training.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. import argparse
  2. import datetime
  3. import os
  4. import sys
  5. import numpy as np
  6. from torch.utils.tensorboard import SummaryWriter
  7. import torch
  8. import torch.nn as nn
  9. from torch.optim import SGD
  10. from torch.utils.data import DataLoader
  11. from util.util import enumerateWithEstimate
  12. from .dsets import LunaDataset
  13. from util.logconf import logging
  14. from .model import LunaModel
  15. log = logging.getLogger(__name__)
  16. # log.setLevel(logging.WARN)
  17. log.setLevel(logging.INFO)
  18. # log.setLevel(logging.DEBUG)
  19. # Used for computeBatchLoss and logMetrics to index into metrics_t/metrics_a
  20. METRICS_LABEL_NDX=0
  21. METRICS_PRED_NDX=1
  22. METRICS_LOSS_NDX=2
  23. METRICS_SIZE = 3
  24. class LunaTrainingApp(object):
  25. def __init__(self, sys_argv=None):
  26. if sys_argv is None:
  27. sys_argv = sys.argv[1:]
  28. parser = argparse.ArgumentParser()
  29. parser.add_argument('--batch-size',
  30. help='Batch size to use for training',
  31. default=32,
  32. type=int,
  33. )
  34. parser.add_argument('--num-workers',
  35. help='Number of worker processes for background data loading',
  36. default=8,
  37. type=int,
  38. )
  39. parser.add_argument('--epochs',
  40. help='Number of epochs to train for',
  41. default=1,
  42. type=int,
  43. )
  44. parser.add_argument('--tb-prefix',
  45. default='p2ch10',
  46. help="Data prefix to use for Tensorboard run. Defaults to chapter.",
  47. )
  48. parser.add_argument('comment',
  49. help="Comment suffix for Tensorboard run.",
  50. nargs='?',
  51. default='dwlpt',
  52. )
  53. self.cli_args = parser.parse_args(sys_argv)
  54. self.time_str = datetime.datetime.now().strftime('%Y-%m-%d_%H.%M.%S')
  55. self.trn_writer = None
  56. self.val_writer = None
  57. self.totalTrainingSamples_count = 0
  58. self.use_cuda = torch.cuda.is_available()
  59. self.device = torch.device("cuda" if self.use_cuda else "cpu")
  60. self.model = self.initModel()
  61. self.optimizer = self.initOptimizer()
  62. def initModel(self):
  63. model = LunaModel()
  64. if self.use_cuda:
  65. log.info("Using CUDA with {} devices.".format(torch.cuda.device_count()))
  66. if torch.cuda.device_count() > 1:
  67. model = nn.DataParallel(model)
  68. model = model.to(self.device)
  69. return model
  70. def initOptimizer(self):
  71. return SGD(self.model.parameters(), lr=0.001, momentum=0.99)
  72. # return Adam(self.model.parameters())
  73. def initTrainDl(self):
  74. train_ds = LunaDataset(
  75. val_stride=10,
  76. isValSet_bool=False,
  77. )
  78. train_dl = DataLoader(
  79. train_ds,
  80. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  81. num_workers=self.cli_args.num_workers,
  82. pin_memory=self.use_cuda,
  83. )
  84. return train_dl
  85. def initValDl(self):
  86. val_ds = LunaDataset(
  87. val_stride=10,
  88. isValSet_bool=True,
  89. )
  90. val_dl = DataLoader(
  91. val_ds,
  92. batch_size=self.cli_args.batch_size * (torch.cuda.device_count() if self.use_cuda else 1),
  93. num_workers=self.cli_args.num_workers,
  94. pin_memory=self.use_cuda,
  95. )
  96. return val_dl
  97. def initTensorboardWriters(self):
  98. if self.trn_writer is None:
  99. log_dir = os.path.join('runs', self.cli_args.tb_prefix, self.time_str)
  100. self.trn_writer = SummaryWriter(log_dir=log_dir + '-trn_cls-' + self.cli_args.comment)
  101. self.val_writer = SummaryWriter(log_dir=log_dir + '-val_cls-' + self.cli_args.comment)
  102. def main(self):
  103. log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
  104. train_dl = self.initTrainDl()
  105. val_dl = self.initValDl()
  106. self.initTensorboardWriters()
  107. # self.logModelMetrics(self.model)
  108. # best_score = 0.0
  109. for epoch_ndx in range(1, self.cli_args.epochs + 1):
  110. log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
  111. epoch_ndx,
  112. self.cli_args.epochs,
  113. len(train_dl),
  114. len(val_dl),
  115. self.cli_args.batch_size,
  116. (torch.cuda.device_count() if self.use_cuda else 1),
  117. ))
  118. trnMetrics_t = self.doTraining(epoch_ndx, train_dl)
  119. self.logMetrics(epoch_ndx, 'trn', trnMetrics_t)
  120. valMetrics_t = self.doValidation(epoch_ndx, val_dl)
  121. self.logMetrics(epoch_ndx, 'val', valMetrics_t)
  122. if hasattr(self, 'trn_writer'):
  123. self.trn_writer.close()
  124. self.val_writer.close()
  125. def doTraining(self, epoch_ndx, train_dl):
  126. self.model.train()
  127. trnMetrics_g = torch.zeros(METRICS_SIZE, len(train_dl.dataset)).to(self.device)
  128. batch_iter = enumerateWithEstimate(
  129. train_dl,
  130. "E{} Training".format(epoch_ndx),
  131. start_ndx=train_dl.num_workers,
  132. )
  133. for batch_ndx, batch_tup in batch_iter:
  134. self.optimizer.zero_grad()
  135. loss_var = self.computeBatchLoss(
  136. batch_ndx,
  137. batch_tup,
  138. train_dl.batch_size,
  139. trnMetrics_g
  140. )
  141. loss_var.backward()
  142. self.optimizer.step()
  143. del loss_var
  144. self.totalTrainingSamples_count += trnMetrics_g.size(1)
  145. return trnMetrics_g.to('cpu')
  146. def doValidation(self, epoch_ndx, val_dl):
  147. with torch.no_grad():
  148. self.model.eval()
  149. valMetrics_g = torch.zeros(METRICS_SIZE, len(val_dl.dataset)).to(self.device)
  150. batch_iter = enumerateWithEstimate(
  151. val_dl,
  152. "E{} Validation ".format(epoch_ndx),
  153. start_ndx=val_dl.num_workers,
  154. )
  155. for batch_ndx, batch_tup in batch_iter:
  156. self.computeBatchLoss(batch_ndx, batch_tup, val_dl.batch_size, valMetrics_g)
  157. return valMetrics_g.to('cpu')
  158. def computeBatchLoss(self, batch_ndx, batch_tup, batch_size, metrics_g):
  159. input_t, label_t, _series_list, _center_list = batch_tup
  160. input_g = input_t.to(self.device, non_blocking=True)
  161. label_g = label_t.to(self.device, non_blocking=True)
  162. logits_g, probability_g = self.model(input_g)
  163. loss_func = nn.CrossEntropyLoss(reduction='none')
  164. loss_g = loss_func(
  165. logits_g,
  166. label_g[:,1],
  167. )
  168. start_ndx = batch_ndx * batch_size
  169. end_ndx = start_ndx + label_t.size(0)
  170. metrics_g[METRICS_LABEL_NDX, start_ndx:end_ndx] = label_g[:,1]
  171. metrics_g[METRICS_PRED_NDX, start_ndx:end_ndx] = probability_g[:,1]
  172. metrics_g[METRICS_LOSS_NDX, start_ndx:end_ndx] = loss_g
  173. return loss_g.mean()
  174. def logMetrics(
  175. self,
  176. epoch_ndx,
  177. mode_str,
  178. metrics_g,
  179. ):
  180. log.info("E{} {}".format(
  181. epoch_ndx,
  182. type(self).__name__,
  183. ))
  184. # metrics_a = metrics_t.cpu().detach().numpy()
  185. # assert np.isfinite(metrics_a).all()
  186. benLabel_mask = metrics_g[METRICS_LABEL_NDX] <= 0.5
  187. benPred_mask = metrics_g[METRICS_PRED_NDX] <= 0.5
  188. malLabel_mask = ~benLabel_mask
  189. malPred_mask = ~benPred_mask
  190. benLabel_count = benLabel_mask.sum()
  191. malLabel_count = malLabel_mask.sum()
  192. benCorrect_count = (benLabel_mask & benPred_mask).sum()
  193. malCorrect_count = (malLabel_mask & malPred_mask).sum()
  194. # trueNeg_count = benCorrect_count = (benLabel_mask & benPred_mask).sum()
  195. # truePos_count = malCorrect_count = (malLabel_mask & malPred_mask).sum()
  196. #
  197. # falsePos_count = benLabel_count - benCorrect_count
  198. # falseNeg_count = malLabel_count - malCorrect_count
  199. # log.info(['min loss', metrics_a[METRICS_LOSS_NDX, benLabel_mask].min(), metrics_a[METRICS_LOSS_NDX, malLabel_mask].min()])
  200. # log.info(['max loss', metrics_a[METRICS_LOSS_NDX, benLabel_mask].max(), metrics_a[METRICS_LOSS_NDX, malLabel_mask].max()])
  201. metrics_dict = {}
  202. metrics_dict['loss/all'] = metrics_g[METRICS_LOSS_NDX].mean()
  203. metrics_dict['loss/ben'] = metrics_g[METRICS_LOSS_NDX, benLabel_mask].mean()
  204. metrics_dict['loss/mal'] = metrics_g[METRICS_LOSS_NDX, malLabel_mask].mean()
  205. metrics_dict['correct/all'] = (malCorrect_count + benCorrect_count) / metrics_g.shape[1] * 100
  206. metrics_dict['correct/ben'] = (benCorrect_count) / benLabel_count * 100
  207. metrics_dict['correct/mal'] = (malCorrect_count) / malLabel_count * 100
  208. log.info(
  209. ("E{} {:8} "
  210. + "{loss/all:.4f} loss, "
  211. + "{correct/all:-5.1f}% correct, "
  212. ).format(
  213. epoch_ndx,
  214. mode_str,
  215. **metrics_dict,
  216. )
  217. )
  218. log.info(
  219. ("E{} {:8} "
  220. + "{loss/ben:.4f} loss, "
  221. + "{correct/ben:-5.1f}% correct ({benCorrect_count:} of {benLabel_count:})"
  222. ).format(
  223. epoch_ndx,
  224. mode_str + '_ben',
  225. benCorrect_count=benCorrect_count,
  226. benLabel_count=benLabel_count,
  227. **metrics_dict,
  228. )
  229. )
  230. log.info(
  231. ("E{} {:8} "
  232. + "{loss/mal:.4f} loss, "
  233. + "{correct/mal:-5.1f}% correct ({malCorrect_count:} of {malLabel_count:})"
  234. ).format(
  235. epoch_ndx,
  236. mode_str + '_mal',
  237. malCorrect_count=malCorrect_count,
  238. malLabel_count=malLabel_count,
  239. **metrics_dict,
  240. )
  241. )
  242. writer = getattr(self, mode_str + '_writer')
  243. for key, value in metrics_dict.items():
  244. writer.add_scalar(key, value, self.totalTrainingSamples_count)
  245. writer.add_pr_curve(
  246. 'pr',
  247. metrics_g[METRICS_LABEL_NDX],
  248. metrics_g[METRICS_PRED_NDX],
  249. self.totalTrainingSamples_count,
  250. )
  251. bins = [x/50.0 for x in range(51)]
  252. benHist_mask = benLabel_mask & (metrics_g[METRICS_PRED_NDX] > 0.01)
  253. malHist_mask = malLabel_mask & (metrics_g[METRICS_PRED_NDX] < 0.99)
  254. if benHist_mask.any():
  255. writer.add_histogram(
  256. 'is_ben',
  257. metrics_g[METRICS_PRED_NDX, benHist_mask],
  258. self.totalTrainingSamples_count,
  259. bins=bins,
  260. )
  261. if malHist_mask.any():
  262. writer.add_histogram(
  263. 'is_mal',
  264. metrics_g[METRICS_PRED_NDX, malHist_mask],
  265. self.totalTrainingSamples_count,
  266. bins=bins,
  267. )
  268. # score = 1 \
  269. # + metrics_dict['pr/f1_score'] \
  270. # - metrics_dict['loss/mal'] * 0.01 \
  271. # - metrics_dict['loss/all'] * 0.0001
  272. #
  273. # return score
  274. # def logModelMetrics(self, model):
  275. # writer = getattr(self, 'trn_writer')
  276. #
  277. # model = getattr(model, 'module', model)
  278. #
  279. # for name, param in model.named_parameters():
  280. # if param.requires_grad:
  281. # min_data = float(param.data.min())
  282. # max_data = float(param.data.max())
  283. # max_extent = max(abs(min_data), abs(max_data))
  284. #
  285. # # bins = [x/50*max_extent for x in range(-50, 51)]
  286. #
  287. # try:
  288. # writer.add_histogram(
  289. # name.rsplit('.', 1)[-1] + '/' + name,
  290. # param.data.cpu().numpy(),
  291. # # metrics_a[METRICS_PRED_NDX, benHist_mask],
  292. # self.totalTrainingSamples_count,
  293. # # bins=bins,
  294. # )
  295. # except Exception as e:
  296. # log.error([min_data, max_data])
  297. # raise
  298. if __name__ == '__main__':
  299. sys.exit(LunaTrainingApp().main() or 0)