model, optim.Adam(model.parameters(), lr=0.01), train_loader, epochs=5)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 9,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "class CNN2(nn.Module):\n",
|
|
|
+ " \n",
|
|
|
+ " def __init__(self):\n",
|
|
|
+ " super().__init__()\n",
|
|
|
+ " self.conv1 = nn.Conv2d(1, 20, (5, 5))\n",
|
|
|
+ " self.bn1 = nn.BatchNorm2d(20)\n",
|
|
|
+ " self.pool1 = nn.MaxPool2d(2, 2)\n",
|
|
|
+ " self.conv2 = nn.Conv2d(20, 40, (5, 5))\n",
|
|
|
+ " self.bn2 = nn.BatchNorm2d(40)\n",
|
|
|
+ " self.pool2 = nn.MaxPool2d(2, 2)\n",
|
|
|
+ " self.fc1 = nn.Linear(40 * 4 * 4, 120)\n",
|
|
|
+ " self.dropout = nn.Dropout(0.2)\n",
|
|
|
+ " self.fc2 = nn.Linear(120, 10)\n",
|
|
|
+ "\n",
|
|
|
+ " def forward(self, x):\n",
|
|
|
+ " B = x.shape[0] # (B, 1, 28, 28)\n",
|
|
|
+ " x = self.bn1(self.conv1(x)) # (B, 20, 24, 24)\n",
|
|
|
+ " x = self.pool1(F.relu(x)) # (B, 20, 12, 12)\n",
|
|
|
+ " x = self.bn2(self.conv2(x)) # (B, 40, 8, 8)\n",
|
|
|
+ " x = self.pool2(F.relu(x)) # (B, 40, 4, 4)\n",
|
|
|
+ " x = x.view(B, -1) # (B, 40 * 4 * 4)\n",
|
|
|
+ " x = F.relu(self.fc1(x)) # (B, 120)\n",
|
|
|
+ " x = self.dropout(x)\n",
|
|
|
+ " x = self.fc2(x) # (B, 10)\n",
|
|
|
+ " return x\n",
|
|
|
+ "\n",
|
|
|
+ "model2 = CNN2()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 10,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "name": "stdout",
|
|
|
+ "output_type": "stream",
|
|
|
+ "text": [
|
|
|
+ "epoch 0: train loss 0.0586, val loss 0.0594, test loss 0.0566\n",
|
|
|
+ " train acc 0.9816, val acc 0.9840, test acc 0.9834\n",
|
|
|
+ "epoch 1: train loss 0.0436, val loss 0.0416, test loss 0.0417\n",
|
|
|
+ " train acc 0.9860, val acc 0.9874, test acc 0.9876\n",
|
|
|
+ "epoch 2: train loss 0.0276, val loss 0.0389, test loss 0.0455\n",
|
|
|
+ " train acc 0.9910, val acc 0.9890, test acc 0.9852\n",
|
|
|
+ "epoch 3: train loss 0.0215, val loss 0.0373, test loss 0.0306\n",
|
|
|
+ " train acc 0.9938, val acc 0.9888, test acc 0.9910\n",
|
|
|
+ "epoch 4: train loss 0.0304, val loss 0.0390, test loss 0.0403\n",
|
|
|
+ " train acc 0.9900, val acc 0.9868, test acc 0.9870\n"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "stats['cnn2'] = train_cnn(model2, optim.Adam(model2.parameters(), lr=0.01), train_loader, epochs=5)"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "metadata": {
|
|
|
+ "kernelspec": {
|
|
|
+ "display_name": "Python 3",
|
|
|
+ "language": "python",
|
|
|
+ "name": "python3"
|
|
|
+ },
|
|
|
+ "language_info": {
|
|
|
+ "codemirror_mode": {
|
|
|
+ "name": "ipython",
|
|
|
+ "version": 3
|
|
|
+ },
|
|
|
+ "file_extension": ".py",
|
|
|
+ "mimetype": "text/x-python",
|
|
|
+ "name": "python",
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
+ "version": "3.8.5"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "nbformat": 4,
|
|
|
+ "nbformat_minor": 4
|
|
|
+}
|