training.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. import argparse
  2. import datetime
  3. import os
  4. import sys
  5. import numpy as np
  6. from tensorboardX import SummaryWriter
  7. import torch
  8. import torch.nn as nn
  9. from torch.optim import SGD
  10. from torch.utils.data import DataLoader
  11. from util.util import enumerateWithEstimate
  12. from .dsets import LunaDataset
  13. from util.logconf import logging
  14. from .model import LunaModel
  15. log = logging.getLogger(__name__)
  16. # log.setLevel(logging.WARN)
  17. log.setLevel(logging.INFO)
  18. # log.setLevel(logging.DEBUG)
  19. # Used for computeBatchLoss and logMetrics to index into metrics_tensor/metrics_ary
  20. METRICS_LABEL_NDX=0
  21. METRICS_PRED_NDX=1
  22. METRICS_LOSS_NDX=2
  23. METRICS_SIZE = 3
  24. class LunaTrainingApp(object):
  25. def __init__(self, sys_argv=None):
  26. if sys_argv is None:
  27. sys_argv = sys.argv[1:]
  28. parser = argparse.ArgumentParser()
  29. parser.add_argument('--batch-size',
  30. help='Batch size to use for training',
  31. default=32,
  32. type=int,
  33. )
  34. parser.add_argument('--num-workers',
  35. help='Number of worker processes for background data loading',
  36. default=8,
  37. type=int,
  38. )
  39. parser.add_argument('--epochs',
  40. help='Number of epochs to train for',
  41. default=1,
  42. type=int,
  43. )
  44. parser.add_argument('--balanced',
  45. help="Balance the training data to half benign, half malignant.",
  46. action='store_true',
  47. default=False,
  48. )
  49. parser.add_argument('--augmented',
  50. help="Augment the training data.",
  51. action='store_true',
  52. default=False,
  53. )
  54. parser.add_argument('--augment-flip',
  55. help="Augment the training data by randomly flipping the data left-right, up-down, and front-back.",
  56. action='store_true',
  57. default=False,
  58. )
  59. parser.add_argument('--augment-offset',
  60. help="Augment the training data by randomly offsetting the data slightly along the X and Y axes.",
  61. action='store_true',
  62. default=False,
  63. )
  64. parser.add_argument('--augment-scale',
  65. help="Augment the training data by randomly increasing or decreasing the size of the nodule.",
  66. action='store_true',
  67. default=False,
  68. )
  69. parser.add_argument('--augment-rotate',
  70. help="Augment the training data by randomly rotating the data around the head-foot axis.",
  71. action='store_true',
  72. default=False,
  73. )
  74. parser.add_argument('--augment-noise',
  75. help="Augment the training data by randomly adding noise to the data.",
  76. action='store_true',
  77. default=False,
  78. )
  79. parser.add_argument('--tb-prefix',
  80. default='p2ch11',
  81. help="Data prefix to use for Tensorboard run. Defaults to chapter.",
  82. )
  83. parser.add_argument('comment',
  84. help="Comment suffix for Tensorboard run.",
  85. nargs='?',
  86. default='none',
  87. )
  88. self.cli_args = parser.parse_args(sys_argv)
  89. self.time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H.%M.%S')
  90. self.totalTrainingSamples_count = 0
  91. self.trn_writer = None
  92. self.tst_writer = None
  93. self.augmentation_dict = {}
  94. if self.cli_args.augmented or self.cli_args.augment_flip:
  95. self.augmentation_dict['flip'] = True
  96. if self.cli_args.augmented or self.cli_args.augment_offset:
  97. self.augmentation_dict['offset'] = 0.1
  98. if self.cli_args.augmented or self.cli_args.augment_scale:
  99. self.augmentation_dict['scale'] = 0.2
  100. if self.cli_args.augmented or self.cli_args.augment_rotate:
  101. self.augmentation_dict['rotate'] = True
  102. if self.cli_args.augmented or self.cli_args.augment_noise:
  103. self.augmentation_dict['noise'] = 25.0
  104. self.use_cuda = torch.cuda.is_available()
  105. self.device = torch.device("cuda" if self.use_cuda else "cpu")
  106. self.model = self.initModel()
  107. self.optimizer = self.initOptimizer()
  108. def initModel(self):
  109. model = LunaModel()
  110. if self.use_cuda:
  111. if torch.cuda.device_count() > 1:
  112. model = nn.DataParallel(model)
  113. model = model.to(self.device)
  114. return model
  115. def initOptimizer(self):
  116. return SGD(self.model.parameters(), lr=0.001, momentum=0.99)
  117. # return Adam(self.model.parameters())
  118. def initTrainDl(self):
  119. train_ds = LunaDataset(
  120. test_stride=10,
  121. isTestSet_bool=False,
  122. ratio_int=int(self.cli_args.balanced),
  123. augmentation_dict=self.augmentation_dict,
  124. )
  125. train_dl = DataLoader(
  126. train_ds,
  127. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  128. num_workers=self.cli_args.num_workers,
  129. pin_memory=self.use_cuda,
  130. )
  131. return train_dl
  132. def initTestDl(self):
  133. test_ds = LunaDataset(
  134. test_stride=10,
  135. isTestSet_bool=True,
  136. )
  137. test_dl = DataLoader(
  138. test_ds,
  139. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  140. num_workers=self.cli_args.num_workers,
  141. pin_memory=self.use_cuda,
  142. )
  143. return test_dl
  144. def initTensorboardWriters(self):
  145. if self.trn_writer is None:
  146. log_dir = os.path.join('runs', self.cli_args.tb_prefix, self.time_str)
  147. self.trn_writer = SummaryWriter(log_dir=log_dir + '_trn_cls_' + self.cli_args.comment)
  148. self.tst_writer = SummaryWriter(log_dir=log_dir + '_tst_cls_' + self.cli_args.comment)
  149. # eng::tb_writer[]
  150. def main(self):
  151. log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
  152. train_dl = self.initTrainDl()
  153. test_dl = self.initTestDl()
  154. self.initTensorboardWriters()
  155. # self.logModelMetrics(self.model)
  156. # best_score = 0.0
  157. for epoch_ndx in range(1, self.cli_args.epochs + 1):
  158. log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
  159. epoch_ndx,
  160. self.cli_args.epochs,
  161. len(train_dl),
  162. len(test_dl),
  163. self.cli_args.batch_size,
  164. (torch.cuda.device_count() if self.use_cuda else 1),
  165. ))
  166. trnMetrics_tensor = self.doTraining(epoch_ndx, train_dl)
  167. self.logMetrics(epoch_ndx, 'trn', trnMetrics_tensor)
  168. tstMetrics_tensor = self.doTesting(epoch_ndx, test_dl)
  169. self.logMetrics(epoch_ndx, 'tst', tstMetrics_tensor)
  170. if hasattr(self, 'trn_writer'):
  171. self.trn_writer.close()
  172. self.tst_writer.close()
  173. def doTraining(self, epoch_ndx, train_dl):
  174. self.model.train()
  175. train_dl.dataset.shuffleSamples()
  176. trainingMetrics_devtensor = torch.zeros(METRICS_SIZE, len(train_dl.dataset)).to(self.device)
  177. batch_iter = enumerateWithEstimate(
  178. train_dl,
  179. "E{} Training".format(epoch_ndx),
  180. start_ndx=train_dl.num_workers,
  181. )
  182. for batch_ndx, batch_tup in batch_iter:
  183. self.optimizer.zero_grad()
  184. loss_var = self.computeBatchLoss(
  185. batch_ndx,
  186. batch_tup,
  187. train_dl.batch_size,
  188. trainingMetrics_devtensor
  189. )
  190. loss_var.backward()
  191. self.optimizer.step()
  192. del loss_var
  193. self.totalTrainingSamples_count += trainingMetrics_devtensor.size(1)
  194. return trainingMetrics_devtensor.to('cpu')
  195. def doTesting(self, epoch_ndx, test_dl):
  196. with torch.no_grad():
  197. self.model.eval()
  198. testingMetrics_devtensor = torch.zeros(METRICS_SIZE, len(test_dl.dataset)).to(self.device)
  199. batch_iter = enumerateWithEstimate(
  200. test_dl,
  201. "E{} Testing ".format(epoch_ndx),
  202. start_ndx=test_dl.num_workers,
  203. )
  204. for batch_ndx, batch_tup in batch_iter:
  205. self.computeBatchLoss(batch_ndx, batch_tup, test_dl.batch_size, testingMetrics_devtensor)
  206. return testingMetrics_devtensor.to('cpu')
  207. def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_devtensor):
  208. input_tensor, label_tensor, _series_list, _center_list = batch_tup
  209. input_devtensor = input_tensor.to(self.device, non_blocking=True)
  210. label_devtensor = label_tensor.to(self.device, non_blocking=True)
  211. logits_devtensor, probability_devtensor = self.model(input_devtensor)
  212. loss_func = nn.CrossEntropyLoss(reduction='none')
  213. loss_devtensor = loss_func(logits_devtensor, label_devtensor[:,1])
  214. start_ndx = batch_ndx * batch_size
  215. end_ndx = start_ndx + label_tensor.size(0)
  216. metrics_devtensor[METRICS_LABEL_NDX, start_ndx:end_ndx] = label_devtensor[:,1]
  217. metrics_devtensor[METRICS_PRED_NDX, start_ndx:end_ndx] = probability_devtensor[:,1]
  218. metrics_devtensor[METRICS_LOSS_NDX, start_ndx:end_ndx] = loss_devtensor
  219. return loss_devtensor.mean()
  220. def logMetrics(
  221. self,
  222. epoch_ndx,
  223. mode_str,
  224. metrics_tensor,
  225. ):
  226. log.info("E{} {}".format(
  227. epoch_ndx,
  228. type(self).__name__,
  229. ))
  230. metrics_ary = metrics_tensor.cpu().detach().numpy()
  231. # assert np.isfinite(metrics_ary).all()
  232. benLabel_mask = metrics_ary[METRICS_LABEL_NDX] <= 0.5
  233. benPred_mask = metrics_ary[METRICS_PRED_NDX] <= 0.5
  234. malLabel_mask = ~benLabel_mask
  235. malPred_mask = ~benPred_mask
  236. benLabel_count = benLabel_mask.sum()
  237. malLabel_count = malLabel_mask.sum()
  238. trueNeg_count = benCorrect_count = (benLabel_mask & benPred_mask).sum()
  239. truePos_count = malCorrect_count = (malLabel_mask & malPred_mask).sum()
  240. falsePos_count = benLabel_count - benCorrect_count
  241. falseNeg_count = malLabel_count - malCorrect_count
  242. metrics_dict = {}
  243. metrics_dict['loss/all'] = metrics_ary[METRICS_LOSS_NDX].mean()
  244. metrics_dict['loss/ben'] = metrics_ary[METRICS_LOSS_NDX, benLabel_mask].mean()
  245. metrics_dict['loss/mal'] = metrics_ary[METRICS_LOSS_NDX, malLabel_mask].mean()
  246. metrics_dict['correct/all'] = (malCorrect_count + benCorrect_count) / metrics_ary.shape[1] * 100
  247. metrics_dict['correct/ben'] = (benCorrect_count) / benLabel_count * 100
  248. metrics_dict['correct/mal'] = (malCorrect_count) / malLabel_count * 100
  249. precision = metrics_dict['pr/precision'] = truePos_count / (truePos_count + falsePos_count)
  250. recall = metrics_dict['pr/recall'] = truePos_count / (truePos_count + falseNeg_count)
  251. metrics_dict['pr/f1_score'] = 2 * (precision * recall) / (precision + recall)
  252. log.info(
  253. ("E{} {:8} "
  254. + "{loss/all:.4f} loss, "
  255. + "{correct/all:-5.1f}% correct, "
  256. + "{pr/precision:.4f} precision, "
  257. + "{pr/recall:.4f} recall, "
  258. + "{pr/f1_score:.4f} f1 score"
  259. ).format(
  260. epoch_ndx,
  261. mode_str,
  262. **metrics_dict,
  263. )
  264. )
  265. log.info(
  266. ("E{} {:8} "
  267. + "{loss/ben:.4f} loss, "
  268. + "{correct/ben:-5.1f}% correct ({benCorrect_count:} of {benLabel_count:})"
  269. ).format(
  270. epoch_ndx,
  271. mode_str + '_ben',
  272. benCorrect_count=benCorrect_count,
  273. benLabel_count=benLabel_count,
  274. **metrics_dict,
  275. )
  276. )
  277. log.info(
  278. ("E{} {:8} "
  279. + "{loss/mal:.4f} loss, "
  280. + "{correct/mal:-5.1f}% correct ({malCorrect_count:} of {malLabel_count:})"
  281. ).format(
  282. epoch_ndx,
  283. mode_str + '_mal',
  284. malCorrect_count=malCorrect_count,
  285. malLabel_count=malLabel_count,
  286. **metrics_dict,
  287. )
  288. )
  289. writer = getattr(self, mode_str + '_writer')
  290. for key, value in metrics_dict.items():
  291. writer.add_scalar(key, value, self.totalTrainingSamples_count)
  292. writer.add_pr_curve(
  293. 'pr',
  294. metrics_ary[METRICS_LABEL_NDX],
  295. metrics_ary[METRICS_PRED_NDX],
  296. self.totalTrainingSamples_count,
  297. )
  298. bins = [x/50.0 for x in range(51)]
  299. benHist_mask = benLabel_mask & (metrics_ary[METRICS_PRED_NDX] > 0.01)
  300. malHist_mask = malLabel_mask & (metrics_ary[METRICS_PRED_NDX] < 0.99)
  301. if benHist_mask.any():
  302. writer.add_histogram(
  303. 'is_ben',
  304. metrics_ary[METRICS_PRED_NDX, benHist_mask],
  305. self.totalTrainingSamples_count,
  306. bins=bins,
  307. )
  308. if malHist_mask.any():
  309. writer.add_histogram(
  310. 'is_mal',
  311. metrics_ary[METRICS_PRED_NDX, malHist_mask],
  312. self.totalTrainingSamples_count,
  313. bins=bins,
  314. )
  315. # score = 1 \
  316. # + metrics_dict['pr/f1_score'] \
  317. # - metrics_dict['loss/mal'] * 0.01 \
  318. # - metrics_dict['loss/all'] * 0.0001
  319. #
  320. # return score
  321. # def logModelMetrics(self, model):
  322. # writer = getattr(self, 'trn_writer')
  323. #
  324. # model = getattr(model, 'module', model)
  325. #
  326. # for name, param in model.named_parameters():
  327. # if param.requires_grad:
  328. # min_data = float(param.data.min())
  329. # max_data = float(param.data.max())
  330. # max_extent = max(abs(min_data), abs(max_data))
  331. #
  332. # # bins = [x/50*max_extent for x in range(-50, 51)]
  333. #
  334. # try:
  335. # writer.add_histogram(
  336. # name.rsplit('.', 1)[-1] + '/' + name,
  337. # param.data.cpu().numpy(),
  338. # # metrics_ary[METRICS_PRED_NDX, benHist_mask],
  339. # self.totalTrainingSamples_count,
  340. # # bins=bins,
  341. # )
  342. # except Exception as e:
  343. # log.error([min_data, max_data])
  344. # raise
  345. if __name__ == '__main__':
  346. sys.exit(LunaTrainingApp().main() or 0)