| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- import csv
- import functools
- import glob
- import math
- import time
- import SimpleITK as sitk
- import numpy as np
- import torch
- import torch.cuda
- from torch.utils.data import Dataset
- from util.disk import getCache
- from util.util import XyzTuple, xyz2irc
- from util.logconf import logging
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- log.setLevel(logging.INFO)
- log.setLevel(logging.DEBUG)
- # cache = getCache('p2ch2')
- cache = getCache('part2')
- class Ct(object):
- def __init__(self, series_uid):
- mhd_path = glob.glob('data/luna/subset*/{}.mhd'.format(series_uid))[0]
- ct_mhd = sitk.ReadImage(mhd_path)
- ct_ary = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32)
- # CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
- # HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
- # This converts HU to g/cc.
- ct_ary += 1000
- ct_ary /= 1000
- # This gets rid of negative density stuff used to indicate out-of-FOV
- ct_ary[ct_ary < 0] = 0
- # This nukes any weird hotspots and clamps bone down
- ct_ary[ct_ary > 2] = 2
- self.series_uid = series_uid
- self.ary = ct_ary
- self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin())
- self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing())
- self.direction_tup = tuple(int(round(x)) for x in ct_mhd.GetDirection())
- def getInputChunk(self, center_xyz, width_irc):
- center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz, self.direction_tup)
- slice_list = []
- for axis, center_val in enumerate(center_irc):
- start_ndx = int(round(center_val - width_irc[axis]/2))
- end_ndx = int(start_ndx + width_irc[axis])
- assert center_val >= 0 and center_val < self.ary.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis])
- if start_ndx < 0:
- # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
- # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc))
- start_ndx = 0
- end_ndx = int(width_irc[axis])
- if end_ndx > self.ary.shape[axis]:
- # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
- # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc))
- end_ndx = self.ary.shape[axis]
- start_ndx = int(self.ary.shape[axis] - width_irc[axis])
- slice_list.append(slice(start_ndx, end_ndx))
- ct_chunk = self.ary[slice_list]
- return ct_chunk, center_irc
- @functools.lru_cache(1, typed=True)
- def getCt(series_uid):
- return Ct(series_uid)
- @cache.memoize(typed=True)
- def getCtInputChunk(series_uid, center_xyz, width_irc):
- ct = getCt(series_uid)
- ct_chunk, center_irc = ct.getInputChunk(center_xyz, width_irc)
- return ct_chunk, center_irc
- class LunaDataset(Dataset):
- def __init__(self, test_stride=0, isTestSet_bool=None, series_uid=None):
- # We construct a set with all series_uids that are present on disk.
- # This will let us use the data, even if we haven't downloaded all of
- # the subsets yet.
- mhd_list = glob.glob('data/luna/subset*/*.mhd')
- present_set = {p.rsplit('/', 1)[-1][:-4] for p in mhd_list}
- sample_list = []
- with open('data/luna/candidates.csv', "r") as f:
- csv_list = list(csv.reader(f))
- for row in csv_list[1:]:
- row_uid = row[0]
- if series_uid and series_uid != row_uid:
- continue
- # If a row_uid isn't present, that means it's in a subset that we
- # don't have on disk, so we should skip it.
- if row_uid not in present_set:
- continue
- center_xyz = tuple([float(x) for x in row[1:4]])
- isMalignant_bool = bool(int(row[4]))
- sample_list.append((row_uid, center_xyz, isMalignant_bool))
- sample_list.sort()
- if test_stride > 1:
- if isTestSet_bool:
- sample_list = sample_list[::test_stride]
- else:
- del sample_list[::test_stride]
- log.info("{!r}: {} {} samples".format(self, len(sample_list), "testing" if isTestSet_bool else "training"))
- self.sample_list = sample_list
- def __len__(self):
- return len(self.sample_list)
- def __getitem__(self, ndx):
- series_uid, center_xyz, isMalignant_bool = self.sample_list[ndx]
- ct_chunk, center_irc = getCtInputChunk(series_uid, center_xyz, (16, 16, 16))
- # dim=3, Index x Row x Col
- ct_tensor = torch.from_numpy(np.array(ct_chunk, dtype=np.float32))
- # dim=1
- malignant_tensor = torch.from_numpy(np.array([isMalignant_bool], dtype=np.float32))
- # dim=4, Channel x Index x Row x Col
- ct_tensor = ct_tensor.unsqueeze(0)
- malignant_tensor = malignant_tensor.unsqueeze(0)
- # Unpacked as: input_tensor, answer_int, series_uid, center_irc
- return ct_tensor, malignant_tensor, series_uid, center_irc
|