| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- import argparse
- import datetime
- import os
- import sys
- import numpy as np
- from torch.utils.tensorboard import SummaryWriter
- import torch
- import torch.nn as nn
- from torch.optim import SGD
- from torch.utils.data import DataLoader
- from util.util import enumerateWithEstimate
- from .dsets import LunaDataset
- from .model_cls import LunaModel
- from util.logconf import logging
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- log.setLevel(logging.INFO)
- # log.setLevel(logging.DEBUG)
- # Used for computeBatchLoss and logMetrics to index into metrics_t/metrics_a
- METRICS_LABEL_NDX=0
- METRICS_PRED_NDX=1
- METRICS_LOSS_NDX=2
- METRICS_SIZE = 3
- class LunaTrainingApp(object):
- def __init__(self, sys_argv=None):
- if sys_argv is None:
- sys_argv = sys.argv[1:]
- parser = argparse.ArgumentParser()
- parser.add_argument('--batch-size',
- help='Batch size to use for training',
- default=32,
- type=int,
- )
- parser.add_argument('--num-workers',
- help='Number of worker processes for background data loading',
- default=8,
- type=int,
- )
- parser.add_argument('--epochs',
- help='Number of epochs to train for',
- default=1,
- type=int,
- )
- parser.add_argument('--balanced',
- help="Balance the training data to half benign, half malignant.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augmented',
- help="Augment the training data.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augment-flip',
- help="Augment the training data by randomly flipping the data left-right, up-down, and front-back.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augment-offset',
- help="Augment the training data by randomly offsetting the data slightly along the X and Y axes.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augment-scale',
- help="Augment the training data by randomly increasing or decreasing the size of the nodule.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augment-rotate',
- help="Augment the training data by randomly rotating the data around the head-foot axis.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--augment-noise',
- help="Augment the training data by randomly adding noise to the data.",
- action='store_true',
- default=False,
- )
- parser.add_argument('--tb-prefix',
- default='p2ch13',
- help="Data prefix to use for Tensorboard run. Defaults to chapter.",
- )
- parser.add_argument('comment',
- help="Comment suffix for Tensorboard run.",
- nargs='?',
- default='dlwpt',
- )
- self.cli_args = parser.parse_args(sys_argv)
- self.time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H.%M.%S')
- self.trn_writer = None
- self.val_writer = None
- self.totalTrainingSamples_count = 0
- self.augmentation_dict = {}
- if self.cli_args.augmented or self.cli_args.augment_flip:
- self.augmentation_dict['flip'] = True
- if self.cli_args.augmented or self.cli_args.augment_offset:
- self.augmentation_dict['offset'] = 0.1
- if self.cli_args.augmented or self.cli_args.augment_scale:
- self.augmentation_dict['scale'] = 0.2
- if self.cli_args.augmented or self.cli_args.augment_rotate:
- self.augmentation_dict['rotate'] = True
- if self.cli_args.augmented or self.cli_args.augment_noise:
- self.augmentation_dict['noise'] = 25.0
- self.use_cuda = torch.cuda.is_available()
- self.device = torch.device("cuda" if self.use_cuda else "cpu")
- self.model = self.initModel()
- self.optimizer = self.initOptimizer()
- def initModel(self):
- model = LunaModel()
- if self.use_cuda:
- log.info("Using CUDA with {} devices.".format(torch.cuda.device_count()))
- if torch.cuda.device_count() > 1:
- model = nn.DataParallel(model)
- model = model.to(self.device)
- return model
- def initOptimizer(self):
- return SGD(self.model.parameters(), lr=0.001, momentum=0.99)
- # return Adam(self.model.parameters())
- def initTrainDl(self):
- train_ds = LunaDataset(
- val_stride=10,
- isValSet_bool=False,
- ratio_int=int(self.cli_args.balanced),
- augmentation_dict=self.augmentation_dict,
- )
- train_dl = DataLoader(
- train_ds,
- batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
- num_workers=self.cli_args.num_workers,
- pin_memory=self.use_cuda,
- )
- return train_dl
- def initValDl(self):
- val_ds = LunaDataset(
- val_stride=10,
- isValSet_bool=True,
- )
- val_dl = DataLoader(
- val_ds,
- batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
- num_workers=self.cli_args.num_workers,
- pin_memory=self.use_cuda,
- )
- return val_dl
- def initTensorboardWriters(self):
- if self.trn_writer is None:
- log_dir = os.path.join('runs', self.cli_args.tb_prefix, self.time_str)
- self.trn_writer = SummaryWriter(log_dir=log_dir + '-trn_cls-' + self.cli_args.comment)
- self.val_writer = SummaryWriter(log_dir=log_dir + '-val_cls-' + self.cli_args.comment)
- def main(self):
- log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
- train_dl = self.initTrainDl()
- val_dl = self.initValDl()
- best_score = 0.0
- for epoch_ndx in range(1, self.cli_args.epochs + 1):
- log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
- epoch_ndx,
- self.cli_args.epochs,
- len(train_dl),
- len(val_dl),
- self.cli_args.batch_size,
- (torch.cuda.device_count() if self.use_cuda else 1),
- ))
- trnMetrics_t = self.doTraining(epoch_ndx, train_dl)
- self.logMetrics(epoch_ndx, 'trn', trnMetrics_t)
- valMetrics_t = self.doValidation(epoch_ndx, val_dl)
- score = self.logMetrics(epoch_ndx, 'val', valMetrics_t)
- best_score = max(score, best_score)
- self.saveModel('cls', epoch_ndx, score == best_score)
- if hasattr(self, 'trn_writer'):
- self.trn_writer.close()
- self.val_writer.close()
- def doTraining(self, epoch_ndx, train_dl):
- self.model.train()
- train_dl.dataset.shuffleSamples()
- trnMetrics_g = torch.zeros(
- METRICS_SIZE,
- len(train_dl.dataset),
- ).to(self.device)
- batch_iter = enumerateWithEstimate(
- train_dl,
- "E{} Training".format(epoch_ndx),
- start_ndx=train_dl.num_workers,
- )
- for batch_ndx, batch_tup in batch_iter:
- self.optimizer.zero_grad()
- loss_var = self.computeBatchLoss(
- batch_ndx,
- batch_tup,
- train_dl.batch_size,
- trnMetrics_g
- )
- loss_var.backward()
- self.optimizer.step()
- del loss_var
- self.totalTrainingSamples_count += len(train_dl.dataset)
- return trnMetrics_g.to('cpu')
- def doValidation(self, epoch_ndx, val_dl):
- with torch.no_grad():
- self.model.eval()
- valMetrics_g = torch.zeros(
- METRICS_SIZE,
- len(val_dl.dataset),
- ).to(self.device)
- batch_iter = enumerateWithEstimate(
- val_dl,
- "E{} Validation ".format(epoch_ndx),
- start_ndx=val_dl.num_workers,
- )
- for batch_ndx, batch_tup in batch_iter:
- self.computeBatchLoss(
- batch_ndx,
- batch_tup,
- val_dl.batch_size,
- valMetrics_g,
- )
- return valMetrics_g.to('cpu')
- def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g):
- input_t, label_t, _series_list, _center_list = batch_tup
- input_g = input_t.to(self.device, non_blocking=True)
- label_g = label_t.to(self.device, non_blocking=True)
- logits_g, probability_g = self.model(input_g)
- loss_func = nn.CrossEntropyLoss(reduction='none')
- loss_g = loss_func(
- logits_g,
- label_g[:,1],
- )
- start_ndx = batch_ndx * batch_size
- end_ndx = start_ndx + label_t.size(0)
- metrics_g[METRICS_LABEL_NDX, start_ndx:end_ndx] = label_g[:,1]
- metrics_g[METRICS_PRED_NDX, start_ndx:end_ndx] = probability_g[:,1]
- metrics_g[METRICS_LOSS_NDX, start_ndx:end_ndx] = loss_g
- return loss_g.mean()
- def logMetrics(
- self,
- epoch_ndx,
- mode_str,
- metrics_t,
- ):
- self.initTensorboardWriters()
- log.info("E{} {}".format(
- epoch_ndx,
- type(self).__name__,
- ))
- metrics_t = metrics_t.detach().numpy()
- benLabel_mask = metrics_t[METRICS_LABEL_NDX] <= 0.5
- benPred_mask = metrics_t[METRICS_PRED_NDX] <= 0.5
- malLabel_mask = ~benLabel_mask
- malPred_mask = ~benPred_mask
- ben_count = benLabel_mask.sum()
- mal_count = malLabel_mask.sum()
- trueNeg_count = ben_correct = (benLabel_mask & benPred_mask).sum()
- truePos_count = mal_correct = (malLabel_mask & malPred_mask).sum()
- falsePos_count = ben_count - ben_correct
- falseNeg_count = mal_count - mal_correct
- metrics_dict = {}
- metrics_dict['loss/all'] = metrics_t[METRICS_LOSS_NDX].mean()
- metrics_dict['loss/ben'] = metrics_t[METRICS_LOSS_NDX, benLabel_mask].mean()
- metrics_dict['loss/mal'] = metrics_t[METRICS_LOSS_NDX, malLabel_mask].mean()
- metrics_dict['correct/all'] = (mal_correct + ben_correct) / metrics_t.shape[1] * 100
- metrics_dict['correct/ben'] = (ben_correct) / ben_count * 100
- metrics_dict['correct/mal'] = (mal_correct) / mal_count * 100
- precision = metrics_dict['pr/precision'] = \
- truePos_count / (truePos_count + falsePos_count)
- recall = metrics_dict['pr/recall'] = \
- truePos_count / (truePos_count + falseNeg_count)
- metrics_dict['pr/f1_score'] = \
- 2 * (precision * recall) / (precision + recall)
- log.info(
- ("E{} {:8} {loss/all:.4f} loss, "
- + "{correct/all:-5.1f}% correct, "
- + "{pr/precision:.4f} precision, "
- + "{pr/recall:.4f} recall, "
- + "{pr/f1_score:.4f} f1 score"
- ).format(
- epoch_ndx,
- mode_str,
- **metrics_dict,
- )
- )
- log.info(
- ("E{} {:8} {loss/ben:.4f} loss, "
- + "{correct/ben:-5.1f}% correct ({ben_correct:} of {ben_count:})"
- ).format(
- epoch_ndx,
- mode_str + '_ben',
- ben_correct=ben_correct,
- ben_count=ben_count,
- **metrics_dict,
- )
- )
- log.info(
- ("E{} {:8} {loss/mal:.4f} loss, "
- + "{correct/mal:-5.1f}% correct ({mal_correct:} of {mal_count:})"
- ).format(
- epoch_ndx,
- mode_str + '_mal',
- mal_correct=mal_correct,
- mal_count=mal_count,
- **metrics_dict,
- )
- )
- writer = getattr(self, mode_str + '_writer')
- for key, value in metrics_dict.items():
- writer.add_scalar(key, value, self.totalTrainingSamples_count)
- writer.add_pr_curve(
- 'pr',
- metrics_t[METRICS_LABEL_NDX],
- metrics_t[METRICS_PRED_NDX],
- self.totalTrainingSamples_count,
- )
- bins = [x/50.0 for x in range(51)]
- benHist_mask = benLabel_mask & (metrics_t[METRICS_PRED_NDX] > 0.01)
- malHist_mask = malLabel_mask & (metrics_t[METRICS_PRED_NDX] < 0.99)
- if benHist_mask.any():
- writer.add_histogram(
- 'is_ben',
- metrics_t[METRICS_PRED_NDX, benHist_mask],
- self.totalTrainingSamples_count,
- bins=bins,
- )
- if malHist_mask.any():
- writer.add_histogram(
- 'is_mal',
- metrics_t[METRICS_PRED_NDX, malHist_mask],
- self.totalTrainingSamples_count,
- bins=bins,
- )
- score = 1 \
- + metrics_dict['pr/f1_score'] \
- - metrics_dict['loss/mal'] * 0.01 \
- - metrics_dict['loss/all'] * 0.0001
- return score
- def saveModel(self, type_str, epoch_ndx, isBest=False):
- file_path = os.path.join(
- 'data-unversioned',
- 'part2',
- 'models',
- self.cli_args.tb_prefix,
- '{}_{}_{}.{}.state'.format(
- type_str,
- self.time_str,
- self.cli_args.comment,
- self.totalTrainingSamples_count,
- )
- )
- os.makedirs(os.path.dirname(file_path), mode=0o755, exist_ok=True)
- model = self.model
- if hasattr(model, 'module'):
- model = model.module
- state = {
- 'model_state': model.state_dict(),
- 'model_name': type(model).__name__,
- 'optimizer_state' : self.optimizer.state_dict(),
- 'optimizer_name': type(self.optimizer).__name__,
- 'epoch': epoch_ndx,
- 'totalTrainingSamples_count': self.totalTrainingSamples_count,
- # 'resumed_from': self.cli_args.resume,
- }
- torch.save(state, file_path)
- log.debug("Saved model params to {}".format(file_path))
- if isBest:
- file_path = os.path.join(
- 'data-unversioned',
- 'part2',
- 'models',
- self.cli_args.tb_prefix,
- '{}_{}_{}.{}.state'.format(
- type_str,
- self.time_str,
- self.cli_args.comment,
- 'best',
- )
- )
- torch.save(state, file_path)
- log.debug("Saved model params to {}".format(file_path))
- if __name__ == '__main__':
- LunaTrainingApp().main()
|