| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- import math
- import random
- import warnings
- import numpy as np
- import scipy.ndimage
- import torch
- from torch.autograd import Function
- from torch.autograd.function import once_differentiable
- import torch.backends.cudnn as cudnn
- from util.logconf import logging
- log = logging.getLogger(__name__)
- # log.setLevel(logging.WARN)
- # log.setLevel(logging.INFO)
- log.setLevel(logging.DEBUG)
- def cropToShape(image, new_shape, center_list=None, fill=0.0):
- # log.debug([image.shape, new_shape, center_list])
- # assert len(image.shape) == 3, repr(image.shape)
- if center_list is None:
- center_list = [int(image.shape[i] / 2) for i in range(3)]
- crop_list = []
- for i in range(0, 3):
- crop_int = center_list[i]
- if image.shape[i] > new_shape[i] and crop_int is not None:
- # We can't just do crop_int +/- shape/2 since shape might be odd
- # and ints round down.
- start_int = crop_int - int(new_shape[i]/2)
- end_int = start_int + new_shape[i]
- crop_list.append(slice(max(0, start_int), end_int))
- else:
- crop_list.append(slice(0, image.shape[i]))
- # log.debug([image.shape, crop_list])
- image = image[crop_list]
- crop_list = []
- for i in range(0, 3):
- if image.shape[i] < new_shape[i]:
- crop_int = int((new_shape[i] - image.shape[i]) / 2)
- crop_list.append(slice(crop_int, crop_int + image.shape[i]))
- else:
- crop_list.append(slice(0, image.shape[i]))
- # log.debug([image.shape, crop_list])
- new_image = np.zeros(new_shape, dtype=image.dtype)
- new_image[:] = fill
- new_image[crop_list] = image
- return new_image
- def zoomToShape(image, new_shape, square=True):
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- if square and image.shape[0] != image.shape[1]:
- crop_int = min(image.shape[0], image.shape[1])
- new_shape = [crop_int, crop_int, image.shape[2]]
- image = cropToShape(image, new_shape)
- zoom_shape = [new_shape[i] / image.shape[i] for i in range(3)]
- with warnings.catch_warnings():
- warnings.simplefilter("ignore")
- image = scipy.ndimage.interpolation.zoom(
- image, zoom_shape,
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- return image
- def randomOffset(image_list, offset_rows=0.125, offset_cols=0.125):
- center_list = [int(image_list[0].shape[i] / 2) for i in range(3)]
- center_list[0] += int(offset_rows * (random.random() - 0.5) * 2)
- center_list[1] += int(offset_cols * (random.random() - 0.5) * 2)
- center_list[2] = None
- new_list = []
- for image in image_list:
- new_image = cropToShape(image, image.shape, center_list)
- new_list.append(new_image)
- return new_list
- def randomZoom(image_list, scale=None, scale_min=0.8, scale_max=1.3):
- if scale is None:
- scale = scale_min + (scale_max - scale_min) * random.random()
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore")
- # log.info([image.shape])
- zimage = scipy.ndimage.interpolation.zoom(
- image, [scale, scale, 1.0],
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- image = cropToShape(zimage, image.shape)
- new_list.append(image)
- return new_list
- _randomFlip_transform_list = [
- # lambda a: np.rot90(a, axes=(0, 1)),
- # lambda a: np.flip(a, 0),
- lambda a: np.flip(a, 1),
- ]
- def randomFlip(image_list, transform_bits=None):
- if transform_bits is None:
- transform_bits = random.randrange(0, 2 ** len(_randomFlip_transform_list))
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- for n in range(len(_randomFlip_transform_list)):
- if transform_bits & 2**n:
- # prhist(image, 'before')
- image = _randomFlip_transform_list[n](image)
- # prhist(image, 'after ')
- new_list.append(image)
- return new_list
- def randomSpin(image_list, angle=None, range_tup=None, axes=(0, 1)):
- if range_tup is None:
- range_tup = (0, 360)
- if angle is None:
- angle = range_tup[0] + (range_tup[1] - range_tup[0]) * random.random()
- new_list = []
- for image in image_list:
- # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
- image = scipy.ndimage.interpolation.rotate(
- image, angle, axes=axes, reshape=False,
- output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
- new_list.append(image)
- return new_list
- def randomNoise(image_list, noise_min=-0.1, noise_max=0.1):
- noise = np.zeros_like(image_list[0])
- noise += (noise_max - noise_min) * np.random.random_sample(image_list[0].shape) + noise_min
- noise *= 5
- noise = scipy.ndimage.filters.gaussian_filter(noise, 3)
- # noise += (noise_max - noise_min) * np.random.random_sample(image_hsv.shape) + noise_min
- new_list = []
- for image_hsv in image_list:
- image_hsv = image_hsv + noise
- new_list.append(image_hsv)
- return new_list
- def randomHsvShift(image_list, h=None, s=None, v=None,
- h_min=-0.1, h_max=0.1,
- s_min=0.5, s_max=2.0,
- v_min=0.5, v_max=2.0):
- if h is None:
- h = h_min + (h_max - h_min) * random.random()
- if s is None:
- s = s_min + (s_max - s_min) * random.random()
- if v is None:
- v = v_min + (v_max - v_min) * random.random()
- new_list = []
- for image_hsv in image_list:
- # assert image_hsv.shape[-1] == 3, repr(image_hsv.shape)
- image_hsv[:,:,0::3] += h
- image_hsv[:,:,1::3] = image_hsv[:,:,1::3] ** s
- image_hsv[:,:,2::3] = image_hsv[:,:,2::3] ** v
- new_list.append(image_hsv)
- return clampHsv(new_list)
- def clampHsv(image_list):
- new_list = []
- for image_hsv in image_list:
- image_hsv = image_hsv.clone()
- # Hue wraps around
- image_hsv[:,:,0][image_hsv[:,:,0] > 1] -= 1
- image_hsv[:,:,0][image_hsv[:,:,0] < 0] += 1
- # Everything else clamps between 0 and 1
- image_hsv[image_hsv > 1] = 1
- image_hsv[image_hsv < 0] = 0
- new_list.append(image_hsv)
- return new_list
- # def torch_augment(input):
- # theta = random.random() * math.pi * 2
- # s = math.sin(theta)
- # c = math.cos(theta)
- # c1 = 1 - c
- # axis_vector = torch.rand(3, device='cpu', dtype=torch.float64)
- # axis_vector -= 0.5
- # axis_vector /= axis_vector.abs().sum()
- # l, m, n = axis_vector
- #
- # matrix = torch.tensor([
- # [l*l*c1 + c, m*l*c1 - n*s, n*l*c1 + m*s, 0],
- # [l*m*c1 + n*s, m*m*c1 + c, n*m*c1 - l*s, 0],
- # [l*n*c1 - m*s, m*n*c1 + l*s, n*n*c1 + c, 0],
- # [0, 0, 0, 1],
- # ], device=input.device, dtype=torch.float32)
- #
- # return th_affine3d(input, matrix)
- # following from https://github.com/ncullen93/torchsample/blob/master/torchsample/utils.py
- # MIT licensed
- # def th_affine3d(input, matrix):
- # """
- # 3D Affine image transform on torch.Tensor
- # """
- # A = matrix[:3,:3]
- # b = matrix[:3,3]
- #
- # # make a meshgrid of normal coordinates
- # coords = th_iterproduct(input.size(-3), input.size(-2), input.size(-1), dtype=torch.float32)
- #
- # # shift the coordinates so center is the origin
- # coords[:,0] = coords[:,0] - (input.size(-3) / 2. - 0.5)
- # coords[:,1] = coords[:,1] - (input.size(-2) / 2. - 0.5)
- # coords[:,2] = coords[:,2] - (input.size(-1) / 2. - 0.5)
- #
- # # apply the coordinate transformation
- # new_coords = coords.mm(A.t().contiguous()) + b.expand_as(coords)
- #
- # # shift the coordinates back so origin is origin
- # new_coords[:,0] = new_coords[:,0] + (input.size(-3) / 2. - 0.5)
- # new_coords[:,1] = new_coords[:,1] + (input.size(-2) / 2. - 0.5)
- # new_coords[:,2] = new_coords[:,2] + (input.size(-1) / 2. - 0.5)
- #
- # # map new coordinates using bilinear interpolation
- # input_transformed = th_trilinear_interp3d(input, new_coords)
- #
- # return input_transformed
- #
- #
- # def th_trilinear_interp3d(input, coords):
- # """
- # trilinear interpolation of 3D torch.Tensor image
- # """
- # # take clamp then floor/ceil of x coords
- # x = torch.clamp(coords[:,0], 0, input.size(-3)-2)
- # x0 = x.floor()
- # x1 = x0 + 1
- # # take clamp then floor/ceil of y coords
- # y = torch.clamp(coords[:,1], 0, input.size(-2)-2)
- # y0 = y.floor()
- # y1 = y0 + 1
- # # take clamp then floor/ceil of z coords
- # z = torch.clamp(coords[:,2], 0, input.size(-1)-2)
- # z0 = z.floor()
- # z1 = z0 + 1
- #
- # stride = torch.tensor(input.stride()[-3:], dtype=torch.int64, device=input.device)
- # x0_ix = x0.mul(stride[0]).long()
- # x1_ix = x1.mul(stride[0]).long()
- # y0_ix = y0.mul(stride[1]).long()
- # y1_ix = y1.mul(stride[1]).long()
- # z0_ix = z0.mul(stride[2]).long()
- # z1_ix = z1.mul(stride[2]).long()
- #
- # # input_flat = th_flatten(input)
- # input_flat = x.contiguous().view(x[0], x[1], -1)
- #
- # vals_000 = input_flat[:, :, x0_ix+y0_ix+z0_ix]
- # vals_001 = input_flat[:, :, x0_ix+y0_ix+z1_ix]
- # vals_010 = input_flat[:, :, x0_ix+y1_ix+z0_ix]
- # vals_011 = input_flat[:, :, x0_ix+y1_ix+z1_ix]
- # vals_100 = input_flat[:, :, x1_ix+y0_ix+z0_ix]
- # vals_101 = input_flat[:, :, x1_ix+y0_ix+z1_ix]
- # vals_110 = input_flat[:, :, x1_ix+y1_ix+z0_ix]
- # vals_111 = input_flat[:, :, x1_ix+y1_ix+z1_ix]
- #
- # xd = x - x0
- # yd = y - y0
- # zd = z - z0
- # xm1 = 1 - xd
- # ym1 = 1 - yd
- # zm1 = 1 - zd
- #
- # x_mapped = (
- # vals_000.mul(xm1).mul(ym1).mul(zm1) +
- # vals_001.mul(xm1).mul(ym1).mul(zd) +
- # vals_010.mul(xm1).mul(yd).mul(zm1) +
- # vals_011.mul(xm1).mul(yd).mul(zd) +
- # vals_100.mul(xd).mul(ym1).mul(zm1) +
- # vals_101.mul(xd).mul(ym1).mul(zd) +
- # vals_110.mul(xd).mul(yd).mul(zm1) +
- # vals_111.mul(xd).mul(yd).mul(zd)
- # )
- #
- # return x_mapped.view_as(input)
- #
- # def th_iterproduct(*args, dtype=None):
- # return torch.from_numpy(np.indices(args).reshape((len(args),-1)).T)
- #
- # def th_flatten(x):
- # """Flatten tensor"""
- # return x.contiguous().view(x[0], x[1], -1)
|