train_cls.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. import argparse
  2. import datetime
  3. import os
  4. import sys
  5. import numpy as np
  6. from tensorboardX import SummaryWriter
  7. import torch
  8. import torch.nn as nn
  9. from torch.optim import SGD, Adam
  10. from torch.utils.data import DataLoader
  11. from util.util import enumerateWithEstimate
  12. from .dsets import LunaDataset
  13. from .model_cls import LunaModel
  14. from util.logconf import logging
  15. log = logging.getLogger(__name__)
  16. # log.setLevel(logging.WARN)
  17. # log.setLevel(logging.INFO)
  18. log.setLevel(logging.DEBUG)
  19. # Used for computeBatchLoss and logMetrics to index into metrics_t/metrics_a
  20. METRICS_LABEL_NDX=0
  21. METRICS_PRED_NDX=1
  22. METRICS_LOSS_NDX=2
  23. METRICS_SIZE = 3
  24. class LunaTrainingApp(object):
  25. def __init__(self, sys_argv=None):
  26. if sys_argv is None:
  27. sys_argv = sys.argv[1:]
  28. parser = argparse.ArgumentParser()
  29. parser.add_argument('--batch-size',
  30. help='Batch size to use for training',
  31. default=32,
  32. type=int,
  33. )
  34. parser.add_argument('--num-workers',
  35. help='Number of worker processes for background data loading',
  36. default=8,
  37. type=int,
  38. )
  39. parser.add_argument('--epochs',
  40. help='Number of epochs to train for',
  41. default=1,
  42. type=int,
  43. )
  44. parser.add_argument('--balanced',
  45. help="Balance the training data to half benign, half malignant.",
  46. action='store_true',
  47. default=False,
  48. )
  49. parser.add_argument('--augmented',
  50. help="Augment the training data.",
  51. action='store_true',
  52. default=False,
  53. )
  54. parser.add_argument('--augment-flip',
  55. help="Augment the training data by randomly flipping the data left-right, up-down, and front-back.",
  56. action='store_true',
  57. default=False,
  58. )
  59. parser.add_argument('--augment-offset',
  60. help="Augment the training data by randomly offsetting the data slightly along the X and Y axes.",
  61. action='store_true',
  62. default=False,
  63. )
  64. parser.add_argument('--augment-scale',
  65. help="Augment the training data by randomly increasing or decreasing the size of the nodule.",
  66. action='store_true',
  67. default=False,
  68. )
  69. parser.add_argument('--augment-rotate',
  70. help="Augment the training data by randomly rotating the data around the head-foot axis.",
  71. action='store_true',
  72. default=False,
  73. )
  74. parser.add_argument('--augment-noise',
  75. help="Augment the training data by randomly adding noise to the data.",
  76. action='store_true',
  77. default=False,
  78. )
  79. parser.add_argument('--tb-prefix',
  80. default='p2ch13',
  81. help="Data prefix to use for Tensorboard run. Defaults to chapter.",
  82. )
  83. parser.add_argument('comment',
  84. help="Comment suffix for Tensorboard run.",
  85. nargs='?',
  86. default='none',
  87. )
  88. self.cli_args = parser.parse_args(sys_argv)
  89. self.time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H.%M.%S')
  90. self.totalTrainingSamples_count = 0
  91. self.trn_writer = None
  92. self.val_writer = None
  93. self.augmentation_dict = {}
  94. if self.cli_args.augmented or self.cli_args.augment_flip:
  95. self.augmentation_dict['flip'] = True
  96. if self.cli_args.augmented or self.cli_args.augment_offset:
  97. self.augmentation_dict['offset'] = 0.1
  98. if self.cli_args.augmented or self.cli_args.augment_scale:
  99. self.augmentation_dict['scale'] = 0.2
  100. if self.cli_args.augmented or self.cli_args.augment_rotate:
  101. self.augmentation_dict['rotate'] = True
  102. if self.cli_args.augmented or self.cli_args.augment_noise:
  103. self.augmentation_dict['noise'] = 25.0
  104. self.use_cuda = torch.cuda.is_available()
  105. self.device = torch.device("cuda" if self.use_cuda else "cpu")
  106. self.model = self.initModel()
  107. self.optimizer = self.initOptimizer()
  108. def initModel(self):
  109. model = LunaModel()
  110. if self.use_cuda:
  111. if torch.cuda.device_count() > 1:
  112. model = nn.DataParallel(model)
  113. model = model.to(self.device)
  114. return model
  115. def initOptimizer(self):
  116. return SGD(self.model.parameters(), lr=0.001, momentum=0.99)
  117. # return Adam(self.model.parameters())
  118. def initTrainDl(self):
  119. train_ds = LunaDataset(
  120. val_stride=10,
  121. isValSet_bool=False,
  122. ratio_int=int(self.cli_args.balanced),
  123. augmentation_dict=self.augmentation_dict,
  124. )
  125. train_dl = DataLoader(
  126. train_ds,
  127. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  128. num_workers=self.cli_args.num_workers,
  129. pin_memory=self.use_cuda,
  130. )
  131. return train_dl
  132. def initValDl(self):
  133. val_ds = LunaDataset(
  134. val_stride=10,
  135. isValSet_bool=True,
  136. )
  137. val_dl = DataLoader(
  138. val_ds,
  139. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  140. num_workers=self.cli_args.num_workers,
  141. pin_memory=self.use_cuda,
  142. )
  143. return val_dl
  144. def initTensorboardWriters(self):
  145. if self.trn_writer is None:
  146. log_dir = os.path.join('runs', self.cli_args.tb_prefix, self.time_str)
  147. self.trn_writer = SummaryWriter(log_dir=log_dir + '_trn_cls_' + self.cli_args.comment)
  148. self.val_writer = SummaryWriter(log_dir=log_dir + '_val_cls_' + self.cli_args.comment)
  149. def main(self):
  150. log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
  151. train_dl = self.initTrainDl()
  152. val_dl = self.initValDl()
  153. best_score = 0.0
  154. for epoch_ndx in range(1, self.cli_args.epochs + 1):
  155. log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
  156. epoch_ndx,
  157. self.cli_args.epochs,
  158. len(train_dl),
  159. len(val_dl),
  160. self.cli_args.batch_size,
  161. (torch.cuda.device_count() if self.use_cuda else 1),
  162. ))
  163. trnMetrics_t = self.doTraining(epoch_ndx, train_dl)
  164. self.logMetrics(epoch_ndx, 'trn', trnMetrics_t)
  165. valMetrics_t = self.doValidation(epoch_ndx, val_dl)
  166. score = self.logMetrics(epoch_ndx, 'val', valMetrics_t)
  167. best_score = max(score, best_score)
  168. self.saveModel('cls', epoch_ndx, score == best_score)
  169. if hasattr(self, 'trn_writer'):
  170. self.trn_writer.close()
  171. self.val_writer.close()
  172. def doTraining(self, epoch_ndx, train_dl):
  173. self.model.train()
  174. train_dl.dataset.shuffleSamples()
  175. trnMetrics_g = torch.zeros(
  176. METRICS_SIZE,
  177. len(train_dl.dataset),
  178. ).to(self.device)
  179. batch_iter = enumerateWithEstimate(
  180. train_dl,
  181. "E{} Training".format(epoch_ndx),
  182. start_ndx=train_dl.num_workers,
  183. )
  184. for batch_ndx, batch_tup in batch_iter:
  185. self.optimizer.zero_grad()
  186. loss_var = self.computeBatchLoss(
  187. batch_ndx,
  188. batch_tup,
  189. train_dl.batch_size,
  190. trnMetrics_g
  191. )
  192. loss_var.backward()
  193. self.optimizer.step()
  194. del loss_var
  195. self.totalTrainingSamples_count += trnMetrics_g.size(1)
  196. return trnMetrics_g.to('cpu')
  197. def doValidation(self, epoch_ndx, val_dl):
  198. with torch.no_grad():
  199. self.model.eval()
  200. valMetrics_g = torch.zeros(
  201. METRICS_SIZE,
  202. len(val_dl.dataset),
  203. ).to(self.device)
  204. batch_iter = enumerateWithEstimate(
  205. val_dl,
  206. "E{} Validation ".format(epoch_ndx),
  207. start_ndx=val_dl.num_workers,
  208. )
  209. for batch_ndx, batch_tup in batch_iter:
  210. self.computeBatchLoss(
  211. batch_ndx,
  212. batch_tup,
  213. val_dl.batch_size,
  214. valMetrics_g,
  215. )
  216. return valMetrics_g.to('cpu')
  217. def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g):
  218. input_t, label_t, _series_list, _center_list = batch_tup
  219. input_g = input_t.to(self.device, non_blocking=True)
  220. label_g = label_t.to(self.device, non_blocking=True)
  221. logits_g, probability_g = self.model(input_g)
  222. loss_func = nn.CrossEntropyLoss(reduction='none')
  223. loss_g = loss_func(logits_g, label_g[:,1])
  224. start_ndx = batch_ndx * batch_size
  225. end_ndx = start_ndx + label_t.size(0)
  226. metrics_g[METRICS_LABEL_NDX, start_ndx:end_ndx] = label_g[:,1]
  227. metrics_g[METRICS_PRED_NDX, start_ndx:end_ndx] = probability_g[:,1]
  228. metrics_g[METRICS_LOSS_NDX, start_ndx:end_ndx] = loss_g
  229. return loss_g.mean()
  230. def logMetrics(
  231. self,
  232. epoch_ndx,
  233. mode_str,
  234. metrics_t,
  235. ):
  236. self.initTensorboardWriters()
  237. log.info("E{} {}".format(
  238. epoch_ndx,
  239. type(self).__name__,
  240. ))
  241. metrics_a = metrics_t.cpu().detach().numpy()
  242. # assert np.isfinite(metrics_a).all()
  243. benLabel_mask = metrics_a[METRICS_LABEL_NDX] <= 0.5
  244. benPred_mask = metrics_a[METRICS_PRED_NDX] <= 0.5
  245. malLabel_mask = ~benLabel_mask
  246. malPred_mask = ~benPred_mask
  247. benLabel_count = benLabel_mask.sum()
  248. malLabel_count = malLabel_mask.sum()
  249. trueNeg_count = benCorrect_count = (benLabel_mask & benPred_mask).sum()
  250. truePos_count = malCorrect_count = (malLabel_mask & malPred_mask).sum()
  251. falsePos_count = benLabel_count - benCorrect_count
  252. falseNeg_count = malLabel_count - malCorrect_count
  253. metrics_dict = {}
  254. metrics_dict['loss/all'] = metrics_a[METRICS_LOSS_NDX].mean()
  255. metrics_dict['loss/ben'] = metrics_a[METRICS_LOSS_NDX, benLabel_mask].mean()
  256. metrics_dict['loss/mal'] = metrics_a[METRICS_LOSS_NDX, malLabel_mask].mean()
  257. metrics_dict['correct/all'] = (malCorrect_count + benCorrect_count) / metrics_a.shape[1] * 100
  258. metrics_dict['correct/ben'] = (benCorrect_count) / benLabel_count * 100
  259. metrics_dict['correct/mal'] = (malCorrect_count) / malLabel_count * 100
  260. precision = metrics_dict['pr/precision'] = \
  261. truePos_count / (truePos_count + falsePos_count)
  262. recall = metrics_dict['pr/recall'] = \
  263. truePos_count / (truePos_count + falseNeg_count)
  264. metrics_dict['pr/f1_score'] = 2 * (precision * recall)\
  265. / (precision + recall)
  266. log.info(
  267. ("E{} {:8} "
  268. + "{loss/all:.4f} loss, "
  269. + "{correct/all:-5.1f}% correct, "
  270. + "{pr/precision:.4f} precision, "
  271. + "{pr/recall:.4f} recall, "
  272. + "{pr/f1_score:.4f} f1 score"
  273. ).format(
  274. epoch_ndx,
  275. mode_str,
  276. **metrics_dict,
  277. )
  278. )
  279. log.info(
  280. ("E{} {:8} "
  281. + "{loss/ben:.4f} loss, "
  282. + "{correct/ben:-5.1f}% correct "
  283. + "({benCorrect_count:} of {benLabel_count:})"
  284. ).format(
  285. epoch_ndx,
  286. mode_str + '_ben',
  287. benCorrect_count=benCorrect_count,
  288. benLabel_count=benLabel_count,
  289. **metrics_dict,
  290. )
  291. )
  292. log.info(
  293. ("E{} {:8} "
  294. + "{loss/mal:.4f} loss, "
  295. + "{correct/mal:-5.1f}% correct "
  296. + "({malCorrect_count:} of {malLabel_count:})"
  297. ).format(
  298. epoch_ndx,
  299. mode_str + '_mal',
  300. malCorrect_count=malCorrect_count,
  301. malLabel_count=malLabel_count,
  302. **metrics_dict,
  303. )
  304. )
  305. writer = getattr(self, mode_str + '_writer')
  306. for key, value in metrics_dict.items():
  307. writer.add_scalar(key, value, self.totalTrainingSamples_count)
  308. writer.add_pr_curve(
  309. 'pr',
  310. metrics_a[METRICS_LABEL_NDX],
  311. metrics_a[METRICS_PRED_NDX],
  312. self.totalTrainingSamples_count,
  313. )
  314. bins = [x/50.0 for x in range(51)]
  315. benHist_mask = benLabel_mask & (metrics_a[METRICS_PRED_NDX] > 0.01)
  316. malHist_mask = malLabel_mask & (metrics_a[METRICS_PRED_NDX] < 0.99)
  317. if benHist_mask.any():
  318. writer.add_histogram(
  319. 'is_ben',
  320. metrics_a[METRICS_PRED_NDX, benHist_mask],
  321. self.totalTrainingSamples_count,
  322. bins=bins,
  323. )
  324. if malHist_mask.any():
  325. writer.add_histogram(
  326. 'is_mal',
  327. metrics_a[METRICS_PRED_NDX, malHist_mask],
  328. self.totalTrainingSamples_count,
  329. bins=bins,
  330. )
  331. score = 1 \
  332. + metrics_dict['pr/f1_score'] \
  333. - metrics_dict['loss/mal'] * 0.01 \
  334. - metrics_dict['loss/all'] * 0.0001
  335. return score
  336. def saveModel(self, type_str, epoch_ndx, isBest=False):
  337. file_path = os.path.join(
  338. 'data-unversioned',
  339. 'part2',
  340. 'models',
  341. self.cli_args.tb_prefix,
  342. '{}_{}_{}.{}.state'.format(
  343. type_str,
  344. self.time_str,
  345. self.cli_args.comment,
  346. self.totalTrainingSamples_count,
  347. )
  348. )
  349. os.makedirs(os.path.dirname(file_path), mode=0o755, exist_ok=True)
  350. model = self.model
  351. if hasattr(model, 'module'):
  352. model = model.module
  353. state = {
  354. 'model_state': model.state_dict(),
  355. 'model_name': type(model).__name__,
  356. 'optimizer_state' : self.optimizer.state_dict(),
  357. 'optimizer_name': type(self.optimizer).__name__,
  358. 'epoch': epoch_ndx,
  359. 'totalTrainingSamples_count': self.totalTrainingSamples_count,
  360. # 'resumed_from': self.cli_args.resume,
  361. }
  362. torch.save(state, file_path)
  363. log.debug("Saved model params to {}".format(file_path))
  364. if isBest:
  365. file_path = os.path.join(
  366. 'data-unversioned',
  367. 'part2',
  368. 'models',
  369. self.cli_args.tb_prefix,
  370. '{}_{}_{}.{}.state'.format(
  371. type_str,
  372. self.time_str,
  373. self.cli_args.comment,
  374. 'best',
  375. )
  376. )
  377. torch.save(state, file_path)
  378. log.debug("Saved model params to {}".format(file_path))
  379. if __name__ == '__main__':
  380. sys.exit(LunaTrainingApp().main() or 0)