|
|
@@ -1,3 +1,22 @@
|
|
|
+## 概述
|
|
|
+
|
|
|
+线性回归模型非常直观和简洁,人们常因此忽视其重要性。实际上,线性回归是人工智能领域的基石,为众多复杂模型的构建提供了有力的支持。下面这个有关数学家的笑话提供了一个形象的类比,它生动地阐释了线性回归在人工智能中的重要性。
|
|
|
+
|
|
|
+有一天,一个数学家对数学感到厌倦,他突然跑到消防队想要成为一名消防员。消防队队长说:“您看上去不错,但首先得通过一个测试。”于是,他们走到后院的小巷,小巷里有仓库、一个消防栓和一根软管。队长问道:“如果仓库起火了,您打算怎么做?”数学家回答:“我会将软管连接到消防栓上,打开水龙头,把火扑灭。”队长点头称是,“完全正确!但如果问题是:您走进小巷,仓库却没有起火,您会怎么做?”数学家陷入思考,然后答道:“我会点着仓库。”队长吃了一惊:“为什么?这太危险了!您为什么要点着仓库?”数学家回答
|
|
|
+
|
|
|
+> 因为这样,我就把需要处理的问题简化成我已经熟悉和解决过的问题。
|
|
|
+
|
|
|
+利用模型解决实际问题的思路与数学家的思路相似。当面对未知问题时,我们总是试图通过数学变换将其转化为已有模型可解决的问题。即使是面对如今最复杂的深度神经网络模型,例如大语言模型,如果我们仔细剖析,会发现里面“密密麻麻”几乎全是线性回归模型。更进一步,从生理学的角度来看,人类大脑难以很好地处理非线性关系,总是倾向于处理简单的线性关系。这表明线性模型符合我们直觉的选择和先天的条件。因此,无论多么复杂或精密的模型,内部都少不了线性模型的身影。掌握线性模型是理解和处理复杂模型的基础。
|
|
|
+
|
|
|
+线性回归模型即使独立使用,在许多情景下也能发挥重要作用。例如,线性回归模型在经济领域有着广泛的应用。实际上,我们接触到的许多经济政策都是线性回归模型的产物。建立模型并不意味着完全模拟现实世界,而是构建一个持续近似的过程。这就是数据科学家们常说
|
|
|
+
|
|
|
+> 所有模型都是错的”的原因。但这句话还有一个重要补充:“其中一些是有用的。
|
|
|
+
|
|
|
+一个“有用”的模型可以过滤掉数据中不重要的细枝末节,抓住主要的内在关系,帮助我们更好地理解和解释数据。在许多情况下,线性模型就是这样一个“有用”的模型,它简洁、高效且易于理解。既然线性模型已经足够“有用”,又何必费力构建那些难以理解且可能引入新问题的复杂模型呢?
|
|
|
+
|
|
|
+线性模型不仅是人工智能的起点,更是解决现实问题的重要工具,其因具有清晰的数学基础和广泛的应用领域而成为学习和掌握人工智能的极佳入门选择。
|
|
|
+
|
|
|
+## 代码说明
|
|
|
|
|
|
|代码|说明|
|
|
|
|---|---|
|