vis.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. import matplotlib
  2. matplotlib.use('nbagg')
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. from p2ch11.dsets import Ct, LunaDataset
  6. clim=(-1000.0, 1300)
  7. def findMalignantSamples(start_ndx=0, limit=10):
  8. ds = LunaDataset(sortby_str='malignancy_size')
  9. malignantSample_list = []
  10. for sample_tup in ds.noduleInfo_list:
  11. if sample_tup[0]:
  12. print(len(malignantSample_list), sample_tup)
  13. malignantSample_list.append(sample_tup)
  14. if len(malignantSample_list) >= limit:
  15. break
  16. return malignantSample_list
  17. def showNodule(series_uid, batch_ndx=None, **kwargs):
  18. ds = LunaDataset(series_uid=series_uid, sortby_str='malignancy_size', **kwargs)
  19. malignant_list = [i for i, x in enumerate(ds.noduleInfo_list) if x[0]]
  20. if batch_ndx is None:
  21. if malignant_list:
  22. batch_ndx = malignant_list[0]
  23. else:
  24. print("Warning: no malignant samples found; using first non-malignant sample.")
  25. batch_ndx = 0
  26. ct = Ct(series_uid)
  27. # ct_tensor, malignant_tensor, series_uid, center_irc = ds[batch_ndx]
  28. # malignant_tensor, diameter_mm, series_uid, center_irc, nodule_tensor = ds[batch_ndx]
  29. nodule_tensor, malignant_tensor, series_uid, center_irc = ds[batch_ndx]
  30. ct_ary = nodule_tensor[0].numpy()
  31. fig = plt.figure(figsize=(15, 25))
  32. group_list = [
  33. #[0,1,2],
  34. [3,4,5],
  35. [6,7,8],
  36. [9,10,11],
  37. #[12,13,14],
  38. #[15]
  39. ]
  40. subplot = fig.add_subplot(len(group_list) + 2, 3, 1)
  41. subplot.set_title('index {}'.format(int(center_irc.index)))
  42. plt.imshow(ct.ary[int(center_irc.index)], clim=clim, cmap='gray')
  43. subplot = fig.add_subplot(len(group_list) + 2, 3, 2)
  44. subplot.set_title('row {}'.format(int(center_irc.row)))
  45. plt.imshow(ct.ary[:,int(center_irc.row)], clim=clim, cmap='gray')
  46. subplot = fig.add_subplot(len(group_list) + 2, 3, 3)
  47. subplot.set_title('col {}'.format(int(center_irc.col)))
  48. plt.imshow(ct.ary[:,:,int(center_irc.col)], clim=clim, cmap='gray')
  49. subplot = fig.add_subplot(len(group_list) + 2, 3, 4)
  50. subplot.set_title('index {}'.format(int(center_irc.index)))
  51. plt.imshow(ct_ary[ct_ary.shape[0]//2], clim=clim, cmap='gray')
  52. subplot = fig.add_subplot(len(group_list) + 2, 3, 5)
  53. subplot.set_title('row {}'.format(int(center_irc.row)))
  54. plt.imshow(ct_ary[:,ct_ary.shape[1]//2], clim=clim, cmap='gray')
  55. subplot = fig.add_subplot(len(group_list) + 2, 3, 6)
  56. subplot.set_title('col {}'.format(int(center_irc.col)))
  57. plt.imshow(ct_ary[:,:,ct_ary.shape[2]//2], clim=clim, cmap='gray')
  58. for row, index_list in enumerate(group_list):
  59. for col, index in enumerate(index_list):
  60. subplot = fig.add_subplot(len(group_list) + 2, 3, row * 3 + col + 7)
  61. subplot.set_title('slice {}'.format(index))
  62. plt.imshow(ct_ary[index*2], clim=clim, cmap='gray')
  63. print(series_uid, batch_ndx, bool(malignant_tensor[1]), malignant_list, ct.vxSize_xyz)
  64. return ct_ary