| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- import copy
- import csv
- import functools
- import glob
- import os
- from collections import namedtuple
- import SimpleITK as sitk
- import numpy as np
- import torch
- import torch.cuda
- from torch.utils.data import Dataset
- from util.disk import getCache
- from util.util import XyzTuple, xyz2irc
- from util.logconf import logging
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- # log.setLevel(logging.INFO)
- log.setLevel(logging.DEBUG)
- raw_cache = getCache('part2ch10_raw')
- CandidateInfoTuple = namedtuple(
- 'CandidateInfoTuple',
- 'isNodule_bool, diameter_mm, series_uid, center_xyz',
- )
- @functools.lru_cache(1)
- def getCandidateInfoList(requireOnDisk_bool=True):
- # We construct a set with all series_uids that are present on disk.
- # This will let us use the data, even if we haven't downloaded all of
- # the subsets yet.
- mhd_list = glob.glob('data-unversioned/part2/luna/subset*/*.mhd')
- presentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list}
- diameter_dict = {}
- with open('data/part2/luna/annotations.csv', "r") as f:
- for row in list(csv.reader(f))[1:]:
- series_uid = row[0]
- annotationCenter_xyz = tuple([float(x) for x in row[1:4]])
- annotationDiameter_mm = float(row[4])
- diameter_dict.setdefault(series_uid, []).append(
- (annotationCenter_xyz, annotationDiameter_mm)
- )
- candidateInfo_list = []
- with open('data/part2/luna/candidates.csv', "r") as f:
- for row in list(csv.reader(f))[1:]:
- series_uid = row[0]
- if series_uid not in presentOnDisk_set and requireOnDisk_bool:
- continue
- isNodule_bool = bool(int(row[4]))
- candidateCenter_xyz = tuple([float(x) for x in row[1:4]])
- candidateDiameter_mm = 0.0
- for annotation_tup in diameter_dict.get(series_uid, []):
- annotationCenter_xyz, annotationDiameter_mm = annotation_tup
- for i in range(3):
- delta_mm = abs(candidateCenter_xyz[i] - annotationCenter_xyz[i])
- if delta_mm > annotationDiameter_mm / 4:
- break
- else:
- candidateDiameter_mm = annotationDiameter_mm
- break
- candidateInfo_list.append(CandidateInfoTuple(
- isNodule_bool,
- candidateDiameter_mm,
- series_uid,
- candidateCenter_xyz,
- ))
- candidateInfo_list.sort(reverse=True)
- return candidateInfo_list
- class Ct:
- def __init__(self, series_uid):
- mhd_path = glob.glob(
- 'data-unversioned/part2/luna/subset*/{}.mhd'.format(series_uid)
- )[0]
- ct_mhd = sitk.ReadImage(mhd_path)
- ct_a = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32)
- # CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
- # HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
- # The lower bound gets rid of negative density stuff used to indicate out-of-FOV
- # The upper bound nukes any weird hotspots and clamps bone down
- ct_a.clip(-1000, 1000, ct_a)
- self.series_uid = series_uid
- self.hu_a = ct_a
- self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin())
- self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing())
- self.direction_a = np.array(ct_mhd.GetDirection()).reshape(3, 3)
- def getRawCandidate(self, center_xyz, width_irc):
- center_irc = xyz2irc(
- center_xyz,
- self.origin_xyz,
- self.vxSize_xyz,
- self.direction_a,
- )
- slice_list = []
- for axis, center_val in enumerate(center_irc):
- start_ndx = int(round(center_val - width_irc[axis]/2))
- end_ndx = int(start_ndx + width_irc[axis])
- assert center_val >= 0 and center_val < self.hu_a.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis])
- if start_ndx < 0:
- # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
- # self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
- start_ndx = 0
- end_ndx = int(width_irc[axis])
- if end_ndx > self.hu_a.shape[axis]:
- # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
- # self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
- end_ndx = self.hu_a.shape[axis]
- start_ndx = int(self.hu_a.shape[axis] - width_irc[axis])
- slice_list.append(slice(start_ndx, end_ndx))
- ct_chunk = self.hu_a[tuple(slice_list)]
- return ct_chunk, center_irc
- @functools.lru_cache(1, typed=True)
- def getCt(series_uid):
- return Ct(series_uid)
- @raw_cache.memoize(typed=True)
- def getCtRawCandidate(series_uid, center_xyz, width_irc):
- ct = getCt(series_uid)
- ct_chunk, center_irc = ct.getRawCandidate(center_xyz, width_irc)
- return ct_chunk, center_irc
- class LunaDataset(Dataset):
- def __init__(self,
- val_stride=0,
- isValSet_bool=None,
- series_uid=None,
- ):
- self.candidateInfo_list = copy.copy(getCandidateInfoList())
- if series_uid:
- self.candidateInfo_list = [
- x for x in self.candidateInfo_list if x.series_uid == series_uid
- ]
- if isValSet_bool:
- assert val_stride > 0, val_stride
- self.candidateInfo_list = self.candidateInfo_list[::val_stride]
- assert self.candidateInfo_list
- elif val_stride > 0:
- del self.candidateInfo_list[::val_stride]
- assert self.candidateInfo_list
- log.info("{!r}: {} {} samples".format(
- self,
- len(self.candidateInfo_list),
- "validation" if isValSet_bool else "training",
- ))
- def __len__(self):
- return len(self.candidateInfo_list)
- def __getitem__(self, ndx):
- candidateInfo_tup = self.candidateInfo_list[ndx]
- width_irc = (32, 48, 48)
- candidate_a, center_irc = getCtRawCandidate(
- candidateInfo_tup.series_uid,
- candidateInfo_tup.center_xyz,
- width_irc,
- )
- candidate_t = torch.from_numpy(candidate_a)
- candidate_t = candidate_t.to(torch.float32)
- candidate_t = candidate_t.unsqueeze(0)
- pos_t = torch.tensor([
- not candidateInfo_tup.isNodule_bool,
- candidateInfo_tup.isNodule_bool
- ],
- dtype=torch.long,
- )
- return (
- candidate_t,
- pos_t,
- candidateInfo_tup.series_uid,
- torch.tensor(center_irc),
- )
|