cls_client.py 439 B

1234567891011121314
  1. import requests
  2. import json
  3. import io
  4. import torch
  5. im, cl, id, pos = torch.load('data/p3ch15/cls_val_example.pt')
  6. meta = io.StringIO(json.dumps({'shape': list(im.shape)}))
  7. data = io.BytesIO(bytearray(im.numpy()))
  8. r = requests.post('http://localhost:8000/predict',
  9. files={'meta': meta, 'blob' : data})
  10. response = json.loads(r.content)
  11. print("Model predicted probability of being maignant:", response['prob_malignant'])