training.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. import argparse
  2. import datetime
  3. import os
  4. import sys
  5. import numpy as np
  6. from tensorboardX import SummaryWriter
  7. import torch
  8. import torch.nn as nn
  9. from torch.autograd import Variable
  10. from torch.optim import SGD
  11. from torch.utils.data import DataLoader
  12. from util.util import enumerateWithEstimate
  13. from .dsets import LunaDataset
  14. from util.logconf import logging
  15. from .model import LunaModel
  16. log = logging.getLogger(__name__)
  17. # log.setLevel(logging.WARN)
  18. log.setLevel(logging.INFO)
  19. # log.setLevel(logging.DEBUG)
  20. # Used for metrics_ary index 0
  21. LABEL=0
  22. PRED=1
  23. LOSS=2
  24. # ...
  25. class LunaTrainingApp(object):
  26. @classmethod
  27. def __init__(self, sys_argv=None):
  28. if sys_argv is None:
  29. sys_argv = sys.argv[1:]
  30. parser = argparse.ArgumentParser()
  31. parser.add_argument('--batch-size',
  32. help='Batch size to use for training',
  33. default=256,
  34. type=int,
  35. )
  36. parser.add_argument('--num-workers',
  37. help='Number of worker processes for background data loading',
  38. default=8,
  39. type=int,
  40. )
  41. parser.add_argument('--epochs',
  42. help='Number of epochs to train for',
  43. default=10,
  44. type=int,
  45. )
  46. parser.add_argument('--layers',
  47. help='Number of layers to the model',
  48. default=3,
  49. type=int,
  50. )
  51. parser.add_argument('--channels',
  52. help="Number of channels for the first layer's convolutions to the model (doubles each layer)",
  53. default=8,
  54. type=int,
  55. )
  56. parser.add_argument('--balanced',
  57. help="Balance the training data to half benign, half malignant.",
  58. action='store_true',
  59. default=False,
  60. )
  61. parser.add_argument('--tb-prefix',
  62. help="Data prefix to use for Tensorboard. Defaults to chapter.",
  63. default='p2ch3',
  64. )
  65. self.cli_args = parser.parse_args(sys_argv)
  66. def main(self):
  67. log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
  68. self.train_dl = DataLoader(
  69. LunaDataset(
  70. test_stride=10,
  71. isTestSet_bool=False,
  72. balanced_bool=self.cli_args.balanced,
  73. ),
  74. batch_size=self.cli_args.batch_size * torch.cuda.device_count(),
  75. num_workers=self.cli_args.num_workers,
  76. pin_memory=True,
  77. )
  78. self.test_dl = DataLoader(
  79. LunaDataset(
  80. test_stride=10,
  81. isTestSet_bool=True,
  82. ),
  83. batch_size=self.cli_args.batch_size * torch.cuda.device_count(),
  84. num_workers=self.cli_args.num_workers,
  85. pin_memory=True,
  86. )
  87. self.model = LunaModel(self.cli_args.layers, 1, self.cli_args.channels)
  88. self.model = nn.DataParallel(self.model)
  89. self.model = self.model.cuda()
  90. self.optimizer = SGD(self.model.parameters(), lr=0.01, momentum=0.9)
  91. time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
  92. log_dir = os.path.join('runs', self.cli_args.tb_prefix, time_str)
  93. self.trn_writer = SummaryWriter(log_dir=log_dir + '_train')
  94. self.tst_writer = SummaryWriter(log_dir=log_dir + '_test')
  95. for epoch_ndx in range(1, self.cli_args.epochs + 1):
  96. log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
  97. epoch_ndx,
  98. self.cli_args.epochs,
  99. len(self.train_dl),
  100. len(self.test_dl),
  101. self.cli_args.batch_size,
  102. torch.cuda.device_count(),
  103. ))
  104. # Training loop, very similar to below
  105. self.model.train()
  106. self.train_dl.dataset.shuffleSamples()
  107. batch_iter = enumerateWithEstimate(
  108. self.train_dl,
  109. "E{} Training".format(epoch_ndx),
  110. start_ndx=self.train_dl.num_workers,
  111. )
  112. trainingMetrics_ary = np.zeros((3, len(self.train_dl.dataset)), dtype=np.float32)
  113. for batch_ndx, batch_tup in batch_iter:
  114. self.optimizer.zero_grad()
  115. loss_var = self.computeBatchLoss(batch_ndx, batch_tup, self.train_dl.batch_size, trainingMetrics_ary)
  116. loss_var.backward()
  117. self.optimizer.step()
  118. del loss_var
  119. # Testing loop, very similar to above, but simplified
  120. # ...
  121. self.model.eval()
  122. self.test_dl.dataset.shuffleSamples()
  123. batch_iter = enumerateWithEstimate(
  124. self.test_dl,
  125. "E{} Testing ".format(epoch_ndx),
  126. start_ndx=self.test_dl.num_workers,
  127. )
  128. testingMetrics_ary = np.zeros((3, len(self.test_dl.dataset)), dtype=np.float32)
  129. for batch_ndx, batch_tup in batch_iter:
  130. self.computeBatchLoss(batch_ndx, batch_tup, self.test_dl.batch_size, testingMetrics_ary)
  131. self.logMetrics(epoch_ndx, trainingMetrics_ary, testingMetrics_ary)
  132. self.trn_writer.close()
  133. self.tst_writer.close()
  134. def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_ary):
  135. input_tensor, label_tensor, series_list, center_list = batch_tup
  136. input_var = Variable(input_tensor.cuda())
  137. label_var = Variable(label_tensor.cuda())
  138. prediction_var = self.model(input_var)
  139. # ...
  140. start_ndx = batch_ndx * batch_size
  141. end_ndx = start_ndx + label_tensor.size(0)
  142. metrics_ary[LABEL, start_ndx:end_ndx] = label_tensor.numpy()[:,0,0]
  143. metrics_ary[PRED, start_ndx:end_ndx] = prediction_var.data.cpu().numpy()[:,0]
  144. for sample_ndx in range(label_tensor.size(0)):
  145. subloss_var = nn.MSELoss()(prediction_var[sample_ndx], label_var[sample_ndx])
  146. metrics_ary[LOSS, start_ndx+sample_ndx] = subloss_var.data[0]
  147. del subloss_var
  148. loss_var = nn.MSELoss()(prediction_var, label_var)
  149. return loss_var
  150. def logMetrics(self, epoch_ndx, trainingMetrics_ary, testingMetrics_ary):
  151. log.info("E{} {}".format(
  152. epoch_ndx,
  153. type(self).__name__,
  154. ))
  155. for mode_str, metrics_ary in [('trn', trainingMetrics_ary), ('tst', testingMetrics_ary)]:
  156. pos_mask = metrics_ary[LABEL] > 0.5
  157. neg_mask = ~pos_mask
  158. truePos_count = (metrics_ary[PRED, pos_mask] > 0.5).sum()
  159. trueNeg_count = (metrics_ary[PRED, neg_mask] < 0.5).sum()
  160. falseNeg_count = pos_mask.sum() - truePos_count
  161. falsePos_count = neg_mask.sum() - trueNeg_count
  162. metrics_dict = {}
  163. metrics_dict['pr/precision'] = p = truePos_count / (truePos_count + falsePos_count)
  164. metrics_dict['pr/recall'] = r = truePos_count / (truePos_count + falseNeg_count)
  165. # https://en.wikipedia.org/wiki/F1_score
  166. for n in [0.5, 1, 2]:
  167. metrics_dict['pr/f{}_score'.format(n)] = \
  168. (1 + n**2) * (p * r / (n**2 * p + r))
  169. metrics_dict['loss/all'] = metrics_ary[LOSS].mean()
  170. metrics_dict['loss/ben'] = metrics_ary[LOSS, neg_mask].mean()
  171. metrics_dict['loss/mal'] = metrics_ary[LOSS, pos_mask].mean()
  172. metrics_dict['correct/all'] = (truePos_count + trueNeg_count) / metrics_ary.shape[1] * 100
  173. metrics_dict['correct/ben'] = (trueNeg_count) / neg_mask.sum() * 100
  174. metrics_dict['correct/mal'] = (truePos_count) / pos_mask.sum() * 100
  175. log.info(("E{} {:8} "
  176. + "{loss/all:.4f} loss, "
  177. + "{correct/all:-5.1f}% correct, "
  178. + "{pr/precision:.4f} precision, "
  179. + "{pr/recall:.4f} recall").format(
  180. epoch_ndx,
  181. mode_str,
  182. **metrics_dict,
  183. ))
  184. log.info(("E{} {:8} "
  185. + "{loss/ben:.4f} loss, "
  186. + "{correct/ben:-5.1f}% correct").format(
  187. epoch_ndx,
  188. mode_str + '_ben',
  189. **metrics_dict,
  190. ))
  191. log.info(("E{} {:8} "
  192. + "{loss/mal:.4f} loss, "
  193. + "{correct/mal:-5.1f}% correct").format(
  194. epoch_ndx,
  195. mode_str + '_mal',
  196. **metrics_dict,
  197. ))
  198. writer = getattr(self, mode_str + '_writer')
  199. tb_ndx = epoch_ndx * trainingMetrics_ary.shape[1]
  200. for key, value in metrics_dict.items():
  201. writer.add_scalar(key, value, tb_ndx)
  202. writer.add_pr_curve('pr', metrics_ary[LABEL], metrics_ary[PRED], tb_ndx)
  203. writer.add_histogram('is_mal', metrics_ary[PRED, pos_mask], tb_ndx)
  204. writer.add_histogram('is_ben', metrics_ary[PRED, neg_mask], tb_ndx)
  205. if __name__ == '__main__':
  206. sys.exit(LunaTrainingApp().main() or 0)