| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import math
- import random
- from collections import namedtuple
- import torch
- from torch import nn as nn
- import torch.nn.functional as F
- from util.logconf import logging
- from util.unet import UNet
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- # log.setLevel(logging.INFO)
- log.setLevel(logging.DEBUG)
- class UNetWrapper(nn.Module):
- def __init__(self, **kwargs):
- super().__init__()
- self.input_batchnorm = nn.BatchNorm2d(kwargs['in_channels'])
- self.unet = UNet(**kwargs)
- self.final = nn.Sigmoid()
- self._init_weights()
- def _init_weights(self):
- init_set = {
- nn.Conv2d,
- nn.Conv3d,
- nn.ConvTranspose2d,
- nn.ConvTranspose3d,
- nn.Linear,
- }
- for m in self.modules():
- if type(m) in init_set:
- nn.init.kaiming_normal_(
- m.weight.data, mode='fan_out', nonlinearity='relu', a=0
- )
- if m.bias is not None:
- fan_in, fan_out = \
- nn.init._calculate_fan_in_and_fan_out(m.weight.data)
- bound = 1 / math.sqrt(fan_out)
- nn.init.normal_(m.bias, -bound, bound)
- # nn.init.constant_(self.unet.last.bias, -4)
- # nn.init.constant_(self.unet.last.bias, 4)
- def forward(self, input_batch):
- bn_output = self.input_batchnorm(input_batch)
- un_output = self.unet(bn_output)
- fn_output = self.final(un_output)
- return fn_output
- class SegmentationAugmentation(nn.Module):
- def __init__(
- self, flip=None, offset=None, scale=None, rotate=None, noise=None
- ):
- super().__init__()
- self.flip = flip
- self.offset = offset
- self.scale = scale
- self.rotate = rotate
- self.noise = noise
- def forward(self, input_g, label_g):
- transform_t = self._build2dTransformMatrix()
- transform_t = transform_t.expand(input_g.shape[0], -1, -1)
- transform_t = transform_t.to(input_g.device, torch.float32)
- affine_t = F.affine_grid(transform_t[:,:2],
- input_g.size(), align_corners=False)
- augmented_input_g = F.grid_sample(input_g,
- affine_t, padding_mode='border',
- align_corners=False)
- augmented_label_g = F.grid_sample(label_g.to(torch.float32),
- affine_t, padding_mode='border',
- align_corners=False)
- if self.noise:
- noise_t = torch.randn_like(augmented_input_g)
- noise_t *= self.noise
- augmented_input_g += noise_t
- return augmented_input_g, augmented_label_g > 0.5
- def _build2dTransformMatrix(self):
- transform_t = torch.eye(3)
- for i in range(2):
- if self.flip:
- if random.random() > 0.5:
- transform_t[i,i] *= -1
- if self.offset:
- offset_float = self.offset
- random_float = (random.random() * 2 - 1)
- transform_t[2,i] = offset_float * random_float
- if self.scale:
- scale_float = self.scale
- random_float = (random.random() * 2 - 1)
- transform_t[i,i] *= 1.0 + scale_float * random_float
- if self.rotate:
- angle_rad = random.random() * math.pi * 2
- s = math.sin(angle_rad)
- c = math.cos(angle_rad)
- rotation_t = torch.tensor([
- [c, -s, 0],
- [s, c, 0],
- [0, 0, 1]])
- transform_t @= rotation_t
- return transform_t
- # MaskTuple = namedtuple('MaskTuple', 'raw_dense_mask, dense_mask, body_mask, air_mask, raw_candidate_mask, candidate_mask, lung_mask, neg_mask, pos_mask')
- #
- # class SegmentationMask(nn.Module):
- # def __init__(self):
- # super().__init__()
- #
- # self.conv_list = nn.ModuleList([
- # self._make_circle_conv(radius) for radius in range(1, 8)
- # ])
- #
- # def _make_circle_conv(self, radius):
- # diameter = 1 + radius * 2
- #
- # a = torch.linspace(-1, 1, steps=diameter)**2
- # b = (a[None] + a[:, None])**0.5
- #
- # circle_weights = (b <= 1.0).to(torch.float32)
- #
- # conv = nn.Conv2d(1, 1, kernel_size=diameter, padding=radius, bias=False)
- # conv.weight.data.fill_(1)
- # conv.weight.data *= circle_weights / circle_weights.sum()
- #
- # return conv
- #
- #
- # def erode(self, input_mask, radius, threshold=1):
- # conv = self.conv_list[radius - 1]
- # input_float = input_mask.to(torch.float32)
- # result = conv(input_float)
- #
- # # log.debug(['erode in ', radius, threshold, input_float.min().item(), input_float.mean().item(), input_float.max().item()])
- # # log.debug(['erode out', radius, threshold, result.min().item(), result.mean().item(), result.max().item()])
- #
- # return result >= threshold
- #
- # def deposit(self, input_mask, radius, threshold=0):
- # conv = self.conv_list[radius - 1]
- # input_float = input_mask.to(torch.float32)
- # result = conv(input_float)
- #
- # # log.debug(['deposit in ', radius, threshold, input_float.min().item(), input_float.mean().item(), input_float.max().item()])
- # # log.debug(['deposit out', radius, threshold, result.min().item(), result.mean().item(), result.max().item()])
- #
- # return result > threshold
- #
- # def fill_cavity(self, input_mask):
- # cumsum = input_mask.cumsum(-1)
- # filled_mask = (cumsum > 0)
- # filled_mask &= (cumsum < cumsum[..., -1:])
- # cumsum = input_mask.cumsum(-2)
- # filled_mask &= (cumsum > 0)
- # filled_mask &= (cumsum < cumsum[..., -1:, :])
- #
- # return filled_mask
- #
- #
- # def forward(self, input_g, raw_pos_g):
- # gcc_g = input_g + 1
- #
- # with torch.no_grad():
- # # log.info(['gcc_g', gcc_g.min(), gcc_g.mean(), gcc_g.max()])
- #
- # raw_dense_mask = gcc_g > 0.7
- # dense_mask = self.deposit(raw_dense_mask, 2)
- # dense_mask = self.erode(dense_mask, 6)
- # dense_mask = self.deposit(dense_mask, 4)
- #
- # body_mask = self.fill_cavity(dense_mask)
- # air_mask = self.deposit(body_mask & ~dense_mask, 5)
- # air_mask = self.erode(air_mask, 6)
- #
- # lung_mask = self.deposit(air_mask, 5)
- #
- # raw_candidate_mask = gcc_g > 0.4
- # raw_candidate_mask &= air_mask
- # candidate_mask = self.erode(raw_candidate_mask, 1)
- # candidate_mask = self.deposit(candidate_mask, 1)
- #
- # pos_mask = self.deposit((raw_pos_g > 0.5) & lung_mask, 2)
- #
- # neg_mask = self.deposit(candidate_mask, 1)
- # neg_mask &= ~pos_mask
- # neg_mask &= lung_mask
- #
- # # label_g = (neg_mask | pos_mask).to(torch.float32)
- # label_g = (pos_mask).to(torch.float32)
- # neg_g = neg_mask.to(torch.float32)
- # pos_g = pos_mask.to(torch.float32)
- #
- # mask_dict = {
- # 'raw_dense_mask': raw_dense_mask,
- # 'dense_mask': dense_mask,
- # 'body_mask': body_mask,
- # 'air_mask': air_mask,
- # 'raw_candidate_mask': raw_candidate_mask,
- # 'candidate_mask': candidate_mask,
- # 'lung_mask': lung_mask,
- # 'neg_mask': neg_mask,
- # 'pos_mask': pos_mask,
- # }
- #
- # return label_g, neg_g, pos_g, lung_mask, mask_dict
|