| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- import random
- import warnings
- import numpy as np
- import scipy.ndimage
- from util.logconf import logging
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- # log.setLevel(logging.INFO)
- log.setLevel(logging.DEBUG)
- def cropToShape(image, new_shape, center_list=None, fill=0.0):
- # log.debug([image.shape, new_shape, center_list])
- # assert len(image.shape) == 3, repr(image.shape)
- if center_list is None:
- center_list = [int(image.shape[i] / 2) for i in range(3)]
- crop_list = []
- for i in range(0, 3):
- crop_int = center_list[i]
- if image.shape[i] > new_shape[i] and crop_int is not None:
- # We can't just do crop_int +/- shape/2 since shape might be odd
- # and ints round down.
- start_int = crop_int - int(new_shape[i]/2)
- end_int = start_int + new_shape[i]
- crop_list.append(slice(max(0, start_int), end_int))
- else:
- crop_list.append(slice(0, image.shape[i]))
- # log.debug([image.shape, crop_list])
- image = image[crop_list]
- crop_list = []
- for i in range(0, 3):
- if image.shape[i] < new_shape[i]:
- crop_int = int((new_shape[i] - image.shape[i]) / 2)
- crop_list.append(slice(crop_int, crop_int + image.shape[i]))
- else:
- crop_list.append(slice(0, image.shape[i]))
- # log.debug([image.shape, crop_list])
- new_image = np.zeros(new_shape, dtype=image.dtype)
- new_image[:] = fill
- new_image[crop_list] = image
- return new_image
- def zoomToShape(image, new_shape, square=True):
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
-
- if square and image.shape[0] != image.shape[1]:
- crop_int = min(image.shape[0], image.shape[1])
- new_shape = [crop_int, crop_int, image.shape[2]]
- image = cropToShape(image, new_shape)
- zoom_shape = [new_shape[i] / image.shape[i] for i in range(3)]
- with warnings.catch_warnings():
- warnings.simplefilter("ignore")
- image = scipy.ndimage.interpolation.zoom(
- image, zoom_shape,
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- return image
- def randomOffset(image_list, offset_rows=0.125, offset_cols=0.125):
-
- center_list = [int(image_list[0].shape[i] / 2) for i in range(3)]
- center_list[0] += int(offset_rows * (random.random() - 0.5) * 2)
- center_list[1] += int(offset_cols * (random.random() - 0.5) * 2)
- center_list[2] = None
- new_list = []
- for image in image_list:
- new_image = cropToShape(image, image.shape, center_list)
- new_list.append(new_image)
- return new_list
- def randomZoom(image_list, scale=None, scale_min=0.8, scale_max=1.3):
- if scale is None:
- scale = scale_min + (scale_max - scale_min) * random.random()
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore")
- # log.info([image.shape])
- zimage = scipy.ndimage.interpolation.zoom(
- image, [scale, scale, 1.0],
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- image = cropToShape(zimage, image.shape)
-
- new_list.append(image)
- return new_list
- _randomFlip_transform_list = [
- # lambda a: np.rot90(a, axes=(0, 1)),
- # lambda a: np.flip(a, 0),
- lambda a: np.flip(a, 1),
- ]
- def randomFlip(image_list, transform_bits=None):
- if transform_bits is None:
- transform_bits = random.randrange(0, 2 ** len(_randomFlip_transform_list))
-
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
-
- for n in range(len(_randomFlip_transform_list)):
- if transform_bits & 2**n:
- # prhist(image, 'before')
- image = _randomFlip_transform_list[n](image)
- # prhist(image, 'after ')
- new_list.append(image)
- return new_list
- def randomSpin(image_list, angle=None, range_tup=None, axes=(0, 1)):
- if range_tup is None:
- range_tup = (0, 360)
- if angle is None:
- angle = range_tup[0] + (range_tup[1] - range_tup[0]) * random.random()
-
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- image = scipy.ndimage.interpolation.rotate(
- image, angle, axes=axes, reshape=False,
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- new_list.append(image)
- return new_list
- def randomNoise(image_list, noise_min=-0.1, noise_max=0.1):
- noise = np.zeros_like(image_list[0])
- noise += (noise_max - noise_min) * np.random.random_sample(image_list[0].shape) + noise_min
- noise *= 5
- noise = scipy.ndimage.filters.gaussian_filter(noise, 3)
- # noise += (noise_max - noise_min) * np.random.random_sample(image_hsv.shape) + noise_min
- new_list = []
- for image_hsv in image_list:
- image_hsv = image_hsv + noise
- new_list.append(image_hsv)
- return new_list
- def randomHsvShift(image_list, h=None, s=None, v=None,
- h_min=-0.1, h_max=0.1,
- s_min=0.5, s_max=2.0,
- v_min=0.5, v_max=2.0):
- if h is None:
- h = h_min + (h_max - h_min) * random.random()
- if s is None:
- s = s_min + (s_max - s_min) * random.random()
- if v is None:
- v = v_min + (v_max - v_min) * random.random()
- new_list = []
- for image_hsv in image_list:
- # assert image_hsv.shape[-1] == 3, repr(image_hsv.shape)
- image_hsv[:,:,0::3] += h
- image_hsv[:,:,1::3] = image_hsv[:,:,1::3] ** s
- image_hsv[:,:,2::3] = image_hsv[:,:,2::3] ** v
- new_list.append(image_hsv)
- return clampHsv(new_list)
- def clampHsv(image_list):
- new_list = []
- for image_hsv in image_list:
- image_hsv = image_hsv.clone()
- # Hue wraps around
- image_hsv[:,:,0][image_hsv[:,:,0] > 1] -= 1
- image_hsv[:,:,0][image_hsv[:,:,0] < 0] += 1
- # Everything else clamps between 0 and 1
- image_hsv[image_hsv > 1] = 1
- image_hsv[image_hsv < 0] = 0
- new_list.append(image_hsv)
- return new_list
|