{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import torch\n", "import torch.optim as optim\n", "\n", "torch.set_printoptions(edgeitems=2, linewidth=75)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([11, 1])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]\n", "t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]\n", "t_c = torch.tensor(t_c).unsqueeze(1) # <1>\n", "t_u = torch.tensor(t_u).unsqueeze(1) # <1>\n", "\n", "t_u.shape" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([5, 6, 1, 4, 9, 0, 3, 2, 8]), tensor([ 7, 10]))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n_samples = t_u.shape[0]\n", "n_val = int(0.2 * n_samples)\n", "\n", "shuffled_indices = torch.randperm(n_samples)\n", "\n", "train_indices = shuffled_indices[:-n_val]\n", "val_indices = shuffled_indices[-n_val:]\n", "\n", "train_indices, val_indices" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "t_u_train = t_u[train_indices]\n", "t_c_train = t_c[train_indices]\n", "\n", "t_u_val = t_u[val_indices]\n", "t_c_val = t_c[val_indices]\n", "\n", "t_un_train = 0.1 * t_u_train\n", "t_un_val = 0.1 * t_u_val" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.6018],\n", " [0.2877]], grad_fn=)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch.nn as nn\n", "\n", "linear_model = nn.Linear(1, 1) # <1>\n", "linear_model(t_un_val)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([[-0.0674]], requires_grad=True)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.weight" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([0.7488], requires_grad=True)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.bias" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([0.6814], grad_fn=)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.ones(1)\n", "linear_model(x)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814],\n", " [0.6814]], grad_fn=)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.ones(10, 1)\n", "linear_model(x)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "linear_model = nn.Linear(1, 1) # <1>\n", "optimizer = optim.SGD(\n", " linear_model.parameters(), # <2>\n", " lr=1e-2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.parameters()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[0.7398]], requires_grad=True), Parameter containing:\n", " tensor([0.7974], requires_grad=True)]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(linear_model.parameters())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,\n", " t_c_train, t_c_val):\n", " for epoch in range(1, n_epochs + 1):\n", " t_p_train = model(t_u_train) # <1>\n", " loss_train = loss_fn(t_p_train, t_c_train)\n", "\n", " t_p_val = model(t_u_val) # <1>\n", " loss_val = loss_fn(t_p_val, t_c_val)\n", " \n", " optimizer.zero_grad()\n", " loss_train.backward() # <2>\n", " optimizer.step()\n", "\n", " if epoch == 1 or epoch % 1000 == 0:\n", " print(f\"Epoch {epoch}, Training loss {loss_train.item():.4f},\"\n", " f\" Validation loss {loss_val.item():.4f}\")\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 158.3422, Validation loss 209.0985\n", "Epoch 1000, Training loss 4.9330, Validation loss 4.9653\n", "Epoch 2000, Training loss 3.0409, Validation loss 3.0661\n", "Epoch 3000, Training loss 2.8581, Validation loss 3.8942\n", "\n", "Parameter containing:\n", "tensor([[5.4288]], requires_grad=True)\n", "Parameter containing:\n", "tensor([-17.9516], requires_grad=True)\n" ] } ], "source": [ "def loss_fn(t_p, t_c):\n", " squared_diffs = (t_p - t_c)**2\n", " return squared_diffs.mean()\n", "\n", "linear_model = nn.Linear(1, 1) # <1>\n", "optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)\n", "\n", "training_loop(\n", " n_epochs = 3000, \n", " optimizer = optimizer,\n", " model = linear_model,\n", " loss_fn = loss_fn,\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "print()\n", "print(linear_model.weight)\n", "print(linear_model.bias)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 134.9599, Validation loss 183.1707\n", "Epoch 1000, Training loss 4.8053, Validation loss 4.7307\n", "Epoch 2000, Training loss 3.0285, Validation loss 3.0889\n", "Epoch 3000, Training loss 2.8569, Validation loss 3.9105\n", "\n", "Parameter containing:\n", "tensor([[5.4319]], requires_grad=True)\n", "Parameter containing:\n", "tensor([-17.9693], requires_grad=True)\n" ] } ], "source": [ "linear_model = nn.Linear(1, 1)\n", "optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)\n", "\n", "training_loop(\n", " n_epochs = 3000, \n", " optimizer = optimizer,\n", " model = linear_model,\n", " loss_fn = nn.MSELoss(), # <1>\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "print()\n", "print(linear_model.weight)\n", "print(linear_model.bias)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): Linear(in_features=1, out_features=13, bias=True)\n", " (1): Tanh()\n", " (2): Linear(in_features=13, out_features=1, bias=True)\n", ")" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seq_model = nn.Sequential(\n", " nn.Linear(1, 13), # <1>\n", " nn.Tanh(),\n", " nn.Linear(13, 1)) # <2>\n", "seq_model" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[torch.Size([13, 1]), torch.Size([13]), torch.Size([1, 13]), torch.Size([1])]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[param.shape for param in seq_model.parameters()]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.weight torch.Size([13, 1])\n", "0.bias torch.Size([13])\n", "2.weight torch.Size([1, 13])\n", "2.bias torch.Size([1])\n" ] } ], "source": [ "for name, param in seq_model.named_parameters():\n", " print(name, param.shape)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (hidden_linear): Linear(in_features=1, out_features=8, bias=True)\n", " (hidden_activation): Tanh()\n", " (output_linear): Linear(in_features=8, out_features=1, bias=True)\n", ")" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from collections import OrderedDict\n", "\n", "seq_model = nn.Sequential(OrderedDict([\n", " ('hidden_linear', nn.Linear(1, 8)),\n", " ('hidden_activation', nn.Tanh()),\n", " ('output_linear', nn.Linear(8, 1))\n", "]))\n", "\n", "seq_model" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hidden_linear.weight torch.Size([8, 1])\n", "hidden_linear.bias torch.Size([8])\n", "output_linear.weight torch.Size([1, 8])\n", "output_linear.bias torch.Size([1])\n" ] } ], "source": [ "for name, param in seq_model.named_parameters():\n", " print(name, param.shape)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([-0.0173], requires_grad=True)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seq_model.output_linear.bias" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 182.9724, Validation loss 231.8708\n", "Epoch 1000, Training loss 6.6642, Validation loss 3.7330\n", "Epoch 2000, Training loss 5.1502, Validation loss 0.1406\n", "Epoch 3000, Training loss 2.9653, Validation loss 1.0005\n", "Epoch 4000, Training loss 2.2839, Validation loss 1.6580\n", "Epoch 5000, Training loss 2.1141, Validation loss 2.0215\n", "output tensor([[-1.9930],\n", " [20.8729]], grad_fn=)\n", "answer tensor([[-4.],\n", " [21.]])\n", "hidden tensor([[ 0.0272],\n", " [ 0.0139],\n", " [ 0.1692],\n", " [ 0.1735],\n", " [-0.1697],\n", " [ 0.1455],\n", " [-0.0136],\n", " [-0.0554]])\n" ] } ], "source": [ "optimizer = optim.SGD(seq_model.parameters(), lr=1e-3) # <1>\n", "\n", "training_loop(\n", " n_epochs = 5000, \n", " optimizer = optimizer,\n", " model = seq_model,\n", " loss_fn = nn.MSELoss(),\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", " \n", "print('output', seq_model(t_un_val))\n", "print('answer', t_c_val)\n", "print('hidden', seq_model.hidden_linear.weight.grad)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADIUAAAiJCAYAAAA77SfnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZTmZX0m/Ouu6n2t6urqBlxAUWNgRMTEMS64RBEdXIlZSMZkciaTxWTmnclr8r5n5s0snjnJJDNGJ8bJiXMwGm2iAiERI4IGDKLEBRAEBWmQRejq6lp6q+6urqr7/aOre7Bp6qn9V0/353POc/p03Xd9v1frsfynrnOXWmsAAAAAAAAAAAAAAABoLx1NBwAAAAAAAAAAAAAAAGDmlEIAAAAAAAAAAAAAAADakFIIAAAAAAAAAAAAAABAG1IKAQAAAAAAAAAAAAAAaENKIQAAAAAAAAAAAAAAAG1IKQQAAAAAAAAAAAAAAKANKYUAAAAAAAAAAAAAAAC0IaUQAAAAAAAAAAAAAACANqQUAgAAAAAAAAAAAAAA0IaUQgAAAAAAAAAAAAAAANqQUggAAAAAAAAAAAAAAEAbUgoBAAAAAAAAAAAAAABoQ0ohAAAAAAAAAAAAAAAAbUgpBAAAAAAAAAAAAAAAoA0phQAAAAAAAAAAAAAAALQhpRAAAAAAAAAAAAAAAIA2pBQCAAAAAAAAAAAAAADQhpRCAAAAAAAAAAAAAAAA2pBSCAAAAAAAAAAAAAAAQBtSCgEAAAAAAAAAAAAAAGhDSiEAAAAAAAAAAAAAAABtSCkEAAAAAAAAAAAAAACgDSmFAAAAAAAAAAAAAAAAtCGlEAAAAAAAAAAAAAAAgDakFAIAAAAAAAAAAAAAANCGlEIAAAAAAAAAAAAAAADakFIIAAAAAAAAAAAAAABAG1IKAQAAAAAAAAAAAAAAaENKIQAAAAAAAAAAAAAAAG1IKQQAAAAAAAAAAAAAAKANKYUAAAAAAAAAAAAAAAC0IaUQAAAAAAAAAAAAAACANqQUAgAAAAAAAAAAAAAA0IaUQgAAAAAAAAAAAAAAANqQUggAAAAAAAAAAAAAAEAbUgoBAAAAAAAAAAAAAABoQ0ohAAAAAAAAAAAAAAAAbUgpBAAAAAAAAAAAAAAAoA0phQAAAAAAAAAAAAAAALQhpRAAAAAAAAAAAAAAAIA2pBQCAAAAAAAAAAAAAADQhpRCAAAAAAAAAAAAAAAA2pBSCAAAAAAAAAAAAAAAQBtSCgEAAAAAAAAAAAAAAGhDSiEAAAAAAAAAAAAAAABtSCkEAAAAAAAAAAAAAACgDSmFAAAAAAAAAAAAAAAAtCGlEAAAAAAAAAAAAAAAgDakFAIAAAAAAAAAAAAAANCGlEIAAAAAAAAAAAAAAADakFIIAAAAAAAAAAAAAABAG1IKAQAAAAAAAAAAAAAAaENKIQAAAAAAAAAAAAAAAG1IKQQAAAAAAAAAAAAAAKANKYUAAAAAAAAAAAAAAAC0oWVNBwA4lZVSdiTpOsHRaJJHFjkOAAAAAAAAAAAAALSrZyRZcYKvD9daT1vsMIul1FqbzgBwyiqlHEyysukcAAAAAAAAAAAAAHCSOlRrXdV0iIXS0XQAAAAAAAAAAAAAAAAAZk4pBAAAAAAAAAAAAAAAoA0phQAAAAAAAAAAAAAAALQhpRAAAAAAAAAAAAAAAIA2tKzpAACnuNEkK4//4sqVK3P22Wc3EAcAAAAAAAAAAAAA2s/27dtz6NChEx2NLnaWxaQUAtCsR5Kcc/wXzz777Nx9990NxAEAAAAAAAAAAACA9nPuuefmnnvuOdHRI4udZTF1NB0AAAAAAAAAAAAAAACAmVMKAQAAAAAAAAAAAAAAaENKIQAAAAAAAAAAAAAAAG1IKQQAAAAAAAAAAAAAAKANKYUAAAAAAAAAAAAAAAC0IaUQAAAAAAAAAAAAAACANqQUAgAAAAAAAAAAAAAA0IaUQgAAAAAAAAAAAAAAANqQUggAAAAAAAAAAAAAAEAbUgoBAAAAAAAAAAAAAABoQ0ohAAAAAAAAAAAAAAAAbUgpBAAAAAAAAAAAAAAAoA0phQAAAAAAAAAAAAAAALQhpRAAAAAAAAAAAAAAAIA2pBQCAAAAAAAAAAAAAADQhpRCAAAAAAAAAAAAAAAA2pBSCAAAAAAAAAAAAAAAQBtSCgEAAAAAAAAAAAAAAGhDy5oOACx9pZSVSZ6X5OlJ1idZk2Qkyd4kjya5t9Y62lxCAAAAAAAAAAAAAIBTj1IIzEIppSQ5K8l5SZ6T5JlJnjH556Yka3OkOLEmyViSg0mGk+xI8lCSe5LcluTmWuvQIsefllLKS5O8Lckbk5ybpHOK6+OllLuT/F2Sv6m13roIEQEAAAAAAAAAAAAATmlKITANpZSzkrx88vOiJP8kybppfvuKyc+GHCmNvOQJZ7WUcmuSTyX5WK11cJ4iz1op5WeS/E6SC2bwbZ05UpA5L8n/U0r5ZpI/qrV+cgEiAgAAAAAAAAAAAACQpKPpALCUlVL+qJTyaJIHk3w8ya8neWmmXwhpuSLJTyT54ySPllI+WErZMk+zZxaklOeXUm5K8leZWSHkRF6c5K9KKTeWUn5kzuEAAAAAAAAAAAAAAHgSpRCY2muSPG2Rdq1O8u4k95dSfnWRdiZJSinvSPL1JK+a59GvTvKNUsrb53kuAAAAAAAAAAAAAMApTykElp71Sf6slHJVKWX1Qi8rpbw7yZWZv9dPjrcuyVWllN9YoPkAAAAAAAAAAAAAAKckpRBYut6R5IullIUqa6SU8otJ/iRJWagdR1cl+WAp5V0LvAcAAAAAAAAAAAAA4JSxrOkAcBKYSPJwkvuSbE8ynGTP5KcjycYkG5I8N8n5Sc7K9EsYP5Hk6lLKxbXWifkMXUr58SQfnmaWryTZNvnn95PszZEXTZ6d5GVJLkvy0lYrk3y4lPKdWuvXZxkbAAAAAAAAAAAAAIBJSiEwc48n+XKSmyf/vKfWemi631xK2ZIjJYpfTvKCaXzL65P8+yTvnXnUp8ywIcknkyxvcfV7SX691vrFE5wNJfnm5OdPSikXJflQkrOnmLciySdLKefXWvfMPDkAAAAAAAAAAAAAAEd1NB0A2sBEjryQ8btJnl9rPaPW+tO11j+ptd4+k0JIktRad9Za35/khUn+VZLBaXzbvy+lnDXD3FP5L0me1eLOF5L8+FMUQp6k1np9kh9LcmOLq89K8p+mMxMAAAAAAAAAAAAAgKemFAJT+/+SnFFrfXmt9Q9rrffO1+B6xIeTvCTJIy2ur0zyH+ZjbynlnCTvbnHtq0neWmvdPZPZtdbhJG9O8rUWV3+rlPKjM5kNAAAAAAAAAAAAAMAPUwqBKdRaP1dr7VvgHduTvCrJ3hZXf7aUsn4eVv7HJMumOB9M8jO11pHZDK+17k/y00mGp7i2LMnvzWY+AAAAAAAAAAAAAABHKIXAElBrfTBHyhpTWZvkJ+eyp5Ty7CSXtrj2H2qtrV4umVKt9aG0/ve8s5TyrLnsAQAAAAAAAAAAAAA4lSmFwNLxwSRDLe5cOMcd707SOcX595L8+Rx3HPWhJA9Mcd6Z5DfmaRcAAAAAAAAAAAAAwClHKQSWiFrr4SR/1+La82c7v5TSmeTnWlz741rr+Gx3PFGtdSzJB1pcu6yU4ucQAAAAAAAAAAAAAMAs+GVsWFq+2uL8jDnMfm2S06c4P5jk43OYfyIfTXJoivMzkrx6nncCAAAAAAAAAAAAAJwSlEJgaelrcb52DrPf3OL8s7XWvXOY/yS11t1JrmtxrVUuAAAAAAAAAAAAAABOQCkElpY9Lc5H5jD7dS3OPzuH2XOZ+/oF2gsAAAAAAAAAAAAAcFJTCoGlZUuL812zGVpKOT3Jj7a49oXZzJ6GG1qcn1tKOW2BdgMAAAAAAAAAAAAAnLSUQmBpeXqL8wdmOfclLc4fqbU+MsvZU6q1fj/J4y2u/fhC7AYAAAAAAAAAAAAAOJkphcDScnGL85tnOfeCFue3zXLudH2jxfmLFng/AAAAAAAAAAAAAMBJRykElohSyjOSvGKKK2NJvjDL8ee3OL9zlnOn61stzpVCAAAAAAAAAAAAAABmSCkElo73J+mc4vyqWutjs5z9vBbn35vl3Ona3uL8uQu8HwAAAAAAAAAAAADgpKMUAktAKeX/SvKOKa6MJfmDOaw4s8X5/XOYPR2t5j9rgfcDAAAAAAAAAAAAAJx0lEKgQaWU5aWU/5zkj1tc/f1a6x2z3HFaktUtrs32BZLp+kGL8zWllC0LnAEAAAAAAAAAAAAA4KSiFAINmCyDvDXJHUl+r8X1zyd57xzWnTGNOzvmMH86pjN/OjkBAAAAAAAAAAAAAJi0rOkAcDIrpXQmWZ9kQ5KnJTk/yYuTvDXJ5mmMuD7J22qth+cQo6fF+Z5a66E5zG+p1nqglLIvyboprrXKCQAAAAAAAAAAAADAEyiFwByUUp6T5HsLMHosyX9N8t5a6/gcZ21qcb5njvOna0+mLoW0yrmoSinvTvIbi7Dq7EXYAQAAAAAAAAAAAACchJRCYGmpST6T5D/WWu+Yp5ndLc4XsxRyxhTnS6oUkqQ3yTlNhwAAAAAAAAAAAAAAeCpKIbA03Jvkr5N8vNZ69zzPXtXifGSe9z2V/S3OW+UEAAAAAAAAAAAAAOAJOpoOAGQsyfYkj6Z1cWI2Vkxj/2JotadVTgAAAAAAAAAAAAAAnkApBJq3LMmbknwwyfZSytWllJfO43ylEAAAAAAAAAAAAACAk5BSCCwtHUnenuSrpZRtpZTueZo5lfF52DEdrfZ0LkoKAAAAAAAAAAAAAICTxLKmA0Cb25nkV6Y4X52ka/LzjCQvSXLmNGf/XJILSynvrLV+dQ4ZW73QsVg/B1rtObwoKaavP8k9i7Dn7CQrF2EPAAAAAAAAAAAAAHCSUQqBOai17knyv2fyPaWU3hx5DeRXk1zQ4vrTkny+lPLGWusts0uZ0Rbni/VzYHmL81Y5F1Wt9U+T/OlC7yml3J3knIXeAwAAAAAAAAAAAACcfDqaDgCnmlprf631z2utL07y2iTbW3zL+iTXlVJmWxxo9QLHilnOnam2KoUAAAAAAAAAAAAAACx1SiHQoFrrjUnOS3J5i6vrkny8lNKqWHEi+1qcr5/FzNnY0OK8VU4AAAAAAAAAAAAAAJ5AKQQaVmsdSfIv07oY8qIkvzuLFYMtzherFNJqT6ucAAAAAAAAAAAAAAA8gVIILAG11prkV5Lc1OLqvymlrJ7h+IEW510znDdbG1uct8oJAAAAAAAAAAAAAMATKIXAElFrnUjyW0nGp7i2Ocm7Zjh6V4vzlaWUBS2GlFJ6kqxocU0pBAAAAAAAAAAAAABgBpRCYAmptX47ySdbXHvLDMc+PI07W2c4c6amM386OQEAAAAAAAAAAAAAmKQUAkvPNS3OX1FKmfb/dmut+9L6FY4zpztvllrN31lr3b/AGQAAAAAAAAAAAAAATipKIbD0XJdkYorzDUl+ZIYzH2xx/twZzpupVvNb5QMAAAAAAAAAAAAA4DhKIbDE1Fr3JtnV4tqWGY69u8X5TEsmM/W8Fuet8gEAAAAAAAAAAAAAcBylEFia+lqc98xw3m0tzl80w3kzdUGL89sXeD8AAAAAAAAAAAAAwElHKQSWpj0tzlfPcF6rUsj5pZTOGc6cllLKsiQvbHFNKQQAAAAAAAAAAAAAYIaUQmBpWtvifP8M530jycEpztclefEMZ07XS5KsmeL8YJJvLtBuAAAAAAAAAAAAAICTllIILE3PaHE+NJNhtdaDSW5pce31M5k5A69rcX7zZD4AAAAAAAAAAAAAAGZAKQSWmFLK05L0tLj2wCxG39Di/B2zmDkdP9Xi/PoF2gsAAAAAAAAAAAAAcFJTCoGl56IW53uTPDqLuVe2OL+glPIjs5j7lEop5yZ5QYtrV83nTgAAAAAAAAAAAACAU4VSCCw9v9Ti/Mu11jrTobXW7UlubXHtt2Y6t4V/3eL8llrrg/O8EwAAAAAAAAAAAADglKAUAktIKeU1SS5sce3zc1hxeYvzf1FKOX0O848ppTw9ybtaXPuL+dgFAAAAAAAAAAAAAHAqUgqBJaKUsj7Jh1tcG0tyxRzW/GWSnVOcr0nyB3OY/0T/LcmqKc77JvMAAAAAAAAAAAAAwLwbrzW37d2b9z3ySN5y1125qr+/6Ugw75Y1HQCWolLKq5PcXmvdvUj71iT56yRnt7j6V7XWqUodU6q1HiylfCDJf53i2rtKKdfUWv96tntKKe9MclmLa++vtR6a7Q4AAAAAAAAAAAAAeKLxWnPnvn25aXg4Nw4P5x+Gh7N7fPzYee/y5bm0t7fBhDD/lELgxH4pydWllPcl+UCtde9CLSqlPC9HXsx4SYurh5P8p3lY+f4kv5rkmVPc+Wgp5Qe11q/NdHgp5aVJLm9x7eEkH5jpbAAAAAAAAAAAAAA4auL4Esju3RkeG3vK+zcNDy9iOlgcSiHw1LqTvDfJvy2lfDzJp5J8pdZa52N4KWVdkt9N8jtJVkzjW/5LrXX7XPfWWkdKKb+d5NNTXFuf5PpSyi/UWq+d7uxSyluTfCzJuhZX/12t9cB05wIAAAAAAAAAAADARK25a//+3Dg0lJsmSyBDU5RAjvfAwYN5+ODBPHPVqgVMCYtLKQRa25TkX09+flBKuTLJDUlurbUOzGRQKWV9klck+fkkb0+yZprfemOS35/JrqnUWq8spWxLctkU1zYm+dtSyhVJ3ltr/e5TXSylnJPk95L8zDTWf6LWetWMAgMAAAAAAAAAAABwypmoNd/evz83Dg/npuHhfGl4eEYlkBP50vBw/vlpp81TQmieUgjMzNOS/JvJT0opjya5N8n3k+xIMpDkUJKxHHltY32SDUmemeSFSc5OUma4864kb6+1js89/g/51SQXJHn+FHdKjhRHLiul3J7kK0keTLIvR/5tz0ry8hz5t03Hd5P82mwDAwAAAAAAAAAAAHDymqg1dx9XAhmcYwnkeDcqhXCSUQqBuXn65Geh3JLkzbXW3fM9uNa6r5TyhiQ350hppZUXTX5m6+Ekb6i17pvDDAAAAAAAAAAAAABOEhO15p7jSiAD81wCOd5Nw8MLOh8Wm1IILE01yZ8k+Z1a66EFW1Lrw6WUn0xyXY68YrJQ7k9yca314QXcAQAAAAAAAAAAAMASVmvNPSMjuXFo6EgJZPfu7Dp8eFEzPHjwYB46eDBnrlq1qHthoSiFwNLzrST/ttZ642Isq7XeX0r58SRXJHnDAqy4LslltdahBZgNAAAAAAAAAAAAwBJVa813RkZ+6CWQ/kUugZzIl4aH867TTms6BswLpRA4sQ8k6U/yxiTnLtLOryV5f5JP1lonFmlnkmSysHFxKeUXk/xhki3zMHZnkvfUWj82D7MAAAAAAAAAAAAAWOKOlkBumiyB3LRESiDHu1EphJOIUgicQK319iS3J3lPKeWZSS5O8rIk/zTJjyQp87BmIsldSf42yZW11jvnYeac1Fo/Wkq5MskvJvnNJD86izH3JPnTJH9Rax2Zz3wAAAAAAAAAAAAALB211tz7hJdAbhoezs4lWAI53k3Dw01HgHmjFAIt1FofTvLnk5+UUjYmeXGOlEOeNfk5K8mmJGuTrEuyOsl4kkNJRnLk1ZG+JN9P8t0k307y1Vrrkvt/lFrr/iQfSvKhUsrzcqQQc0GOvJjytCTrk6zJkX/X3iSP5kgR5LYkn6u1fq+J3AAAAAAAAAAAAAAsvF2jo/ni8HCuHxzM9UNDefTQoaYjzdj3Dx7M9w8cyFmrVzcdBeZMKQRmqNa6O8nfT35OarXW+5Lc13QOAAAAAAAAAAAAAJoxOjGRr+7Zc6wE8s29e1ObDjVLXcuW5cKNG/Oarq6s6+xsOg7MC6UQAAAAAAAAAAAAAACSJLXWfO/AgVw/OJjPDw3lxqGh7J+YaDrWrGzs7MyFXV15TVdXXt3VlfPWrUtnKU3HgnmlFAIAAAAAAAAAAAAAcAobOnw4XxwayvVDQ7l+cDAPHTrUdKRZ2XBcCeSFSiCcApRCAAAAAAAAAAAAAABOIYcnJvKPe/YcK4F8fe/etONbIBs6O/PKjRvzmu7uvLqrK+crgXAKUgoBAAAAAAAAAAAAADjJ3T8ycqwE8vfDw9k7Pt50pBlbf7QEMvkSyPnr1mVZR0fTsaBRSiEAAAAAAAAAAAAAACeZ4cOHc+Pw8LEiyAMHDzYdacbWHVcCeZESCDyJUggAAAAAAAAAAAAAQJsbm5jI1/fuPVYC+cc9e9Jub4Gs6+zMK55QArlACQRaUgoBAAAAAAAAAAAAAGhDDx44cKwE8sWhoeweb68ayNqOjiMlkO7uYyWQ5UogMCNKIQAAAAAAAAAAAAAAbWDP2FhuHB7O9YODuX5oKPcfONB0pBlZc7QEMvkSyIvXr1cCgTlSCgEAAAAAAAAAAAAAWKLuHxnJtQMDuXZgIF/avTtjtTYdadrWdHTk5U8ogfyYEgjMO6UQAAAAAAAAAAAAAIAlYmxiIrfs2ZNrBwbymV27cm8bvQay+gQlkBVKILCglEIAAAAAAAAAAAAAABo0ePhwrhsczLUDA/nc4GCGx8aajjRtF6xbl4s2bcpF3d152caNWakEAotKKQQAAAAAAAAAAAAAYBHVWvPdkZFcOzCQawcGcsvu3RlvOtQ0nbFixbESyE92d2fLihVNR4JTmlIIAAAAAAAAAAAAAMACG52YyD8MDx8rgmw/eLDpSNOyqqMjr9q4MW/YtCkXbdqUc9asSSml6VjAJKUQAAAAAAAAAAAAAIAF0D86mr8bHMy1AwP5/OBg9o63x3sgL1y79thrIK/YuDGrOjubjgQ8BaUQAAAAAAAAAAAAAIB5UGvNt/fvz2cmXwO5dc+e1KZDTcPW5cuPlUBe192d01aubDoSME1KIQAAAAAAAAAAAAAAs3RwfDw3DQ8fK4I8fOhQ05FaWllKLuzqykXd3blo06a8YO3alFKajgXMglIIAAAAAAAAAAAAAMAMPH7oUD47WQK5YWgoIxMTTUdq6QVr1x4rgbxy48as7uxsOhIwD5RCAAAAAAAAAAAAAACmUGvN7fv2HXsN5Bt79zYdqaXe5cuPlUBe192dM1aubDoSsACUQgAAAAAAAAAAAAAAjjMyPp4vDg3l2skiyGOjo01HmtKKUvKKjRtz0aZNuai7Oy9cty4dpTQdC1hgSiEAAAAAAAAAAAAAAEl2j43l2oGBXNXfn+sGB3NgYqLpSFM6Z82aYyWQC7u6srazs+lIwCJTCgEAAAAAAAAAAAAATlkDhw/nb3btylX9/fnC0FBGa2060lNaWUpe292dS3p68s96enLmqlVNRwIaphQCAAAAAAAAAAAAAJxSdhw6lGt27cqV/f25aXg4400HmsJpK1bkkp6eXNLTk5/s6sq6ZX4FHPg//EQAAAAAAAAAAAAAAE56jxw8mKsnXwT58u7dWbrvgSQXrFuXN08WQS5Yvz4dpTQdCViilEIAAAAAAAAAAAAAgJPS9gMHclV/f67q78/X9u5tOs5TWt3Rkdd1d+fNPT15U09PnrZyZdORgDahFAIAAAAAAAAAAAAAnDTu2b//WBHkW/v3Nx3nKT195cpc0tOTN/f05DVdXVnd2dl0JKANKYUAAAAAAAAAAAAAAG2r1po79u07UgTZtSvfHRlpOtIJlSQvWb/+SBFk8+act3ZtSilNxwLanFIIAAAAAAAAAAAAANBWJmrN1/bsyVW7duXq/v48cPBg05FOaF1nZy7q7s4lPT15U09Ptq5Y0XQk4CSjFAIAAAAAAAAAAAAALHnjtebLu3fnqv7+XN3fnx+MjjYd6YTOWrUqb+7pySU9PXlVV1dWdnQ0HQk4iSmFAAAAAAAAAAAAAABL0uGJidw4PJyr+vtzza5d2Xn4cNORnqQjycs2bswlk0WQc9asSSml6VjAKUIpBAAAAAAAAAAAAABYMg6Oj+eGoaFc1d+fvx0YyNDYWNORnmRjZ2cu3rQpl/T05OJNm7J5xYqmIwGnKKUQAAAAAAAAAAAAAKBR+8fHc93gYK7q78+1AwPZOz7edKQnec7q1XnL5Gsgr9i4Mcs7OpqOBKAUAgAAAAAAAAAAAAAsvsMTE7l+aCjb+vpyza5dGZmYaDrSk7xg7dpc2tubSzdvzrlr16aU0nQkgB+iFAIAAAAAAAAAAAAALIqJWvOV3buzbefOfGrnzgyMjTUd6Ul+bP36XLp5cy7t7c1z16xpOg7AlJRCAAAAAAAAAAAAAIAFU2vNXfv3Z1tfX67YuTMPHzrUdKQfUpK8bMOGXNrbm3f09ubMVauajgQwbUohAAAAAAAAAAAAAMC8e/DAgVyxc2e29fXl7pGRpuP8kM4kr+rqyqW9vXn75s05feXKpiMBzIpSCAAAAAAAAAAAAABtZXyiZnv/vtz16O7c17c3uw8czqGxiYyOT2RFZ0dWLuvIxtXL87yt63Pe0zfm2b3r0tlRmo59Stg5OppP9/dnW19fvrJnT9NxfsjyUvK67u5c2tubt/b0ZPOKFU1HApgzpRAAAAAAAAAAAAAAlrRaa259YDA33NOXOx8dzt2P7cmBw+PT/v41Kzpzzukbct7Tu/L6c7bmpc/elFKURObL3rGxXLNrV7bt3JkbBgcz/f9mFt6qjo5cvGlTLt28OZf09KRr+fKmIwHMK6UQAAAAAAAAAAAAAJak3QcO5+rbHs3Hb30o2/v3z3rOyOh4vvHQUL7x0FAuv+XBnN27Nr/w0jPzjgueno2rlQRm49DERK4bHMy2vr787cBADk5MNB3pmHWdnflnmzbl0t7evHHTpqxb5lemgZOXn3AAAAAAAAAAAAAALCkPDezPn31pe665/bEZvQgyXdv79+c/f+ae/OF19+ZtLzojv/aqs3Nmz9p533Oymag1/zA8nG07d+bK/v4MjY01HemYrmXL8paenlza25uLuruzqrOz6UgAi0IpBAAAAAAAAAAAAIAlYWx8Ih+++cH88Rfuy+jYwr88ceDweK742iO56rYf5N+9/nn5lVc+O50dZcH3ts6E5aYAACAASURBVJNaa27fty/b+vryVzt35gejo01HOqZ3+fK8bfPmXNrbm9d0dWVFR0fTkQAWnVIIAAAAAAAAAAAAAI27f+fe/Pan78y3Hhle9N2jYxP5g899N9d9e0f++zvPy3O2rF/0DEvN90ZGcsXOndnW15d7DxxoOs4xZ6xYkXf09ubSzZvzyq6udBYlHuDUphQCAAAAAAAAAAAAQGMmJmo+fPMD+R83LM7rIFO545HhvOl/fjm/PflqSMcp9mrI44cO5VP9/flEX1++vndv03GOOWvVqlw6+SLIP92wIR2KIADHKIUAAAAAAAAAAAAA0IjD4xN5z6e/lWvueKzpKMeMjk3k9z/33Xzn8T35o3e+MMs7O5qOtKB2j43l6v7+bNu5M38/NJRmazn/x3NXr847e3tzaW9vXrRuXYoiCMAJKYUAAAAAAAAAAAAAsOgOHh7Pb267LV/4zs6mo5zQNXc8ln2HxvLByy7IquWdTceZVwfHx/PZwcFs6+vLZwcGcqjWpiMlSc5YsSI/u2VLLtu6NRcoggBMi1IIAAAAAAAAAAAAAIvq8PjEki6EHPWF7+zMb267Pf/rFy5o+xdDaq25bd++XP7449m2c2eGx8aajpQk6Vq2LD/V25vLtmzJhV1d6VQEAZgRpRAAAAAAAAAAAAAAFs3ERM17Pv2tJV8IOeoL3+nLez79rbzvp89PR0f7FRb6R0fzib6+XL5jR+7av7/pOEmSVR0deXNPTy7bsiVv7OnJyo72LtwANEkpBAAAAAAAAAAAAIBF8+GbH8g1dzzWdIwZueaOx3LOGRvyry48u+ko0zI2MZHPDw3l8scfz2cGBnK41qYjpTPJ67q7c9nWrXnb5s3ZsMyvMQPMBz9NAQAAAAAAAAAAAFgU9+/cm/9xw31Nx5iV/379fXnt87fkOVvWNx3lKd07MpKPPP54PtbXl8dHR5uOkyT5iQ0bctmWLXnnli3ZumJF03EATjpKIQAAAAAAAAAAAAAsuLHxifz2p+/M6NhE01FmZXRsIv/3p+/MVb/+snR2lKbjHLN3bCyf6u/PRx5/PLfs2dN0nCTJOWvW5Oe3bs3PbtmSZ69e3XQcgJOaUggAAAAAAAAAAAAAC+5/f/nBfOuR4aZjzMkdjwznwzc/kF971dmN5qi15ubdu/ORHTvyqZ07MzLRfNHmGStX5ue2bMllW7fmvLVrU8rSKc4AnMyUQgAAAAAAAAAAAABYUA8N7M/7briv6Rjz4n033Jc3/pPTcmbP2kXf/ejBg/loX1/+YseO3H/gwKLvP96mZcvy01u25LItW/LyjRvToQgCsOiUQgAAAAAAAAAAAABYUH/2pe0ZHWv+NYv5MDo2kT/70vb8/jvOW5R9hyYm8je7duUjO3bk+sHBNP2f4pqOjrxt8+ZctnVrXt/dnRUdHQ0nAji1KYUAAAAAAAAAAAAAsGB2Hzica25/rOkY8+qa2x/L//umH82GVcsXbMfte/fmIzt25BN9fRkcG1uwPdOxrJS8obs7l23dmrf09GTdMr+CDLBU+IkMAAAAAAAAAAAAwIK5+rZHc+Dw+LG/D3/5E+lc15P151/cYKrp23vHdRnfN5CuV/z8sa8dODyeq7/5aH7p5c+a110Dhw9nW19fLt+xI3fs2zevs2fjlRs35rItW/JTvb3ZvGJF03EAOAGlEAAAAAAAAAAAAAAWRK01f3nrQ8f+PvzlT2T3LVcc+/tSL4bsveO6DH7+g8f+/sRiyF/e+lB+8WVnpZQypx3jteaGwcFcvmNH/mbXrozWOqd5c/XCtWtz2dat+dktW/LMVasazQJAa0ohAAAAAAAAAAAAACyIWx8YzAP9+5M8uRBytGyxVIshxxdCjmY/WgzZ3r8///jgYF767J5Zzb9/ZCQf2bEjH92xIz8YHZ174Dl4xsqV+YWtW/PzW7fm3LVrG80CwMwohQAAAAAAAAAAAACwIG64py/JkwshRy3VYsjxhZCjji+G3HBP34xKIfvGxnJlf38u37EjN+/ePT9hZ2llKXl7b29++bTT8tru7nTO8cUTAJqhFAIAAAAAAAAAAADAgrjz0eGnLIQctdSKIU9VCDnqicWQOx8dbjmv1pqv7NmTyx9/PJ/q78++8fF5yzobL163Lr98+un5uS1b0r18eaNZAJg7pRAAAAAAAAAAAAAA5t34RM1NV3xoykLIUUulGNKqEHLU0X/T3SvelfGJms6OJ7+ysXtsLB/bsSP/67HH8p2RkXnPOhM9y5bln592Wv7FaaflvHXrGs0CwPxSCgEAAAAAAAAAAABg3m3v35e6pnva95suhky3EHJU57qejIyO54H+fXnu1vXHvn7H3r350GOP5RN9fRmZmFiIqNPSkeSNmzbll08/PZf09GRFR0djWQBYOEohAAAAAAAAAAAAAMy7ux7dfazgMd2yRVPFkJkWQja94Tf/f/buPcrOsr4b/vfak8lpciYh55mcCCcPYPWpVlutSrEna2u1q61aDyioRSiiFKQgaEHEImpLxar0+NpH3759rFartdq3ta2tSqsohJBkksmZBHJOJsnM3M8fEGsVmJlk33tmks9nrVnA7Ov+fX/5g2Rnrf2d63s73rN5TxbPnpxP7diRO7Zsydf27q1rzSFZOWlSXjt/fl45d24WTJgworsAUD+lEAAAAAAAAAAAAACabvX2fUky6oshJ1IIOTqp5PaHtuQN/7Y+D/X11bPgEExpa8uvzJmT186fn2dNm5ZSyojtAkBrKYUAAAAAAAAAAAAA0HR7Dh393r+P1mLI8RRCppz3ohyc05Z9nePSO7stW8rBZIT6ID8xfXpeO39+Xjp7dqaM87FggFOR3/0BAAAAAAAAAAAAaLrDfQP/479HWzFkuIWQGT/7mxl48c9n8+Jx6Z/UqGWnoVg4fnxePW9eXj1vXlZMnjxiewAwOiiFAAAAAAAAAAAAANB0R/oHfuh7o6UYMtxCyPjXXZ7dv/bipFGauseQ80vJS2bPzmvmzcsFs2alrYzMHgCMPkohAAAAAAAAAAAAADTd+LbHvk1jpIshwy2E5IorcuTnf74p2cN1/pQpec28efm1uXNzWnv7iOwAwOimFAIAAAAAAAAAAABA000Y99ilkGTkiiHHUwhJiwshs8aNy6/PnZvXzJuX86dObWk2AGOPUggAAAAAAAAAAAAATTd90hPfbNHqYshoLoQ0kvzUrFl57bx5efHs2ZnQePxCDQB8P6UQAAAAAAAAAAAAAJpu5dzBb7loVTFktBZClk+cmNfOn59XzZ2bRRMn1p4HwMlHKQQAAAAAAAAAAACApnvyoulDOld3MWS0FUImNhp5+Zw5uWj+/Dxn+vSUUmrLAuDkpxQCAAAAAAAAAAAAQNMtnzMlk9rbcuho/6Bn6yqGjKZCyIpJk/LGBQvy6nnzMqu9vZYMAE49SiEAAAAAAAAAAAAANF1bo+TcBdPyjQ27hnS+2cWQ0VAIaSR58ezZedOCBXnBzJlpuBUEgCZTCgEAAAAAAAAAAACgFk9ZNGPIpZCkOcWQgbbkoXVfzMERLITMGz8+r58/P6+fPz+LJ05s2lwA+EFKIQAAAAAAAAAAAADU4oJz5ubj/9I9rGeOtxgy8Vk/nX1d7dn3rb9L/vKDQw9sYiHkeTNm5I0LFuQls2dnfKPRlJkA8ESUQgAAAAAAAAAAAACoxTOXzcqyOR1Zt+PAsJ47rmLIueOTe5LcftvQg5pQCJnW1pbfmDcvlyxYkHM6Ok5oFgAMl1IIAAAAAAAAAAAAALUopeSVz+zKDZ+5d9jPDrcYktuGUQZJTrgQsjjtuXbl0vza6adnyjgfyQVgZLiXCgAAAAAAAAAAAIDa/NLTFmVSe9txPTv1vBdl1oW/2eSNcvyFkIEqHZv70vX1w7nnR5+RNyxYoBACwIhSCgEAAAAAAAAAAACgNtMntecl5y847uennveizPi5JhZDjqMQMu7gQGbcfySLvnIws+85nF9dPj/TJ41v3k4AcJxUEwEAAAAAAAAAAACo1SXPXZ6/untzjvQNDOu5w9Mb2bukPQcv/KVk5fjktttObJHhFEKqKpN29GdqT18m7uxPefTb48c1cslzl5/YHgDQJEohAAAAAAAAAAAAANSq67SOXHHByrzn86sGPVuV5ODpbdm3pD2HZ7b99wvHyhzHWwwZYiGkcbjKlE1HM3VTX8Ydqn54zAUr03Vax/HtAABNphQCAAAAAAAAAAAAQO0ues7SfP472/Ktjbsf8/WBtmT/onHZ29We/smNxx5yvMWQIRRCJjzcn6kbj2bytv6UH+6CJEnOWzwjr//xZcPLBoAaKYUAAAAAAAAAAAAAULtxbY383suekp/54FdzpG/ge9/vm1iyr6s9+xaNS9VeWrpT6avSsaUvU3uOZvz+x2mCPGr8uEbe97KnpK3R2h0B4IkohQAAAAAAAAAAAADQEitOn5q3XrAyN39+VQ5Pb2TvkvYcnNuWDLVo8ZnPDP+WkOS/n3n0tpD2fQOZ2nM0HVv60ugf2ogrf2plVpw+dfjZAFAjpRAAAAAAAAAAAAAAWqK/qnLa2VNz5PC0bBs/xDbGMcdbCDnmttsyfs9AZp7xU5mwayDDue/jJectyEXPWXb82QBQE6UQAAAAAAAAAAAAAGq1r68vd23blts3bUp3b28yfpgDTrQQ8qgjH7s9Ry/sy8TzXjTkZ1549tzc+rKnpjHU20wAoIWUQgAAAAAAAAAAAACoRU9vbz60eXP+aMuW7Okf5s0gxzSpEHLMw1/4/STJ1CEUQ1549tz8/q+dn/a2RtPyAaCZlEIAAAAAAAAAAAAAaKqv792b2zZtyqcefDDHWQV5RJMLIccMpRjykvMW5NaXPVUhBIBRTSkEAAAAAAAAAAAAgBPWX1X5m507c9umTfnqnj0nPnCYhZAJr74sE3f2Z89nf39I5x+vGDJ+XCNX/tTKXPScZWk0ytD3BYARoBQCAAAAAAAAAAAAwHHb39eXu7Zty+2bNmVdb29zhg6zEDLjp38z0+dekMxN2o7+d+FjMD9YDDlv8Yy872VPyYrTpw5/ZwAYAUohAAAAAAAAAAAAAAzblsOH84FNm3Lnli3Z09/fvMHDLITMuvA3M/Up/33bx7GCx3CKIeMaJTdedVku+vFlaXM7CABjiFIIAAAAAAAAAAAAAEO27tChvLenJ3dt25YjVdXc4cdTCDnvRT/0/eEWQx78/IdSXvKktD13+ZCzAWA0UAoBAAAAAAAAAAAAYFD3HjiQm3t68ont29PEe0H+W5MKIccMtxhy8cUXJ0ne8IY3DHkHABhpSiEAAAAAAAAAAAAAPK5v7tuXmzZsyP+3c2d9IcMshMz7mUsz4ckXDnpOMQSAk51SCAAAAAAAAAAAAAA/5J92785NGzbkC7t21Rs0zELInXfemddd9Pqs27E/92zek/u378veQ0dz+OhADvcPZEJbIxPaG5k2qT1nzp2aJ//WT+Qf/vpJeeMbLxnSfMUQAMYSpRAAAAAAAAAAAAAAkiRVVeULDz+c3+3pyVf37Kk/8DgKIcfKGmfMnZoz5k4d0nNnXHJxGo3yvcLHYBRDABgrlEIAAAAAAAAAAAAATnEDVZW/3rkzN23YkLv3729N6AkUQo7HsWcVQwA4mSiFAAAAAAAAAAAAAJyijg4M5C8ffDA39/TkvoMHW5Y7/fOfz54WFkKOUQwB4GSjFAIAAAAAAAAAAABwiunt788fb9uWWzZuzPre3pblnjdlSs7/yldy13vfO+RnmlUIOUYxBICTiVIIAAAAAAAAAAAAwClif19f7ty6Nb+3cWO2HjnSstyfO+20XLFoUVZ/8pO55O1vH/JzzS6EHKMYAsDJQikEAAAAAAAAAAAA4CS36+jRfGjz5nxg06Y83NfXksxJjUZePW9eLlu0KGdOnpyPfOQjueSSS4b8fF2FkGMUQwA4GSiFAAAAAAAAAAAAAJykth85kvdv3Jg7tmzJvv7+lmTOGz8+ly5cmIsXLMhp7e1Jko985CNDLl8k9RdCjlEMAWCsUwoBAAAAAAAAAAAAOMn09Pbm1o0b89GtW9M7MNCSzGUTJ+aqzs78xrx5mdBofO/7o7UQcoxiCABjmVIIAAAAAAAAAAAAwEnigYMH856envzp9u3pq6qWZJ4zeXKu6erKr8yZk3HfVwZJRn8h5BjFEADGKqUQAAAAAAAAAAAAgDHu2/v356YNG/KpHTvSmntBkqdPnZp3dHbmxbNnp1HKY57ZsmXLkOeNVCHkmOEWQ4bzawOAuiiFAAAAAAAAAAAAAIxRX9uzJ7/b05PPPvRQyzKfO316runqygUzZ6Y8ThnkmHe+851JkhtuuOEJz410IeSYoRZDrr/++u/92gBgJCmFAAAAAAAAAAAAAIwhVVXly7t356YNG/Ll3btblvvTs2blHV1defb06cN6brBiyGgphBwzWDFEIQSA0UQpBAAAAAAAAAAAAGAMqKoqn33oofzuhg359337WpJZkrx0zpxc09mZ86dOPe45j1cMGW2FkGMerxiiEALAaKMUAgAAAAAAAAAAADCKVVWVv965MzesX59vHzjQksy2JK+YOzdXdXbm7I6Opsz8wWLIaC2EHPODxRCFEABGI6UQAAAAAAAAAAAAgFGoqqp87uGHc113d+7ev78lmRNKyWvnz8/bFy/OkkmTmj7/WKliwYIFo7oQcsyxHbds2aIQAsCoVKqqGukdAE5ZpZTvJjnnB79/zjnn5Lvf/e4IbAQAAAAAAAAAAIy0qqry5d27c213d762d29LMjsajbxx4cJcsWhR5k+Y0JJMAGimc889N/fee+9jvXRvVVXntnqfVnFTCAAAAAAAAAAAAMAo8dXdu/M769fnH3fvbknezHHj8paFC3PpokU5rb29JZkAQPMohQAAAAAAAAAAAACMsK/v3Zvf6e7OF3btakne3Pb2XLF4cd64YEGmjvNxUgAYq/wpDgAAAAAAAAAAADBCvrV/f67r7s7fPPRQS/I6J0zI2zs789p58zKpra0lmQBAfZRCAAAAAAAAAAAAAFrsvgMH8s716/PJHTtakrdy0qT8dmdnfn3u3IxvNFqSCQDUTykEAAAAAAAAAAAAoEXWHjqUG9avz19s356BFuQ9taMj13R15aVz5qStlBYkAgCtpBQCAAAAAAAAAAAAULOe3t68e8OGfHzr1vS3IO9Z06blHV1d+ZlZs1KUQQDgpKUUAgAAAAAAAAAAAFCTrYcP56aennxky5Ycqara8144c2au6ezM82bMUAYBgFOAUggAAAAAAAAAAABAk+04ciTv3bgxv795c3oHBmrPe/Fpp+Warq786LRptWcBAKOHUggAAAAAAAAAAABAk+w6ejS/t3Fjbt+0KQdaUAZ5+Zw5ubarK0+eMqX2LABg9FEKAQAAAAAAAAAAADhBe/v68oFNm/J7GzdmT39/7XkvmT07NyxZkqcogwDAKU0pBAAAAAAAAAAAAOA4Hezvzx9s3pxbenryUF9f7Xk/PWtWblyyJE+fNq32LABg9FMKAQAAAAAAAAAAABim3v7+fGTr1ty0YUO2Hz1ae95PzpiRdy1dmmdPn157FgAwdiiFAAAAAAAAAAAAAAzR0YGB3LVtW961YUM2HT5ce96zpk3Lu5cuzfNnzqw9CwAYe5RCAAAAAAAAAAAAAAbRNzCQv3jwwdy4fn3W9fbWnve0KVPy7qVL86JZs1JKqT0PABiblEIAAAAAAAAAAAAAHsdAVeVTO3bk+u7u3H/oUO15T+royLuWLMkvzJ6tDAIADEopBAAAAAAAAAAAAOAHVFWVT+/cmevWr889Bw7Unrdy0qTcsGRJXn766WkogwAAQ6QUAgAAAAAAAAAAAPB9vrxrV65aty7f2Lev9qylEyfm+iVL8uunn55xjUbteQDAyUUpBAAAAAAAAAAAACDJdw8cyNvXrs3nHn649qxFEybk2q6uvGbevIxXBgEAjpNSCAAAAAAAAAAAAHBK23r4cK5bvz4f37o1AzVnzW1vzzVdXXnD/PmZ2NZWcxoAcLJTCgEAAAAAAAAAAABOSfv7+nLrxo1538aNOThQbx1k1rhxuaqzM29euDAdyiAAQJMohQAAAAAAAAAAAACnlL6BgXxs27Zc392d7UeP1po1ra0tVy5enMsWLcq0cT62CQA0l3cXAAAAAAAAAAAAwCmhqqr87UMP5e3r1uW+gwdrzepoNHL5okV56+LFmdneXmsWAHDqUgoBAAAAAAAAAAAATnrf2Ls3b1u3Lv+4e3etORMbjbx5wYJc1dmZOePH15oFAKAUAgAAAAAAAAAAAJy01h86lGu6u/OJBx+sNae9lFy8YEGu7uzMggkTas0CADhGKQQAAAAAAAAAAAA46ew6ejQ39fTkg5s25UhV1ZbTluQ18+fn2q6udE2cWFsOAMBjUQoBAAAAAAAAAAAAThqHBwZyx+bNedeGDdnV11dbTknyirlzc11XV1ZMnlxbDgDAE1EKAQAAAAAAAAAAAMa8qqryyR07cvW6denu7a0162Vz5uSdS5bknI6OWnMAAAajFAIAAAAAAAAAAACMaf+8e3euXLs2/7FvX605L5o1KzcvXZrzpk6tNQcAYKiUQgAAAAAAAAAAAIAx6f6DB3PV2rX59EMP1Zpz3pQpuXXZsrxw1qxacwAAhkspBAAAAAAAAAAAABhTHjxyJO9cvz4f2bIl/TXmLJowIb+7dGleMXduGqXUmAQAcHyUQgAAAAAAAAAAAIAx4WB/f27buDG3bNyY/f311UGmtbXl6s7OXLZoUSa1tdWWAwBwopRCAAAAAAAAAAAAgFGtv6ryp9u25dru7mw5cqS2nHGl5I0LFuR3uroyZ/z42nIAAJpFKQQAAAAAAAAAAAAYtb7w8MN529q1uefAgVpzXjp7dm5etixnTJ5caw4AQDMphQAAAAAAAAAAAACjzn/t25e3r1uXv9+1q9acZ02blvctX54fmz691hwAgDoohQAAAAAAAAAAAACjxqbe3lzb3Z0/3b49VY05KyZNynuWLcsvzZ6dUkqNSQAA9VEKAQAAAAAAAAAAAEbcnr6+3NLTk/dv2pTegYHack4bNy7XL1mSixcsyPhGo7YcAIBWUAoBAAAAAAAAAAAARkzfwEDu3Lo171y/PjuPHq0tZ2KjkcsXLcpvd3Zm+jgfnwQATg7e1QAAAAAAAAAAAAAj4iu7duXSBx7Idw8erC2jJHnF3Ll599Kl6Zw4sbYcAICRoBQCAAAAAAAAAAAAtFRPb2+uXLs2n9qxo9acF8yYkVuXL8/5U6fWmgMAMFKUQgAAAAAAAAAAAICW6O3vz60bN+bmnp4cGhioLedJHR1577JledGsWSml1JYDADDSlEIAAAAAAAAAAACAWlVVlU/v3Jkr1q5Nd29vbTnzx4/Pu5YuzavnzUubMggAcApQCgEAAAAAAAAAAABqs+rAgVy2Zk2+uGtXbRlT2try9sWLc8Xixeloa6stBwBgtFEKAQAAAAAAAAAAAJpub19fbly/Ph/YvDl9VVVLRluS1y9YkHcuWZK548fXkgEAMJophQAAAAAAAAAAAABNM1BV+bPt23PV2rXZfvRobTkvPu203LJsWc7q6KgtAwBgtFMKAQAAAAAAAAAAAJriG3v35tI1a/K1vXtry3jG1Km5dfnyPHfGjNoyAADGCqUQAAAAAAAAAAAA4ITsOHIk13R352Nbt6aqKWPJxIm5eenSvPz009MopaYUAICxRSkEAAAAAAAAAAAAOC59AwO5Y8uWXNfdnT39/bVkzBw3Ltd2deXNCxdmQqNRSwYAwFilFAIAAAAAAAAAAAAM21d27cpb1qzJdw4cqGX+uFJy6cKFubarK7Pa22vJAAAY65RCAAAAAAAAAAAAgCHr6e3NlWvX5lM7dtSWccHMmfnAihU5u6OjtgwAgJOBUggAAAAAAAAAAAAwqN7+/ty6cWNu7unJoYGBWjKWTJyY9y9fnl+YPTullFoyAABOJkohAAAAAAAAAAAAwOOqqiqf3rkzV6xdm+7e3loyJjUaubqzM1cuXpxJbW21ZAAAnIyUQgAAAAAAAAAAAIDHtOrAgVy2Zk2+uGtXbRkvmzMn71u+PJ0TJ9aWAQBwslIKAQAAAAAAAAAAAP6HvX19uXH9+nxg8+b0VVUtGedOnpwPnnFGnj9zZi3zAQBOBUohAAAAAAAAAAAAQJJkoKryZ9u356q1a7P96NFaMqa3teXGpUvzpgULMq7RqCUDAOBUoRQCAAAAAAAAAAAA5Bt79+bSNWvytb17a5lfkrxu/vzctHRp5owfX0sGAMCpRikEAAAAAAAAAAAATmE7jhzJNd3d+djWralqynjmtGn50IoVefq0aTUlAACcmpRCAAAAAAAAAAAA4BTUNzCQO7ZsyXXd3dnT319Lxtz29tyyfHleOXduGqXUkgEAcCpTCgEAAAAAAAAAAIBTzFd27cpb1qzJdw4cqGX+uFJy2cKFuW7Jkkwb56OKAAB18U4LAAAAAAAAAAAAThFbDh/Ob61Zk0/u2FFbxgUzZ+YDK1bk7I6O2jIAAHiEUggAAAAAAAAAAACc5PqrKndu2ZKr163L3v7+WjKWTJyY9y9fnl+YPTullFoyAAD4n5RCAAAAAAAAAAAA4CT2rf37c/H99+ff9+2rZf6kRiNXd3bmysWLM6mtrZYMAAAem1IIAAAAAAAAAAAAnIQO9PfnhvXrc9vGjannbpDkZXPm5H3Ll6dz4sSaEgAAeCJKIQAAAAAAAAAAAHCS+fxDD+VNDzyQ9b29tcw/d/LkfPCMM/L8mTNrmQ8AwNAohQAAAAAAAAAAAMBJYuvhw7l8zZp8cseOWuZPb2vLjUuX5k0LFmRco1FLBgAAQ6cUAgAAAAAAAAAAAGPcQFXlzi1b8tvr1mVvf3/T55ckr5s/PzctXZo548c3nIF0LwAAIABJREFUfT4AAMdHKQQAAAAAAAAAAADGsHv2788bVq/O1/burWX+M6dNy4dWrMjTp02rZT4AAMdPKQQAAAAAAAAAAADGoIP9/XnXhg1538aN6auqps+f296eW5Yvzyvnzk2jlKbPBwDgxCmFAAAAAAAAAAAAwBjzhYcfzhtXr053b2/TZ48rJZctXJjrlizJtHE+ZggAMJp5twYAAAAAAAAAAABjxLbDh3PF2rX5xIMP1jL/gpkz84EVK3J2R0ct8wEAaC6lEAAAAAAAAAAAABjlBqoqH926NVetW5fdfX1Nnz9//Ph8cMWKvHTOnJRSmj4fAIB6KIUAAAAAAAAAAADAKPad/ftz8erV+de9e5s+uyR588KFeffSpZk+zkcKAQDGGu/gAAAAAAAAAAAAYBQ61N+fd2/YkPdu3Ji+qmr6/Kd0dOQjZ56ZH502remzAQBoDaUQAAAAAAAAAAAAGGX+/uGHc8nq1VnX29v02ZMajdywZEkuX7Qo7Y1G0+cDANA6SiFwHEop7UnOSvKkJOc++s9FSWY8+jU9SX+SQ0l2JdmSpDvJt5N8Pcm/VlV1pPWbAwAAAAAAAAAAo9mDR47kt9asyf/z4IO1zP/pWbNyxxlnZMmkSbXMBwCgtZRCYAhKKY0k5yd5fpIXJHlOko5BHhuXZEIeKYksTfLs73vtYCnli0n+JMlnq6rqa/rSj6GU0vw7JIfngqqqvjTCOwAAAAAAAAAAwKgzUFX5+Natefu6ddnV1/yPE80bPz4fXLEivzxnTkopTZ8PAMDIUAqBx1FKGZdHCiAvT/KSJLOaOH7yozNfkqS7lPKeJB+rqqq/iRkAAAAAAAAAAMAYcO+BA7l49ep8dc+eps8uSS5ZsCA3LV2aGe3tTZ8PAMDIUgqBH1BKOTfJ5Ul+MclpLYhcmuTOJBeXUi6qquo/W5AJAAAAAAAAAACMsN7+/vxuT09u6enJ0apq+vwnd3TkzpUr86zp05s+GwCA0UEpBH7Yzye5aARyn5bk30opl1VVdecI5AMAAAAAAAAAAC3yD7t25ZLVq7Pm0KGmz57UaOT6JUtyxaJFaW80mj4fAIDRQykERpcJST5cSllYVdV1I70MAAAAAAAAAADQXDuOHMlb167Nn23fXsv8C2fOzB0rV2bZpEm1zAcAYHRRCoET15/ku0nuS9KdZGeSA0kmJjktyfwkz0ly5jBm/k4p5WBVVe9p8q4AAAAAAAAAAMAIqKoqd23blretXZuH+/qaPn9ue3tuX7Eiv3L66SmlNH0+AACjk1IIHJ9VST6T5PNJ/r2qqoODPVBKmZ/kDUkuzSNlkcHcVEr5dlVVnzuhTYfuM0n+puaMe2ueDwAAAAAAAAAAo86qAwdy8erV+ac9e2qZf/H8+bl52bLMbG+vZT4AAKOXUggM3e4kf5zkz6qqunu4D1dVtTXJDaWU9yW5PclFgzxSkny0lHJOVVW7h5t3HO6uquqjLcgBAAAAAAAAAIBTwpGBgdy0YUNu6unJ0apq+vxzJ0/OnWeemWdPn9702QAAjA1KITC4NUluTfLnQ7kRZDBVVR1I8vpSyj8n+XiStic4Pj/JVUmuPtFcAAAAAAAAAACgde7ety+vXrUq9xw40PTZExuNXNfVlbcuXpzxjUbT5wMAMHYohcDjW53kxiR/WVVVf7OHV1X1p6WUjiR3DHL00lLKzVVV7W32DgAAAAAAAAAAQHMdHhjIuzdsyM0bNqTpHzpKcsHMmfnDlSuzfNKkGqYDADDWKIXAD9ue5E1J/qiqqr46g6qq+sNSyjOTvOoJjnUkeXmSj9a5CwAAAAAAAAAAcGK+sXdvXnP//flODbeDzGlvz+0rVuRXTz89pZSmzwcAYGxSCoEfUFXVXS2OvDrJLyeZ/ARnXhKlEAAAAAAAAAAAGJUODwzkxvXrc0tPTy23g1w0f35uWbYss9rba5gOAMBYphQCI6yqqi2llE8ked0THPvxUkqjqqqBVu0FAAAAAAAAAAAM7ut79+Y1q1bluwcPNn322ZMn586VK/PjM2Y0fTYAACeHxkgvACRJPjvI69OSdLViEQAAAAAAAAAAYHC9/f25et26PPPuu5teCJlQSt61ZEn+6+lPVwgBAOAJuSkERod/GsKZZUm6614EAAAAAAAAAAB4Yv/x6O0g99ZwO8gLZszIH65cmTMmT276bAAATj5KITAKVFX1cCnlSJLxT3BM5R8AAAAAAAAAAEZQb39/rl+/Pu/buDEDTZ49u70971++PL8+d25KKU2eDgDAyUopBEaPnUkWPMHrk1q1CAAAAAAAAAAA8D99bc+evOb++7OqhttBXjtvXt67fHlOa29v+mwAAE5uSiEwegx232NvS7YAAAAAAAAAAAC+51B/f65bvz631XA7yJmTJuXOM8/Mc2fMaPJkAABOFUohMAqUUqYmmT7IsV2t2AUAAAAAAAAAAHjEv+3Zk9esWpX7Dx1q6ty2JFd1dua6JUsyodFo6mwAAE4tSiEwOpyXpAxyZm0rFgEAAAAAAAAAgFPdof7+/E53d27btClVk2c/qaMjd515Zp4+bVqTJwMAcCpSCoHR4WcHeX1vkp5WLJIkpZT2JMuTdCaZlWRikqNJDiXZnWRTko1VVTX3RyAAAAAAAAAAAMAI+5c9e/LaVauyuobbQa7u6sq1XV1uBwEAoGmUQmCElVIaSV4+yLGvVlU1UPMq55RS3pvkJ5M8OcmEQc4PlFJWJ/lGki8l+XxVVQ/WvCMAAAAAAAAAANTiYH9/ru3uzu013A7y5I6O3HXWWfmRqVObPBkAgFOdUgiMvF9IsnSQM3/Tgj1eNszzjSRnPfr1ijxSEvm7JB9O8tmqqpr9d2MAAAAAAAAAAKjFV3fvzmvuvz9rmnw7yLhSck1nZ97R1ZXxbgcBAKAGSiEwgkopbUluHOTYkSSfasE6J6qR5Gce/bq7lHJVVVVfGuGdAAAAAAAAAADgcR3o78871q3LBzdvbvrtIE999HaQ890OAgBAjZRCYGRdnORJg5z5k6qqHm7FMk30tCR/X0q5K8nlVVXtHemFAAAAAAAAAADg+/3T7t157apVWdvb29S540rJtV1dubqz0+0gAADUTikERkgppSvJewY5djTJLS1Ypy6vSfLMUsrPV1W1dqSXGY5SypuTvKkFUctbkAEAAAAAAAAAwKMO9Pfn6nXr8qHNm5s++7wpU3LXmWfmPLeDAADQIkohMAJKKY0kf5xksL/93T7WyhSP4ewkXyulPK+qqu+O9DLDMCfJOSO9BAAAAAAAAAAAzfOPu3bldfffn3VNvh2kvZT8TldXfruzM+1uBwEAoIWUQmBk3JDkeYOc2ZjkXfWvkiT5TpJvJrnn0a+NSfY8+nUkyawkpyU5Pckzk/xEkmcnmTbE+bOTfKmU8uyqqtY1d3UAAAAAAAAAAHhi+/v68tvr1uUPtmxp+uynTZmSu846K0+ZMqXpswEAYDBKIdBipZSfSXLNIMeqJK+rqmpfTWv0J/m7JJ9N8rdVVW0c5Pz2R7/uTfKPSd5TSpmY5NVJrkyyfAiZ85L8VSnlWVVVNfdHLQAAAAAAAAAAwOP4yqO3g3TXcDvI9UuW5O2LF7sdBACAEeOdKLRQKeWcJJ/I4P/v/X5VVX9fwwpb88jtI11VVf1cVVUfHkIh5DFVVdVbVdWHk6xM8ltJjg7hsfOS3HQ8eQAAAAAAAAAAMBz7+/ryptWr8/xvfavphZAfmTIl3/yRH8k7uroUQgAAGFFuCoEWKaXMSfKZJNMGOfr1PHL7Rh06q6rqa+bAqqoGktxeSvnXJJ9M0jXII5eWUu6qquqeZu4BAAAAAAAAAADH/MOuXbno/vuzvsllkPGl5J1LluRtixdnnDIIAACjgFIItEAppSOPFEKWDXL0oSQvq6rqSB17NLsQ8gOz/6OU8hNJ/jlJ5xMcHZfkxiS/WNcuTbIjyb0tyFmeZEILcgAAAAAAAAAATnr7+vrytrVrc+fWrU2f/YypU3PXWWfl3I6Ops8GAIDjpRQCNSuljE/yV0l+dJCjh5K8uKqqDfVvVY+qqnpKKb+Y5F+STHyCoy8upZxRVdUDLVpt2Kqq+oMkf1B3Tinlu0nOqTsHAAAAAAAAAOBk99Xdu/PKVatquR3kxqVL89ZFi9wOAgDAqOMdKtSolNJI8mdJLhzk6NEkv1xV1b/Wv1W9qqq6O8lNgxxrJHlFC9YBAAAAAAAAAOAkd2RgIO9Yty7P/a//anoh5H9NnZr/fPrTc1Vnp0IIAACjknepUJNSSknykSQvH+ToQJJXVVX1ufq3aplbk2wf5Mwvt2IRAAAAAAAAAABOXqsOHMiP3X13burpyUAT504oJe9dtiz/cv75Oaejo4mTAQCguZRCoD63JXndEM5dUlXVX9a9TCtVVdWb5MODHDunlHJ6K/YBAAAAAAAAAODkUlVV7ti8OU/75jfzzf37mzr7mdOm5b+e/vS8ze0gAACMAd6xQg1KKe9OcvkQjr61qqo/qnufEfLJIZx5Vu1bAAAAAAAAAABwUtl2+HB+9p578uYHHsihgebdDzKx0cj7li/PV88/P2e5HQQAgDFi3EgvACebUspVSd4xhKPXV1V1W937jJSqqu4tpTyY5IluAzkryadbtBIAAAAAAAAAAGPcp3fuzEX335+dR482de6PTZuWj591Vs6cPLmpcwEAoG5KIdBEpZS3JHnPEI7eWlXVjXXvMwr8Z5ILn+D1JS3aAwAAAAAAAACAMWx/X19+a+3afHTr1qbOndho5KalS/OWRYvSVkpTZwMAQCsohUCTlFJen+T2IRz9g6qq3l73PqPE+kFef6JbRAAAAAAAAAAAIF/bsyevuO++rO3tbercZz96O8hKt4MAADCGKYVAE5RSXpnkw0kG+3EBH09yaf0bjRp7Bnnd36gBAAAAAAAAAHhMfQMDefeGDXn3hg3pb+LcSY1Gbl62LL+5cKHbQQAAGPOUQuAElVJeluSuJI1Bjn4iyeurqqrq32rUODLI6+0t2QIAAAAAAAAAgDHlgYMH88r77su/79vX1LnPmT49Hz/zzJzhdhAAAE4SSiFwAkopL07yF0naBjn6f5K8qqqqgfq3GlUmDfL6oZZsAQAAAAAAAADAmFBVVT62dWsuX7MmBwaa91GbCaXkPcuW5S2LFqXhdhAAAE4iSiFwnEopFyb5ZAa/7eLzSX6lqqq++rcadeYN8vr+lmwBAAAAAAAAAMCot+PIkVx0//35m4ceaurcp3Z05M/PPjtPmjKlqXMBAGA0UAqB41BKeV6Sv04yYZCjX07yS1VVHal9qdFpxSCvb27JFgAAAAAAAAAAjGqfe+ihvHbVqmw/erRpM0uSKxcvzruWLs2ERqNpcwEAYDRRCoFhKqU8K8lnkkwa5OhXk7y4qqre+rcafUopE5KcN8ix7lbsAgAAAAAAAADA6HSwvz9Xrl2bP9yypalzF0+YkD8566z85MyZTZ0LAACjjVIIDEMp5WlJPp9ksLskv57kZ6uqOlD/VqPWCzL4TSrfbsUiAAAAAAAAAACMPt/YuzevuO++3H/oUFPn/urpp+eOM87IjPb2ps4FAIDRSCkEhqiU8qQkX0wyfZCj30pyYVVVe+vfalR71SCvH80j5RkAAAAAAAAAAE4h/VWVW3p6cv369emrqqbNnd7WljtWrsyvzZ3btJkAADDaKYXAEJRSVib5UpLTBjl6b5ILqqraVf9Wo1cp5YwkvzzIsX+qqqq3FfsAAAAAAAAAADA6dB86lFfed1/+ZW9zf97q82bMyJ+cdVY6J05s6lwAABjtlEJgEKWUJUn+IclgP0LggSQvrKpqR907jQEfStI2yJlPtmIRAAAAAAAAAABGXlVV+dPt23PpAw9kX39/0+a2l5Kbli7NFYsXp1FK0+YCAMBYoRQCT6CUsiCPFEIWDXJ0fZIXVFW1tfalRrlSypVJLhzk2N4k/7sF6wAAAAAAAAAAMMIeOno0l6xenf93R3N/1uq5kyfnz88+O+dNndrUuQAAMJYohcDjKKXMSfKlJMsGObopyfOrqtpY/1bDV0p5WpL7qqo61IKs30hyyxCO3lFV1Z669wEAAAAAAAAAYGR98eGH8+pVq7L1yJGmzr1s4cLcvGxZJrW1NXUuAACMNY2RXgBGo1LKjCRfTHL2IEe35ZEbQrrr3+q4vSrJ2lLKW0opHXUElFLGl1JuT/LHGfz3le0ZWnEEAAAAAAAAAIAx6lB/fy5/4IFc+O1vN7UQsmD8+HzxKU/J7WecoRACAABRCoEfUkqZkuRzSc4b5OjOJC+sqmp1/VudsPlJPpBkYynl/aWUpzZrcCnleUm+muSyIT7ylqqqdjcrHwAAAAAAAACA0eVb+/fnGd/8Zj6weXNT57509ux8+xnPyAWzZjV1LgAAjGXjRnoBGIU+keRZQzj3v5M8q5QylLPNsLWqqr89wRkzk1ye5PJSyuokn03y5ST/VlXVw0MdUkqZl+SFSS5N8r+Gkf+hqqo+OYzzAAAAAAAAAACMEf1Vlds2bsw7urtztKqaNndqW1s+dMYZedXcuSmlNG0uAACcDJRC4Ic9eYjn3lzrFj/s/09yoqWQ77cyyRWPflWllI1JViVZn2Rbkl1JDj96dmaS05KcnuRHk5xxHHn/59EsAAAAAAAAAABOMj29vfmNVavyj7t3N3Xus6dNy/9l706j5LwLO9//nupVS0uyZO0ysiVbS0uyDSTgGchlLhNiBwyYxYEEAiQhNiFwCcwkcIdwD4SZwGWfxFkMgWAgEAImYBMwJLkkJySYzXGsbq22ZFmLte9S7/XcF7Yw4EWtrkdSL5/POX10VPU83/rXO/VR/U59euXKXDJpUqVdAAAYL4xCgCQpkjzp4Z+z4fNJfrUsy8Gz1AcAAAAAAAAA4Dz57J49ef2mTTkyNFRZs7ko8q6LL85bn/SkNPl2EAAAeFxGIcDZNJTk98uyfO/5PggAAAAAAAAAANU6PDCQ12/enM/t3Vtpd9mkSfmrlSvzM9OmVdoFAIDxyCgEOFu+n+SGsizvPt8HAQAAAAAAAACgWnceOZKXr1uXbX19lXZ/a8GCvH/p0kxpaqq0CwAA45VRCIx//55kS5Il5+j17kryh0m+VJZleY5eEwAAAAAAAACAc6BelvnA9u15+9atGazwoyFzWlryiRUr8rxZsyprAgDARGAUAuNcWZa3JLmlKIqLkvyfSZ6V5GeSrEzSUtHL3Jvkq0k+U5blDytqAgAAAAAAAAAwiuzt78+rN2zIHQcPVtp9waxZ+djy5ZnT2lppFwAAJgKjEPgpZVlefL7PcDaUZbk9yace/klRFK1JVie5PMklSS56+GdhkmlJJiWZnKQtSX+S3iRHkjyYZEeSDUnWJvlOWZYPnMv3AgAAAAAAAADAufWtQ4fyivXr82B/f2XNybVaPnLppXnt/PkpiqKyLgAATCRGITBBlWXZn+Suh38AAAAAAAAAAOBRhsoyf3D//Xn3tm0pK+w+raMjn1m5MpdNnlxhFQAAJh6jEAAAAAAAAAAAAB5lZ19fXrFuXf75yJHKmk1Jfn/x4rx98eK01GqVdQEAYKIyCgEAAAAAAAAAAOAnfO3Agbx6w4bsHxiorLm0vT2fXrky/2n69MqaAAAw0RmFAAAAAAAAAAAAkCTpr9fz9q1b84Ht2yvtvnb+/Hx46dJMbfaRNQAAqJJ/YQMAAAAAAAAAAJCtPT15+bp1+d6xY5U1ZzU35y+WL891s2dX1gQAAB5hFAIAAAAAAAAAADDBfXHv3rx248YcGRqqrHnNzJn5xPLlmd/WVlkTAAD4SUYhAAAAAAAAAAAAE1Tv0FDect99+bNduyprthRF3rdkSd60aFGKoqisCwAAPJpRCAAAAAAAAAAAwAS04cSJvGzdutxz4kRlzSXt7fl8Z2d+Ztq0ypoAAMDjMwoBAAAAAAAAAACYYD61e3dev2lTTtTrlTVfNnt2bl6+PNObfSwNAADOFf/6BgAAAAAAAAAAmCCODw7mtzdvzqf27Kms2V6r5Y8vvTS/MX9+iqKorAsAAJyeUQgAAAAAAAAAAMAEcM/x4/ml7u5s7OmprNk5eXI+39mZ1VOnVtYEAACGzygEAAAAAAAAAABgHCvLMn++a1fefO+96SvLyrq/Pm9e/uiyyzKlqamyJgAAcGaMQgAAAAAAAAAAAMapwwMDee3Gjbl1//7KmlObmnLzsmX5lblzK2sCAAAjYxQCAAAAAAAAAAAwDn3v6NG8bN263N/bW1nzyVOn5vOdnbls8uTKmgAAwMgZhQAAAAAAAAAAAIwj9bLMh3fsyNu2bMlgWVbWfePChXn/0qVpq9UqawIAAI0xCgEAAAAAAAAAABgn9vf359UbNuRrBw9W1pzR3Jy/XL48182eXVkTAACohlEIAAAAAAAAAADAOPDPhw/nV9aty67+/sqa/2natHyuszOL29srawIAANUxCgEAAAAAAAAAABjDhsoy/2vbtrzr/vtTr7D7tic9KX9w8cVpqdUqrAIAAFUyCgEAAAAAAAAAABijdvX15ZXr1+dbhw9X1pzd0pJPr1yZq2fOrKwJAACcHUYhAAAAAAAAAAAAY9AdBw7kVRs2ZN/AQGXNZ8+Ykc+sXJn5bW2VNQEAgLPHKAQAAAAAAAAAAGAMGajX8/tbt+Z927dX1qwleefFF+d/LF6cpqKorAsAAJxdRiEAAAAAAAAAAABjxP09Pfnl9etz59GjlTUXtrbms52d+T9mzKisCQAAnBtGIQAAAAAAAAAAAGPA3+7bl1/fuDGHBwcraz5v5sx8csWKXNjaWlkTAAA4d4xCAAAAAAAAAAAARrH+ej2/d999+d87d1bWbCmKvHfJkrx50aIURVFZFwAAOLeMQgAAAAAAAAAAAEapnX19+aXu7vzb0aOVNS9pb89fd3bmadOmVdYEAADOD6MQAAAAAAAAAACAUehbhw7l5evWZe/AQGXN62fPzseWL8/0Zh8dAwCA8cC/7AEAAAAAAAAAAEaRsizz/u3b839v2ZJ6Rc22osj/vuyy3DB/foqiqKgKAACcb0YhAAAAAAAAAAAAo8SRwcG8ZsOGfHn//sqaKyZPzuc7O3P51KmVNQEAgNHBKAQAAAAAAAAAAGAUWHv8eF7S3Z3NPT2VNV8zb15uuuyyTGlqqqwJAACMHkYhAAAAAAAAAAAA59lf7dmT39y4MT31eiW9KbVa/mzZsvzqvHmV9AAAgNHJKAQAAAAAAAAAAOA86a/X85Z7782f7NpVWfOKKVPy+VWrsnzy5MqaAADA6GQUAgAAAAAAAAAAcB5s7+3N9d3d+e6xY5U1X79gQT64dGnam5oqawIAAKOXUQgAAAAAAAAAAMA59o+HDuXl69Zl/8BAJb3pTU35+IoVecns2ZX0AACAscEoBAAAAAAAAAAA4Bypl2Xe+8ADecfWralX1HzK1Kn54qpVuWTSpIqKAADAWGEUAgAAAAAAAAAAcA4cHhjIqzZsyO0HDlTWfO38+fnjSy9Ne1NTZU0AAGDsMAoBAAAAAAAAAAA4y+4+diwv6e7Olt7eSnptRZE/XbYsvz5/fiU9AABgbDIKAQAAAAAAAAAAOItu2b07r9u0Kb31eiW9S9rbc+uqVXlyR0clPQAAYOwyCgEAAAAAAAAAADgL+ur1vGnz5tz84IOVNZ87c2Y+s3JlLmhpqawJAACMXUYhAAAAAAAAAAAAFdvW25uXdnfnB8eOVdIrkrzr4ovz9sWLUyuKSpoAAMDYZxQCAAAAAAAAAABQoW8cPJhfWbcuBwcHK+nNam7OZzs78wszZ1bSAwAAxg+jEAAAAAAAAAAAgArUyzL/c9u2vPP++1NW1PzZjo58YdWqLG5vr6gIAACMJ0YhAAAAAAAAAAAADTo4MJBXrl+frx88WFnzdQsW5COXXpq2Wq2yJgAAML4YhQAAAAAAAAAAADTgrmPH8pLu7tzf21tJr71Wy83LluVV8+ZV0gMAAMYvoxAAAAAAAAAAAIAR+viDD+a3N21KX1lW0lva3p5bV6/OFVOnVtIDAADGN6MQAAAAAAAAAACAM9Q7NJQ3bN6cj+/eXVnzBbNm5ZYVKzKjpaWyJgAAML4ZhQAAAAAAAAAAAJyBrT09eWl3d+46frySXi3J/7zkkrz1SU9KrSgqaQIAABODUQgAAAAAAAAAAMAwfe3Agbxy/focGhyspDe7pSWf6+zMf73ggkp6AADAxGIUAgAAAAAAAAAAcBpDZZl33X9/3r1tW2XNq6ZNyxc6O7Oovb2yJgAAMLEYhQAAAAAAAAAAADyB/f39ecX69fnmoUOVNd+wcGE+uHRpWmu1ypoAAMDEYxQCAAAAAAAAAADwOL5/9Ghe2t2dB/r6KulNrtXy0eXL84q5cyvpAQAAE5tRCAAAAAAAAAAAwE8pyzIfe/DBvHHz5vSXZSXNZZMm5dZVq7J66tRKegAAAEYhAAAAAAAAAAAAP6ZnaCi/tWlTbtmzp7Lmiy+8MH+5YkWmNfvIFgAAUB2/YQAAAAAAAAAAADxse29vXtTVlR8eP15JrynJe5csyX+76KIURVFJEwAA4BSjEAAAAAAAAAAAgCTfPnw4L+nuzt6BgUp6c1pa8jerVuVZM2ZU0gMAAPhpRiEAAAAAAAAAAMCE99Fdu/KGzZszUJaV9J4xbVr+ZtWqLGhrq6QHAADwWIxCAAAAAAAAAACACau/Xs+b7r03f75rV2XN31m0KO9bsiQttVplTQAAgMdiFAIAAAAAAAAAAExIe/v789Lu7vzLkSOV9KbUavn4ihV52Zw5lfQAAABOxygEAAAAAAAAAACYcO46dizXdXVle19fJb0Vkyfn1lWr0jllSiU9AACA4TAKAQAAAAAAAAAAJpTP7dmT39i4MT31eiW962fPzseXL09Hs49jAQAA55bfQgAAAAAAAAAAgAlAkSnGAAAgAElEQVRhqCzzP7Zsyfu2b6+k11wUef+SJXnTokUpiqKSJgAAwJkwCgEAAAAAAAAAAMa9wwMD+eX163PHwYOV9Oa1tuYLnZ155owZlfQAAABGwigEAAAAAAAAAAAY19afOJEXdnVlc09PJb2fmz49f9PZmXltbZX0AAAARsooBAAAAAAAAAAAGLdu378/r1i/PseGhirp/daCBfnIpZemtVarpAcAANAIoxAAAAAAAAAAAGDcKcsy73nggfz+1q0pK+i1FEVuuuyy3LBgQQU1AACAahiFAAAAAAAAAAAA48qJoaH82oYN+cK+fZX05rS05NZVq/LMGTMq6QEAAFTFKAQAAAAAAAAAABg37u/pyQu7unLPiROV9J46dWr+dvXqXNTeXkkPAACgSkYhAAAAAAAAAADAuPBPhw7lpd3dOTA4WEnvFXPm5GPLl2dSU1MlPQAAgKoZhQAAAAAAAAAAAGNaWZa5aefOvPneezNUQa+W5P9dsiT/7aKLUhRFBUUAAICzwygEAAAAAAAAAAAYs/rq9bx+06Z8YvfuSnozmpvz152duXrmzEp6AAAAZ5NRCAAAAAAAAAAAMCY92NeXl3R35ztHj1bSWzl5cr6yenUumzy5kh4AAMDZZhQCAAAAAAAAAACMOd87ejQv6urKrv7+SnovmDUrn165MtOafaQKAAAYO/wGAwAAAAAAAAAAjCmf2r07N2zcmL6yrKT3jsWL886LL06tKCrpAQAAnCtGIQAAAAAAAAAAwJgwWK/nd7dsyUd27KikN6VWyy0rV+Yls2dX0gMAADjXjEIAAAAAAAAAAIBR78DAQF7W3Z1/PHy4kt7F7e35yurVuXzq1Ep6AAAA54NRCAAAAAAAAAAAMKp1HT+eF3Z1ZUtvbyW9Z8+Ykc93dubC1tZKegAAAOeLUQgAAAAAAAAAADBqfWnfvrxq/fqcqNcr6b1p4cJ8YOnSNNdqlfQAAADOJ6MQAAAAAAAAAABg1KmXZd51//35g23bKum1FkVuXrYsr5k/v5IeAADAaGAUAgAAAAAAAAAAjCrHBgfzq+vX5ysHDlTSm9/ami+tWpWrpk+vpAcAADBaGIUAAAAAAAAAAACjxr0nT+a6rq50nzxZSe/pHR350urVWdDWVkkPAABgNDEKAQAAAAAAAAAARoVvHjyYl61bl8ODg5X0XjNvXv7sssvS3tRUSQ8AAGC0MQoBAAAAAAAAAADOq7Is8+EdO/K7992XegW9piQfuvTSvHHhwhRFUUERAABgdDIKAQAAAAAAAAAAzpveoaHcsGlTPr1nTyW9mc3N+cKqVXn2BRdU0gMAABjNjEIAAAAAAAAAAIDzYk9/f17U1ZXvHD1aSW/NlCn58urVWTJpUiU9AACA0c4oBAAAAAAAAAAAOOe6jh/PtWvXZltfXyW9l1x4YT65YkWmNvtIFAAAMHH4DQgAAAAAAAAAADinvnbgQF6+bl2ODQ1V0nv3xRfn7YsXpyiKSnoAAABjhVEIAAAAAAAAAABwTpRlmT/euTNvvvfe1CvodTQ15TMrV+YFF15YQQ0AAGDsMQoBAAAAAAAAAADOusF6PW+699786a5dlfQunTQpX1m9Op1TplTSAwAAGIuMQgAAAAAAAAAAgLPq8MBAXrZuXb556FAlvV+44IL8dWdnLmhpqaQHAAAwVhmFAAAAAAAAAAAAZ82Wnp5cu3Zt1p88WUnvdy+6KO9ZsiRNRVFJDwAAYCwzCgEAAAAAAAAAAM6Kbx8+nOu6unJgcLDhVnutlr9YvjyvmDu3gpMBAACMD0YhAAAAAAAAAABA5T61e3d+c+PG9Jdlw61FbW358urVeWpHRwUnAwAAGD+MQgAAAAAAAAAAgMrUyzL/z9at+V8PPFBJ76pp0/Ll1aszt7W1kh4AAMB4YhQCAAAAAAAAAABU4uTQUF69YUO+uG9fJb1fnjMnn1i+PO1NTZX0AAAAxhujEAAAAAAAAAAAoGEP9vXlBV1d+cGxY5X03nXxxXnH4sUpiqKSHgAAwHhkFAIAAAAAAAAAADTk7mPH8vyuruzo62u41VYU+eSKFXn53LkVnAwAAGB8MwoBAAAAAAAAAABG7Lb9+/Mr69blRL3ecGtOS0u+snp1rpo+vYKTAQAAjH9GIQAAAAAAAAAAwBkryzIf3L49v7dlS8oKemumTMnta9ZkcXt7BTUAAICJwSgEAAAAAAAAAAA4I/31el6/aVM+vnt3Jb3nzZyZz3V2pqPZx5kAAADOhN+iAAAAAAAAAACAYTs4MJCXdHfnnw4frqT35kWL8v6lS9NUFJX0AAAAJhKjEAAAAAAAAAAAYFg2nTyZa9euzeaenoZbTUluuuyyvG7hwsYPBgAAMEEZhQAAAAAAAAAAAKf1rUOH8pLu7hwaHGy4Nb2pKV9ctSo/P3NmBScDAACYuIxCAAAAAAAAAACAJ/QXu3bltzZvzmBZNtxa2t6er65ZkxVTplRwMgAAgInNKAQAAAAAAAAAAHhMQ2WZt23Zkg9s315J7+emT8+XVq3Kha2tlfQAAAAmOqMQAAAAAAAAAADgUY4PDuYV69fntgMHKum9eu7c3Lx8edpqtUp6AAAAGIUAAAAAAAAAAAA/ZUdvb57f1ZW7jx+vpPeeSy7JW5/0pBRFUUkPAACAhxiFAAAAAAAAAAAAP/KDo0fzgq6uPNjf33BrUq2Wz6xcmRfPnl3ByQAAAPhpRiEAAAAAAAAAAECS5It79+ZVGzakp15vuLWgtTW3rVmTp3Z0VHAyAAAAHotRCAAAAAAAAAAATHBlWeY9DzyQt2/dWknvyVOn5vY1a7Kwra2SHgAAAI/NKAQAAAAAAAAAACawvno9v7lxYz69Z08lvesuvDCfWbkyU5qaKukBAADw+IxCAAAAAAAAAABggtrf358XdXfn20eOVNJ760UX5Q+XLEmtKCrpAQAA8MSMQgAAAAAAAAAAYAJad+JErl27Nlt7extutRRFbl62LL82f34FJwMAAGC4jEIAAAAAAAAAAGCC+ebBg7m+uztHh4Yabs1sbs6XVq/Os2bMqOBkAAAAnAmjEAAAAAAAAAAAmED+bOfOvHHz5jQ+B0mWTZqUr65Zk8smT66gBgAAwJkyCgEAAAAAAAAAgAmgXpb5vfvuywd37Kik9+wZM/LFVatyQUtLJT0AAADOnFEIAAAAAAAAAACMc71DQ3nVhg35wr59lfRumD8/N112WVpqtUp6AAAAjIxRCAAAAAAAAAAAjGMHBgbywrVr869HjzbcKpJ8cOnS/M6iRSmKovHDAQAA0BCjEAAAAAAAAAAAGKe29PTkF++5J5t6ehpuTanV8rnOzjz/wgsrOBkAAABVMAoBAAAAAAAAAIBx6HtHj+batWuzb2Cg4dZFbW25fc2aXDF1agUnAwAAoCpGIQAAAAAAAAAAMM7ctn9/Xr5uXXrq9YZbT+voyFdWr868trYKTgYAAECVjEIAAAAAAAAAAGAc+ZOdO/N/bd6cxucgyS/Nnp1PrliRSU1NFdQAAAComlEIAAAAAAAAAACMA/WyzFu3bMkHtm+vpPeOxYvzzosvTq0oKukBAABQPaMQAAAAAAAAAAAY43qHhvKqDRvyhX37Gm61FkU+sWJFXjF3bgUnAwAA4GwyCgEAAAAAAAAAgDHswMBAXrh2bf716NGGW7Oam/OVNWvyjOnTKzgZAAAAZ5tRCAAAAAAAAAAAjFFbenryi/fck009PQ23lrS35+uXX55lkydXcDIAAADOBaMQAAAAAAAAAAAYg7539GiuXbs2+wYGGm49vaMjt61ZkzmtrRWcDAAAgHPFKAQAAAAAAAAAAMaY2/bvz8vXrUtPvd5w67oLL8xfrVyZyU1NFZwMAACAc6l2vg8AAAAAAAAAAAAM35/s3JkXdXVVMgh548KF+eKqVQYhAAAAY5RvCgEAAAAAAAAAgDGgXpZ565Yt+cD27Q23iiQfXLo0v7NoUYqiaPxwAAAAnBdGIQAAAAAAAAAAMMr1Dg3l1Rs25G/27Wu41VYU+czKlXnpnDkVnAwAAIDzySgEAAAAAAAAAABGsQMDA7muqyvfPnKk4das5uZ8Zc2aPGP69ApOBgAAwPlmFAIAAAAAAAAAAKPUlp6ePPeee7Kxp6fh1pL29nz98suzbPLkCk4GAADAaGAUAgAAAAAAAAAAo9D3jx7NtWvXZu/AQMOtp3d05LY1azKntbWCkwEAADBaGIUAAAAAAAAAAMAoc9v+/Xn5unXpqdcbbr1w1qx8trMzk5uaKjgZAAAAo0ntfB8AAAAAAAAAAAB4xJ/s3JkXdXVVMgh548KFuXX1aoMQAACAcco3hQAAAAAAAAAAMGEN1cvct+941u44kk17juVIz0D6BuvpH6qntamWtuZapk9qybK5Hbl80fQsmT01TbXirJylXpZ525Ytef/27ZX0Prh0ad68aFGK4uycFwAAgPPPKAQAAAAAAAAAgAmjLMvcueVg/n7dntyz43C6dx1Nz8DQsO+f3NqUzvnTcvmiGXlO59xctWRmJaOL3qGhvHrDhvzNvn0Nt9qKIp9ZuTIvnTOn4RYAAACjm1EIAAAAAAAAAADj3pGegXzprh35zJ3bct++EyPunOwfyg+2HcoPth3KJ/51a5bOnpJXXrU4L37Kokyf1DKi5sGBgbywqyvfPnJkxOc6ZWZzc25bsybPmD694RYAAACjn1EIAAAAAAAAAADj1rYDJ/Ln/3xfvvzvu87oG0GG6759J/Ku29flfXdszHVPXpDXPWtpFs+aMuz7t/T05Ln33JONPT0Nn2VJe3u+fvnlWTZ5csMtAAAAxgajEAAAAAAAAAAAxp3BoXo+9i9b8+F/2JT+wfpZf72egaF87nvbc+tdO/OW5yzLb/7ckjTViie85/tHj+batWuzd2Cg4dd/WkdHbl+zJnNaWxtuAQAAMHYYhQAAAAAAAAAAMK7cu/dY/tsX7sl/bD98zl+7f7Ce9359Q+7o2p0PXH95Lp3T8ZjX3bZ/f3553bqcrDc+WHnhrFn5bGdnJjc1NdwCAABgbKmd7wMAAAAAAAAAAEAV6vUyN//zfXnuH337vAxCftzd2w/nuX/07dz8z/elXi9/4rk/3bkzL+rqqmQQ8oaFC3Pr6tUGIQAAABOUbwoBAAAAAAAAAGDMGxiq53e/8B/58t27zvdRfqR/sJ73fH1D1j94NO+//oo01Yq8bcuWvH/79kr6H1y6NG9etChFUVTSAwAAYOwxCgEAAAAAAAAAYEx65zvfmQULFuRVv/YbecNn78o/rN97vo/0mL58964c7hvI2i1/l7u2bUte85qGem1FkU+vXJnr58yp5oAAAACMWUYhAAAAAAAAAACMOe985zvzrne9K0nyqe/cnx1zn3F+D/QEhlqSv/rO5zJ480ceeXCEw5CZzc25bc2aPGP69GoOBwAAwJhWO98HAAAAAAAAAACAM/Hjg5Ak+ddPvifH7r7jPJ7o8Q1MKrLr0D/+5CDklluST37yjFtL2tvznac8xSAEAACAH/FNIQAAAAAAAAAAjBk/PQg55eA3bkqSdFx5zbk+0uPq76hl996/T/knH370k7fc8tCfw/zGkKd1dOT2NWsyp7W1ugMCAAAw5hmFAAAAAAAAAAAwJjzeIOSU0TQM6ZlZy94H/yH5o8cYhJwyzGHIC2fNymc7OzO5qam6AwIAADAu1M73AQAAAAAAAAAA4HRONwg55eA3bsqxu+84Byd6fCfmNWXv7n9IPvKh0198yy3JJz/5uE+/YeHC3Lp6tUEIAAAAj8k3hQAAAAAAAAAAMOotWLBg2Neez28MObq4OYfu/Wby4WEMQk6ZNesxH/7A0qV5y6JFKYqiotMBAAAw3hiFAAAAAAAAAAAw6t1www1JkhtvvHFY15/rYUiZ5PCylhzt/kbyoTMYhLzlLcnzn/8TD7UVRT69cmWunzOn2kMCAAAw7tTO9wEAAAAAAAAAAGA4brjhhlxz4zuGff3Bb9yUY3ffcRZP9JCySA6sbq1kEDKzuTn/cMUVBiEAAAAMi1EIAAAAAAAAAABjwpGegdw/+z9n5tVvGPY9Z3sYUq8l+57clhP/fkfDg5BL2tvzb095Sp45Y0bFpwQAAGC8aj7fBwAAAAAAAAAAgOH40l070jMwlI4rr0ny0OBjOE5dd+q+qgy1JHuf2p7+f/law4OQn+3oyFfXrMmc1tZKzwgAAMD4ZhQCAAAAAAAAAMCoV5ZlPn3nth/9/XwPQwbbi+z5mfYMfuvvGh6EXHg4+f+eeUWmNvsoDwAAAGemdr4PAAAAAAAAAAAAp3PnloPZsu/ETzzWceU1mXn1G4bdOPiNm3Ls7jsaPkv/1CK7r6pmEDJ120Am33kiXQ8cafhcAAAATDxGIQAAAAAAAAAAjHp/v27PYz5+rochvRfUsufpkzL0940PQqZv6s/M9f0p8vjvDwAAAJ6I75wEAAAAAAAAAGDUu2fH4cd9ruPKa5I8NPgYjlPXnbpvuE7Oacr+K9pSfu2rjQ1CyjIzu/vTsWPwRw890fsDAACAx2MUAgAAAAAAAADAqDZUL9O96+gTXnO2hyHHFjXn4KrW5KuNDUKKoTIX3t2XyfuGfuKy7l1HM1Qv01Qrht8GAABgwqud7wMAAAAAAAAAAMATuW/f8fQMDJ32uo4rr8nMq98w7O7Bb9yUY3ff8YTXlEkOL23JwdVtDQ9Cav1l5ny/91GDkCQ52T+ULfuOD78NAAAAMQoBAAAAAAAAAGCUW7vjyLCvrXIYUiY52NmaI5e1Jrff3tAgpKmnnrnf60n74frj3rJ25/DfJwAAACRJ8/k+AAAAAAAAAAAAPJFNe46d0fUdV16T5KHBx3Ccuu7UfUlS1pL9l7fl5LzmhgchLcfrmfOD3jT3lk9428YzfJ8AAABgFAIAAAAAAAAAwKh2pGfgjO9pZBhSb072PqU9fTObGh6EtB0ayuy7etM0jLdwdATvEwAAgInNKAQAAAAAAAAAgFGtb7A+ovtGMgypNycnbnxRBjpqDQ9CJu0dzIV396U2zOP3DYzsfQIAADBxGYUAAAAAAAAAADCq9Q+NfCxxpsOQw393U7K89aG/NDAImbJjILO6+1OUw0/0NfA+AQAAmJiMQgAAAAAAAAAAGNVam2oN3X+mw5AzGoMkjxqETLuvPzM2D6Q4s0raGnyfAAAATDxGIQAAAAAAAAAAjGptzY2PJc54GDJcPz4IKctcsL4/0x4YHFGqrcUoBAAAgDNjFAIAAAAAAAAAwKg2fVJLJZ3KhyE/Pgipl7nwP/oyZc/QiHPTKnqfAAAATBxGIQAAAAAAAAAAjGrL5nZU1qpsGPJjg5BisMycu3rTfrDeUHJ5he8TAACAicF3TgIAAAAAAAAAMKqtWTS90t7UK69J26vfNPLAjw1CmnrrmffdxgchSbJmYbXvEwAAgPHPKAQAAAAAAAAAgFFt6eypmdTSVEmrLJL9l7el7zXXPTTuOFM/NghpPlHP3O/2pvVY44OQya1NWTJ7asMdAAAAJhajEAAAAAAAAAAARrWmWpFVC6Y13Kk3JXuf2p6TC5obbrUeGcq87/akpadsuJUkqxZMS1OtqKQFAADAxNH4b7gAAAAAAAAAAHCWXb5oRn6w7dCI7x9qfWgQ0j/94W8cuf325EMfOvPQhz6U5uP1zL3w51MbGvFxHuXyRTOqiwEAADBh+KYQAAAAAAAAAABGved0zh3xvQOTiux++qTGByEPG/zoR3Lih3eM+P7H0sj7AwAAYOIyCgEAAAAAAAAAYNS7asnMLJk95Yzv6++oZfdVkzI45eGPyTQ4CDnl4DduyrG7qxmGLJ09JU+/ZGYlLQAAACYWoxAAAAAAAAAAAEa9oijyq1ctPqN7embWsvvp7am3FQ89UNEg5JSqhiG/etXiFEVRwYkAAACYaIxCAAAAAAAAAAAYE178lEWZ1NI0rGtPzGvK3p9pT9l8dgYhpzQ6DJnU0pQXP3VRhScCAABgIjEKAQAAAAAAAABgTJg+qSXXPXnBaa87+qTm7L+iLamNcBDylrc89DNMjQxDrnvygkxrbxnRvQAAAGAUAgAAAAAAAADAmPG6Zy1Na/Njf+SlTHLospYc6mxLigYGIc9/fmpXX5tp171x2LeNZBjS2lzL65619IzuAQAAgB9nFAIAAAAAAAAAwJixeNaUvOU5yx71eFkkB1a35ujS1kceHOEgpOlkPfPu7MkFy6/OzKvfMOzbz3QY8pbnLMviWVOGfz4AAAD4KUYhAAAAAAAAAACMKa995iW54qIZP/p7WUv2XdGWE4taHrlohIOQlqNDmffd3rScLJMkHVdec1aGIVdeNCO/+XNLhn8+AAAAeAxGIQAAAAAAAAAAjCnNTbV88PrL09pcS70p2fvU9vTMa37kghEOQtoODGXe93rT3Ff+xNNVD0Nam2v5wPWXp6lWDP+MAAAA8BiMQgAAAAAAAAAAGHMundORG39+afb8bHt6ZzU98sQIByGTdw9m7g97Uxt87MuqHIb8919YlkvndAz/jAAAAPA4mk9/CTCRFUXRlmRZkkVJOpJMTnIyybEkO5JsLMuy//ydEAAAAAAAAICJaGdfXz4x+XD60/ggZOq2gcxc35/TfW9Hx5XXJHlo8DEcp647dV+SXHflgrz2mUuGf0YAAAB4AkYhMAJFUbQkWZFkdZJVD/+5KMmMh3+mJxlK0pPkUJJdSbYmuSfJ95P822geUhRFcVWS65L8Yh56f01PcPlQURTdSb6W5CtlWd55Do4IAAAAAAAAwAS2+eTJPOc//iPb+voeeXCEg5Dpm/ozfcvAaQchpzQyDPn5lXPz/uuvSK023FcDAACAJ2YUAsNQFEUtyZOTPDvJf03yzCRTTnNbc5K2PDQSuSTJM37suZNFUXwzyS1JvlqW5eN8+ey5VRTFy5L8XpKnnMFtTUkuf/jnbUVR/DDJ+8uy/PxZOCIAAAAAAAAAE9zdx47l6nvuyd6BgUceHMkg5NprM7OrLx07zvy/7EcyDFk5vyM3vfvdaWmqnfHrAQAAwOPxWyY8jqIomouiuLooio8n2ZfkB0nel+TqnH4QcjqT89A3cfxtkk1FUdxQFMUTfRvHWVUUxYqiKP4pyV/nzAYhj+WpSf66KIpvFUWxvOHDAQAAAAAAAMDDvn34cP7L3Xc3PAgpnnttZt81skHIKR1XXpOZV79h2Nf/6yffk0/95cdH/HoAAADwWIxC4KcURbGqKIqPJdmd5I4kv55k5ll8yUuS3Jzke0VRPPksvs5jKorixUm+n+RZFaf/S5IfFEXxooq7AAAAAAAAAExAXztwIL9wzz05MjT0yIMjGITUrr42c77fm8n7hk5//Wmc6TDkxhtvzEc/+tGGXxcAAABOMQqBR3t+ktcmmXWOX/cpSb5TFMWN5+oFi6L47SRfTDL1LL3E1CS3FkXx+rPUBwAAAAAAAGAC+NyePXlhV1d66vVHHhzBIKTpOc/L3O/1pP1w/fTXD5NhCAAAAOeTUQiMLm1J/rwoij842y9UFMWrk/xxkuJsv1SSm4qieNVZfh0AAAAAAAAAxqE/27kzr1i/PoNl+ciDIxiEND/7eZl3Z29aj5env/4MGYYAAABwvjSf7wPAODCUpDvJ+iRbk+xPciJJex76tpH5SZ6ZZPkZNN9RFMXJsizfW/FZkyRFUfxsko9leIOQf0vy2Yf/vD/JsSQdSZYk+c9JfiXJVad7ySQfK4pifVmW3x/hsQEAAAAAAACYQMqyzB8+8EB+f+vWn3xiBIOQOb94XaZ950QGeqsfhJwy52efl6ddfEHuuPndw7r+xhtvTJLccMMNZ+1MAAAAjH9GITAyG5LcnuTrSb5bluXJ091QFMX8JDckeWMeGouczh8WRXFPWZZfa+ikjz7HtCSfT9Jymks3J/mtsiz/8TGeO5Tkhw///HFRFL+Q5E+TLH2CXmuSzxdFcWVZlkfP/OQAAAAAAAAATBT1ssx/v+++fHjHjp98YgSDkGe+8pW5ffXq1J6ZfOmHO/LpO7flvv+fvTsP87us7/3/+sxM9pAEQtgSCIFA9kygrUe7WNnEDa1W9Gir4sHtqKilq3XDrdrluNStLlXQulS0dcMNxNPa5fR4qpkJSdgTQhJCFgjZyTL37w/QX1XIdzKfz3dmMvN4XJeXf9x33vcbrwuviyHPfLbsbmzXM2dMygseOzvP+qVZmTL+SfnYubN+Gny0IgwBAACgLlEI9N/2JFcn+Uwp5UdH+otLKfckeWtVVX+V5H1JXtLil1RJPlFV1cJSyvYjfe8w3pZkTos7NyR5dinlgf4MLKV8t6qqX07yD0nOO8zVOUmuSnJlf+YCAAAAAAAAMPoc7OvLS2+9NVdv2vSzBwMIQp7yohfl2kWLMrGzMxmTXPZrc/KiXz09/7Hmvly/6t70rt+emzbsyN4Dh/o9duLYziw6ZUqWzpqWixaemP8257hUVfXT858EHsIQAAAABoMoBFq7PclfJvm7/nwRpJVSyu4kL62q6gdJPpmk8zDXT07yx0leX/fdJKmqamGSV7W49u9JnnGkf62llO1VVV2S5MYkjznM1Suqqvp4KWX1kcwHAAAAAAAAYOTbd+hQnrd6db6ydesvHm7b1v9BV16Z519+ea6ePz9jOjp+5qiqqjz2jOl57BnTkySH+kru3LIrKzY8kFvu3Zkdew/kwQN9efBQX8Z1dmTcmI5MmTAm8048JktmTs0ZMyans6N6pFd/6kjDkI0bN/b/rw0AAAD+C1EIPLpb89BXNb5QSun/HwnST6WUT1dVNSnJh1tcvaKqqneVUnY08Oxbcvi/7+9L8tyBxi+llN1VVT0nyfIk0x7lWleSNyd53kDeAAAAAAAAAGBk2nnwYH7rppty4/btj3zhssse+u9rrjn8oCuvzCtf/vJ84Kyz0lEdPt5Iks6OKmedeEzOOqm8VNMAACAASURBVPGYI1u4hf6GIW95y1ty1VVXNfo2AAAAo0dH6ysw6tyb5JVJFpVSPtuOIOQnSikfSfLpFtcmJXlO3beqqjojyW+3uPbGUsrddd4ppdyVh+KTw7m0qqo5dd4BAAAAAAAAYOTYun9/LujpefQg5Ccuuyx50Yse/fzKK/PGV786H+xnENJuL3vZy/LRj370Uc8FIQAAANQlCoGfU0r5VCnlI6WUg4P05OuTtPoyx2818M6rknQe5vy2JB9r4J3koa+f3HmY8848FN4AAAAAAAAAMMqt37cvj1++PD/cubN/v+DRwpArr8x7X/e6vH3OnFTDIAj5iUcLQwQhAAAANEEUAkOslLIxyedbXPuNqqoG/PdrVVWdSZ7X4tp7m/oqysNBzftbXHt+nb8mAAAAAAAAAI5+t+3Zk1/78Y+zek+rP0vx5/xcGFJdeWWu/sM/zOtOPbXZBRvy82GIIAQAAICmdA31AkCS5BtJLj/M+ZQks5OsGeD885OcfJjzfUn+boCzH801Sf4iybhHOT8lyROS3NjwuwAAAAAAAAAcBZbv3JmLe3uz+cCBgQ247LIkSdfxx+dLf/Inecbxxze3XBu87GUvS5Js3LhREAIAAEBjRCEwPPxzP+6ckYFHIZe0OL+ulNLP7/D2Tynlgaqqvp3kGYe5dklEIQAAAAAAAACjzg+2b8/TVqzIjkOHas2ZfPnl+drixTnv2GMb2qy9fhKGAAAAQFM6hnoBICml3Jdkf4tr02o8cWGL8+tqzK4z96I2vQsAAAAAAADAMHXdtm15Ym9v7SBkeldXvt/dfdQEIQAAANAOohAYPra2OJ8wkKFVVZ2cZEGLazcMZHY/XN/ifFFVVSe16W0AAAAAAAAAhpnP3Xtvfuumm7Kvr6/WnJljx+YH55yTX54ypaHNAAAA4OgkCoHhY2KL830DnPuYFud3l1LuHuDswyqlrE1yT4trv9KOtwEAAAAAAAAYXj60YUN+d/XqHCyl1pyzJkzIv557bhZMmtTQZgAAAHD0EoXAMFBV1TFJpra4dv8Ax5/b4vxHA5zbX/+vxfk5bX4fAAAAAAAAgCFUSsk71q7Nq2+7LfVykGTZ5Mn5l3POyezx4xvZDQAAAI52ohAYHpYlqVrcuaPG7MPpHeDc/uppcS4KAQAAAAAAABih+krJlXfckTetXVt71m9MnZr/vWxZThg7tv5iAAAAMEJ0DfUCQJLkqS3OdyRZN8DZZ7c4v22Ac/urVcxyVpvfBwAAAAAAAGAIHOzry0tuuSXX3Htv7VlPPe64XLtoUSZ0djawGQAAAIwcohAYYlVVdSR5Totr/1JK6RvgE7NbnN8+wLn91Wr+nDa/DwAAAAAAAMAg23foUP77qlX56rZttWc9/4QTcvX8+RnT0dHAZgAAADCy+KdlGHrPSOsw4msDGVxV1UlJJrS4tnEgs4/AhhbnE6uqOqHNOwAAAAAAAAAwSHYcPJinrFjRSBDy6pkz85kFCwQhAAAA8Cj8EzMMoaqqOpO8rcW1/UmuHeATp/TjzqYBzu6v/szvz54AAAAAAAAADHNb9+/PBT09+f727bVnvXn27Pz13LnpqKoGNgMAAICRqWuoF4BR7uVJFre4c00p5b4Bzp/e4nxHKeXBAc7ul1LK3qqqdiWZfJhrrfYEAAAAAAAAYJi7e9++PLG3Nzfv2VN71vvmzs1rZ81qYCsAAAAY2UQhMESqqpqd5N0trh1I8uc1njmuxfmOGrOPxI4cPgpptScAAAAAAAAAw9ite/bkop6erHuw3p9L2Jnkk/Pn54UnndTMYgAAADDCiUJgCFRV1ZHk6iTHtLj6vlLKHTWeOrbF+WBGIacc5nzYRSFVVb0qySsH4akzB+ENAAAAAAAAgLb50c6deVJvb7YcOFBrzriqyhcXLcrTjz++oc0AAABg5BOFwNB4a5IntLhzd5K313xnfIvz+t/s7Z/dLc5b7TkUZiRZONRLAAAAAAAAAAxn/7x9ey5ZsSI7Dh2qNeeYzs58bfHiPOHYVn/2IQAAAPBfiUJgkFVV9ZQkf9riWklyeSllZ83nxrY4P1hzfn+1eqfVngAAAAAAAAAMM9dt25Znr1yZfX19teYcP2ZMvr10aX7pmGMa2gwAAABGD1EIDKKqqhYm+XySjhZXP1hKub6BJ0UhAAAAAAAAADTu2s2b8/zVq3OwlFpzZo0bl+uXLs38SZMa2gwAAABGF1EIDJKqqmYk+XqSKS2u/jDJHzT0bKv4pN73e/uv1Tudg7IFAAAAAAAAALV96p578pJbbkm974MkZ0+YkOu7u3Pa+PGN7AUAAACjkSgEBkFVVZPyUBByRour25JcWkrZ39DTrb7QMVj/H9DqnQODsgUAAAAAAAAAtXxw/fpccfvtteecM3lyvr10aU4YO7aBrQAAAGD0EoVAm1VVNTbJl5P8txZX9yZ5einlrgafbxWXDNb/B4xpcd5UBNOkLUlWDcI7ZyYZNwjvAAAAAAAAANTyrrvuyp+uWVN7zuOnTs3XlizJ1C6/bQUAAADq8k/X0EZVVXUk+UySi1tcPZDk2aWUf2t4hVZf4BisP3LlqItCSikfSvKhdr9TVdXKJAvb/Q4AAAAAAADAQJVS8oY1a/Kudetqz3ra9On54sKFmdDZ2cBmAAAAgCgE2qSqqirJx5I8p8XVviQvLKV8sw1r7Gpxfkwb3nwkU1qct9oTAAAAAAAAgCHQV0ped/vt+cCGDbVn/e6JJ+aT8+ZlTEdHA5sBAAAAiSgE2uk9SS7vx71XlFK+0KYd7mtxPlhRSKt3Wu0JAAAAAAAAwCA7VEpecsstuXrTptqzrpg5M++bOzcdVdXAZgAAAMBPiEKgDaqqekeS1/Xj6u+XUj7exlW2tTif1sa3/6upLc5b7QkAAAAAAADAINrf15ffXb06127ZUnvWVaefnjfPnp1KEAIAAACNE4VAw6qq+uMkb+jH1beUUt7T5nW2tjgfV1XVtFLK9nYtUFXV9CRjW1wThQAAAAAAAAAME3sPHcqlK1fmuvvuqz3r/XPn5jWzZjWwFQAAAPBIRCHQoKqqXpPk3f24+pellLe1e58k6/px58QkbYtCHp7fSn/2BAAAAAAAAKDNdh08mKffdFO+v73ev0buSPKJefPy4pNPbmYxAAAA4BF1DPUCMFJUVfXSJO/rx9UPlVL+qN37JEkpZVdaf4VjdpvXaDV/cylld5t3AAAAAAAAAKCF+w8cyEW9vbWDkK6qyucXLhSEAAAAwCAQhUADqqp6QZK/SVK1uPrJJFe0f6OfsabF+Vltfr/V/Fb7AQAAAAAAANBmm/fvz3nLl+f/7NhRa864qspXFi/Oc044oaHNAAAAgMMRhUBNVVVdmuRTaf330+eTvLSUUtq/1c9Y2eJ8XpvfP7vFeav9AAAAAAAAAGij9fv25TeXL0/P7t215kzq6Mg3ly7NU6dPb2gzAAAAoBVRCNRQVdXTk3w2SWeLq19J8sJSSl/7t/oFP2pxfk6b3z+3xfmP2/w+AAAAAAAAAI/izr178xvLl+fmPXtqzZna2Znru7tz/rHHNrQZAAAA0B9dQ70AHK2qqro4yReTjGlx9VtJnltKOdj+rR5RqyhkWVVVnaWUQ00/XFVVV5LuFtdEIQAAAAAAAABDYPXu3bmwpycb9++vNWfGmDH57tKlWXbMMQ1tBgAAAPSXL4XAAFRV9YQk/5hkXIurNyZ5Viml3k/Q6vl/SfYd5nxykl9q09uPSTLxMOf7kvxnm94GAAAAAAAA4FH8eOfOPH758tpByMyxY/PPy5YJQgAAAGCIiELgCFVV9bgkX08yocXVf0ny9FLK4YKMtnv4/X9tce2iNj1/YYvzHwz1/z4AAAAAAAAAo82/P/BAzlu+PFsPHKg1Z8748fnBOedk/qRJDW0GAAAAHClRCByBqqrOTfKtPPR1jcP5YZKnllJ2t3+rfrm+xfmz2vTus1ucf7dN7wIAAAAAAADwCG68//5c1NOTBw4dqjVn/sSJ+cE552TOhFZ/niIAAADQTqIQ6KeqqhbnoYhhaourPUkuLqXsaP9W/falFufnVlU1r8kHq6palGRJi2tfbvJNAAAAAAAAAB7dN7ZuzVN6e7O7r6/WnGWTJ+efly3LzHHjGtoMAAAAGChRCPRDVVVnJ7khyfQWV1cluaiUcn/7t+q/UsodSf5Pi2tXNPzsa1qc/2spZU3DbwIAAAAAAADwCP5+8+Y8c+XKPFhKrTmPmzIl3+/uzoyxYxvaDAAAAKhDFAItVFV1epLvJTmxxdXbklxYStnS7p0G6JMtzl9cVdXJTTxUVdWsJC9sce3qJt4CAAAAAAAA4PA+ec89ed6qVTlYMwg5f9q0fHfp0kwbM6ahzQAAAIC6RCFwGFVVnZKHgpBZLa6uTXJBKeWeti81cJ9Jsvkw5xOTvLuht/48yfjDnN/78D4AAAAAAAAAtNFfr1+fy2+5JfVykORp06fnuiVLMrmrq5G9AAAAgGaIQuBRVFU1I8kNSc5ocXV9kvNLKXe3f6uBK6XsS/L+FtdeWFXVM+u8U1XVpUme3+La+0opD9Z5BwAAAAAAAIDD+7O77sprb7+99pznzJiRf1i0KOM7OxvYCgAAAGiSKAQeQVVV05J8N8mCFlc35aEvhKxp/1aNeF+SdS3uXFNV1WMGMryqqscm+WSLa+vSOk4BAAAAAAAAYIBKKXn9nXfmDWvq/6vs/3HSSfncwoUZ0+G3mAAAAMBw5J/Y4edUVTU5yTeTLGtxdWuSC0spt7Z/q2aUUvYk+f0W145J8t2qqp52JLOrqnpGku8kmdzi6pWllL1HMhsAAAAAAACA/ukrJVfcdlveva7VnxfY2mtmzszH581LZ1U1sBkAAADQDl1DvQAMQ59P8rh+3Pv7JI+rqqo/d5twTynlurpDSilfqqrqc0mef5hrU5N8raqqzyd5eynl5ke7WFXVwiRvTvLcfjz/2VLKl49oYQAAAAAAAAD65WBfX1566625etOm2rP+9LTT8o45c1IJQgAAAGBYE4XAL1rSz3uvausWv+ifktSOQh728iTnJpl/mDtVHgpHnl9V1Y+T/FuSNUl25aGvicxJ8mtJuvv55s1JXjHQhQEAAAAAAAB4dPv7+vI7q1fnS1u21J71rjlz8iezZzewFQAAANBuohAYhUopu6qqujjJD5Kc1o9fcs7D/xmodUkuLqXsqjEDAAAAAAAAgEew99ChPHvlynzzvvtqz/rA3Ll59axZDWwFAAAADIaOoV4AGBqllHVJLkhyR5ufuj3J+Q+/BwAAAAAAAECDdh48mKesWFE7COlI8ql58wQhAAAAcJQRhcAoVkq5PcmvJPlOm574dpLHlFLaHZ4AAAAAAAAAjDr3HziQi3p68r+3b681p6uq8oWFC3PZySc3tBkAAAAwWEQhMMqVUu4vpTwpyWVJNjc0dnOSF5VSnlxKub+hmQAAAAAAAAA87N79+/OE5cvzHzt31pozvqMjX128OJeecEJDmwEAAACDSRQCJElKKdckOSPJq5KsHuCYVQ//+jmllE83tRsAAAAAAAAA/7/1+/bl8T/+cXp37641Z1JHR765ZEmeMn16Q5sBAAAAg61rqBeA4aaUcvpQ7zBUSim7k3w4yYerqjo7yZOSnJtkUZKZSY5JMjHJniQ7k6zPQyHIj5J8q5Ry21DsDQAAAAAAADBa3LF3by7s6cnafftqzZnW1ZVvLVmSx06d2tBmAAAAwFAQhQCPqJRya5Jbh3oPAAAAAAAAAB6yavfuXNjTk3v27681Z8aYMbm+uzvdkyc3tBkAAAAwVEQhAAAAAAAAAADD3I937swTe3uz9cCBWnNmjh2bG7q7M3/SpIY2AwAAAIaSKAQAAAAAAAAAYBj7jx078qTe3mw/eLDWnDPGj88N3d2ZM2FCQ5sBAAAAQ00UAgAAAAAAAAAwTP3L9u15yooV2XnoUK05CyZOzPXd3Zk5blxDmwEAAADDgSgEAAAAAAAAAGAYuvH++3PJihXZ09dXa845kyfnO0uXZsbYsQ1tBgAAAAwXohAAAAAAAAAAgGHm29u25ZkrV2ZfzSDkcVOm5JtLlmTamDENbQYAAAAMJ6IQAAAAAAAAAIBh5Ktbt+bSlStzoJRac86fNi1fXbw4k7v89hAAAAAYqTqGegEAAAAAAAAAAB7yxc2b8+wGgpBLpk/PdUuWCEIAAABghBOFAAAAAAAAAAAMA5/ZtCnPW7UqB2sGIc+dMSNfXrQo4zs7G9oMAAAAGK5EIQAAAAAAAAAAQ+wTGzfmRTffnL6acy4/6aR8duHCjOnwW0IAAABgNPATAAAAAAAAAACAIfShDRvy0ltvTb3vgySvmTkzH5s3L51V1cheAAAAwPAnCgEAAAAAAAAAGCJ/tW5dXn3bbbXn/PGpp+Z9c+emQxACAAAAo4ooBAAAAAAAAABgCLxj7dr84Z131p7zltmz864zzkglCAEAAIBRp2uoFwAAAAAAAAAAGE1KKXnTmjV557p1tWe9a86c/Mns2Q1sBQAAAByNRCEAAAAAAAAAAIOklJI/uOOOvGf9+tqz3nvmmXndqac2sBUAAABwtBKFAAAAAAAAAAAMgr5ScsVtt+XDGzfWnvWRs87KK2bObGArAAAA4GgmCgEAAAAAAAAAaLNDpeTlt9ySv920qdacKsnfzpuXF598cjOLAQAAAEc1UQgAAAAAAAAAQBsd7OvLZTffnM9u3lxrTmeSzyxYkOedeGIziwEAAABHPVEIAAAAAAAAAECbHOjry/NXr86XtmypNWdMVeULCxfmWTNmNLQZAAAAMBKIQgAAAAAAAAAA2uDBvr48Z+XKfG3btlpzxlZVvrxoUZ52/PENbQYAAACMFKIQAAAAAAAAAICG7Tl0KM+66aZ85/77a82Z0NGRry5enIuOO66hzQAAAICRRBQCAAAAAAAAANCgXQcP5uk33ZTvb99ea86kjo5ct3RpfnPatIY2AwAAAEYaUQgAAAAAAAAAQEMeOHgwT+3tzb/u2FFrzpTOznxr6dL86tSpDW0GAAAAjESiEAAAAAAAAACABtx34ECe1NubH+7cWWvOsV1d+e7SpfnlKVMa2gwAAAAYqUQhAAAAAAAAAAA1bdm/P0/s7c3yXbtqzZkxZkyu7+5O9+TJDW0GAAAAjGSiEAAAAAAAAACAGjY9+GAu6OnJqj17as05eezY3NDdnYWTJjW0GQAAADDSiUIAAAAAAAAAAAZo/b59uaCnJ7fu3VtrzqnjxuV73d05a+LEhjYDAAAARgNRCAAAAAAAAADAAKzduzfn9/Rkzb59tebMGT8+N3Z35/QJExraDAAAABgtRCEAAAAAAAAAAEfotj17ckFPT+5+8MFac86aMCE3dndn1vjxDW0GAAAAjCaiEAAAAAAAAACAI7Bq9+5c2NOTe/bvrzVn4cSJuaG7OyePG9fQZgAAAMBoIwoBAAAAAAAAAOin3l27cmFPT7YcOFBrTvekSbm+uzszxo5taDMAAABgNBKFAAAAAAAAAAD0w3/u3Jkn9vTkvoMHa835lWOOybeXLs1xY8Y0tBkAAAAwWolCAAAAAAAAAABa+PcHHsiTenuz49ChWnN+dcqUfHPp0kzt8ls2AAAAgPr8hAEAAAAAAAAA4DD+afv2PLW3N7v7+mrNecK0afn64sWZLAgBAAAAGtIx1AsAAAAAAAAAAAxX1993X57cQBDyxGOPzXVLlghCAAAAgEb5SQMAAAAAAAAAwCO4btu2/PZNN+XBUmrNuWT69Fy7aFHGdfizOwEAAIBm+WkDAAAAAAAAAMDP+cctW/LMBoKQZ8+YkS8JQgAAAIA28RMHAAAAAAAAAID/4u83b86lK1fmQM0g5HdOOCGfX7AgYwUhAAAAQJv4qQMAAAAAAAAAwMM+e++9ef6qVTlUc87lJ52UaxYsSJcgBAAAAGgjP3kAAAAAAAAAAEhyzaZNecHq1emrOeeVp5ySj82bl86qamQvAAAAgEcjCgEAAAAAAAAARr2/veeevPjmm1Nqzrly1qx88Kyz0iEIAQAAAAaBKAQAAAAAAAAAGNX+ZsOGvOSWW2oHIW847bT81ZlnphKEAAAAAIOka6gXAAAAAAAAAAAYKh9cvz5X3H577TlvP/30vPH00+svBAAAAHAERCEAAAAAAAAAwKj03rvvzpV33FF7zl+ecUb+4LTTGtgIAAAA4MiIQgAAAAAAAACAUecv1q3LH995Z+05H5g7N6+eNauBjQAAAACOnCgEAAAAAAAAABhV3nnXXXnjmjW1ZlRJPnr22XnpKac0sxQAAADAAIhCAAAAAAAAAIBRoZSSt911V65au7bWnCrJ1fPn54UnndTIXgAAAAADJQoBAAAAAAAAAEa8UkretGZN3rluXa05HUk+s2BBnn/iic0sBgAAAFCDKAQAAAAAAAAAGNFKKfmTO+/MX9x9d605nUk+t3BhnnPCCc0sBgAAAFCTKAQAAAAAAAAAGLFKKfn9O+7Ie9evrzWnq6ryhYUL89szZjS0GQAAAEB9ohAAAAAAAAAAYEQqpeS1t9+eD2zYUGvOmKrKtYsW5RnHH9/QZgAAAADNEIUAAAAAAAAAACNOXyl51W235W82bqw1Z2xV5R8WL85Tp09vaDMAAACA5ohCAAAAAAAAAIARpa+UvPzWW/OJe+6pNWd8R0e+snhxLj7uuIY2AwAAAGiWKAQAAAAAAAAAGDEOlZLLb74519x7b605Ezo68vUlS3LBscc2tBkAAABA80QhAAAAAAAAAMCIcLCvL5fdfHM+u3lzrTmTOjryjSVL8gRBCAAAADDMiUIAAAAAAAAAgKPegb6+vGD16vz9li215kzu7My3lizJr0+b1tBmAAAAAO0jCgEAAAAAAAAAjmoH+vryvFWr8uWtW2vNmdLZmW8vXZrHTZ3a0GYAAAAA7SUKAQAAAAAAAACOWvv7+vLcVavylZpByLSurnxn6dI8ZsqUhjYDAAAAaD9RCAAAAAAAAABwVHqwry/PXrky39i2rdacY7u6ckN3d8495piGNgMAAAAYHKIQAAAAAAAAAOCos/fQoTxr5cp8+777as2Z3tWV7y1blu7JkxvaDAAAAGDwiEIAAAAAAAAAgKPKnkOH8oybbsoN999fa86MMWPyve7uLBGEAAAAAEcpUQgAAAAAAAAAcNTYfehQLlmxIt/fvr3WnBPHjMmNy5Zl4aRJDW0GAAAAMPhEIQAAAAAAAADAUWHnwYN56ooV+cEDD9Sac8rYsblx2bLMmzixoc0AAAAAhoYoBAAAAAAAAAAY9nYcPJgn9/bm33bsqDVn1rhx+X53d+YKQgAAAIARQBQCAAAAAAAAAAxr2w8cyMW9vfm/O3fWmnPauHH5/rJlOWPChIY2AwAAABhaohAAAAAAAAAAYNi678CBPLGnJ/+5a1etOXPGj8/3ly3L7PHjG9oMAAAAYOiJQgAAAAAAAACAYWnr/v25qLc3y2sGIXMnTMiN3d05VRACAAAAjDCiEAAAAAAAAABg2Nm8f38u7OnJit27a805e8KE3LhsWWaOG9fQZgAAAADDhygEAAAAAAAAABhWNj34YC7o6cmqPXtqzVkwcWJu7O7OSYIQAAAAYIQShQAAAAAAAAAAw8bGBx/M+cuX55a9e2vNWTxpUr7X3Z0Txo5taDMAAACA4UcUAgAAAAAAAAAMC+v37cv5PT25rWYQ0j1pUm7o7s7xghAAAABghBOFAAAAAAAAAABD7q59+3L+8uW5c9++WnPOnTw513d357gxYxraDAAAAGD4EoUAAAAAAAAAAENqzd69OW/58tz14IO15vzKMcfkO0uX5lhBCAAAADBKiEIAAAAAAAAAgCFzx8NByN01g5DHTZmSby1dmqldfisEAAAAMHr4SQgAAAAAAAAAMCRu37Mn5/X0ZH3NIOTXp07NN5csyTGCEAAAAGCU8dMQAAAAAAAAAGDQ3bZnT85bvjwb9u+vNecJ06bl64sXZ7IgBAAAABiF/EQEAAAAAAAAABhUtzwchNxTMwi5YNq0fG3Jkkzs7GxoMwAAAICjiygEAAAAAAAAABg0N+/enfN6erKpZhDyxGOPzVcWL84EQQgAAAAwiolCAAAAAAAAAIBBsXr37py3fHnuPXCg1pynHHdcvrxoUcYLQgAAAIBRThQCAAAAAAAAALTdqoeDkM01g5CnT5+eLy5alHEdHQ1tBgAAAHD08hMSAAAAAAAAAKCtbtq1K09oIAh51vHH51pBCAAAAMBP+SkJAAAAAAAAANA2K3btynk9PdlSMwi5dMaMfGHhwowVhAAAAAD8lJ+UAAAAAAAAAABt0bNrV85bvjxbawYhzzvhhHxuwYKMEYQAAAAA/Aw/LQEAAAAAAAAAGrd8586cv3x5th08WGvO75xwQj49f366BCEAAAAAv6BrqBcAAAAAAAAAAEaWH+3cmQt7enJ/zSDkBSeemE/Nn5/OqmpoMwAAAICRxR+jAQAAAAAAAAA05j937swFDQQhLxKEAAAAALTkSyEAAAAAAAAAQCN+uGNHLurpyQOHDtWa8+KTTsrH580ThAAAAAC04EshAAAAAAAAAEBt/7FjRy5sIAh5yckn5xOCEAAAAIB+EYUAAAAAAAAAALX8+wMP5Ik9PdlRMwh52ckn56Nnn50OQQgAAABAv4hCAAAAAAAAAIAB+7cHHsjFvb21g5BXnHJKPiIIAQAAADgiohAAAAAAAAAAYED+Zfv2XNzbm501g5BXnnJKPnzWWYIQAAAAgCPUNdQLAAAAAAAAAABHnx9s354n9/Zmd19frTlXzJyZ98+dm0oQAgAAAHDEfCkEAAAAAAAAADgi/9RQEPJaQQgAAABALb4UAgAAAAAAAAD02/fvvz9PW7Eie2oGIb83a1b+15lnCkIAAAAAavClEAAAAAAAAACgX753//15agNBP28iUAAAIABJREFUyB+ceqogBAAAAKABohAAAAAAAAAAoKUb7rsvT1uxIntrBiF/dOqp+YszzhCEAAAAADRAFAIAAAAAAAAAHNZ377svl9x0U/bVDEJef9ppebcgBAAAAKAxXUO9AAAAAAAAAAAwfH1727b81k035cFSas15w2mn5e1z5ghCAAAAABrkSyEAAAAAAAAAwCP65rZteUYDQcibZs8WhAAAAAC0gS+FAAAAAAAAAAC/4Btbt+a3V67M/ppByFWnn563nH56M0sBAAAA8DNEIQAAAAAAAADAz/j6w0HIgZpByFtPPz1vFoQAAAAAtI0oBAAAAAAAAAD4qa9u3ZpLGwhC3jFnTt4we3ZDWwEAAADwSEQhAAAAAAAAAECS5B+3bMlzVq3KwZpByJ/NmZPXC0IAAAAA2k4UAgAAAAAAAADky1u25L83EIT8+Rln5I9OO62hrQAAAAA4HFEIAAAAAAAAAIxy127enOetWpVDNef85Rln5A8EIQAAAACDRhQCAAAAAAAAAKPY32/enN9pIAh5z5ln5vdOPbWRnQAAAADoH1EIAAAAAAAAAIxSn7v33rxg9er01Zzzvrlz89pZsxrZCQAAAID+E4UAAAAAAAAAwCj0d5s25UU331w7CPnruXNzhSAEAAAAYEiIQgAAAAAAAABglPn0pk257OabU2rO+eBZZ+VVM2c2shMAAAAAR04UAgAAAAAAAACjyDWbNuXFDQQhHznrrLxCEAIAAAAwpEQhAAAAAAAAADBKfOqee3L5LbfUDkI+evbZedkppzSyEwAAAAAD1zHUCwAAAAAAAAAA7ffJBoKQKsnHBSEAAAAAw4YvhQAAAAAAAADACPfJe+7JSxoIQj4xb17+x8knN7UWAAAAADWJQgAAAAAAAABgBPvbh4OQOqokn5o/Py866aRmlgIAAACgEaIQAAAAAAAAABihPr5xY1526621ZlRJrpk/Py8QhAAAAAAMO6IQAAAAAAAAABiBPrZxY15eMwjpSPLpBQvyOyee2MxSAAAAADRKFAIAAAAAAAAAI8xHN27MKxoIQv5uwYI8TxACAAAAMGyJQgAAAAAAAABgBPmbDRvyP2+7rdaMziSfXbgwzz3hhGaWAgAAAKAtOoZ6AQAAAAAAAACgGR9pKAj5nCAEAAAA4KggCgEAAAAAAACAEeDDGzbklQ0EIZ9fuDDPEYQAAAAAHBVEIQAAAAAAAABwlPvQhg15VQNByBcWLsylghAAAACAo0bXUC8AAAAAAAAAAAzchzZsyKtrBiFdVZUvLFyY354xo6GtAAAAABgMohAAAAAAAAAAOEp9YP36vOb222vN6KqqfHHhwjxTEAIAAABw1OkY6gUAAAAAAAAAgCP314IQAAAAgFFPFAIAAAAAAAAAR5n3r1+f1zYQhFwrCAEAAAA4qnUN9QIAAAAAAAAAQP+97+6783t33FFrxpiqyrWLFuUZxx/f0FYAAAAADAVfCgEAAAAAAACAo8R7GwpCviQIAQAAABgRRCEAAAAAAAAAcBR4z91358oGgpAvL1qUpwtCAAAAAEYEUQgAAAAAAAAADHP/6+678/sNBSGXCEIAAAAARoyuoV4AAAAAAAAAAHh0f7VuXf7wzjtrzRj7cBDyNEEIAAAAwIgiCgEAAAAAAACAYeov163LHzUQhPzD4sV56vTpDW0FAAAAwHDRMdQLAAAAAAAAAAC/6M8bCkL+URACAAAAMGL5UggAAAAAAAAADDPvvuuuvH7Nmlozxj0chDxZEAIAAAAwYvlSCAAAAAAAAAAMI+9qKAj5iiAEAAAAYMTzpRAAAAAAAAAAGCb+7K678oYGgpCvLlmSi487rqGtAAAAABiufCkEAAAAAAAAAIaBdwpCAAAAADhCvhQCAAAAAAAAAEPsHWvX5k1r19aaMb6jI19dvDhPFIQAAAAAjBq+FAIAAAAAAAAAQ+jtDQUhXxOEAAAAAIw6ohAAAAAAAAAAGCJvW7s2b24gCPn64sW5SBACAAAAMOp0DfUCAAAAAAAAADAavXXt2lxVMwiZ0NGRry9ZkguOPbaZpQAAAAA4qohCAAAAAAAAAGCQXbVmTd561121Zkzo6Mg3lizJ+YIQAAAAgFFLFAIAAAAAAAAAg6SUkqvWrs3bBCEAAAAANEAUAgAAAAAAAACDoJSSt6xdm7c3EIRct2RJzhOEAAAAAIx6ohAAAAAAAAAAaLNSSt68dm3eUTMImfhwEPIEQQgAAAAAEYUAAAAAAAAAQFuVUvKmNWvyznXras2Z2NGRby5dmt+cNq2hzQAAAAA42olCAAAAAAAAAKBNSil545o1+TNBCAAAAABtIAoBAAAAAAAAgDYopeQNa9bkXTWDkEkPByGPF4QAAAAA8HNEIQAAAAAAAADQsFJK/nTNmry7gSDkW0uX5jcEIQAAAAA8AlEIAAAAAAAAADSolJLX33ln/vzuu2vNmdzZmW8tWZJfF4QAAP8fe/ceplddnwv/XjOZHAg5SIRgCAYSCJBAMmB3wSNqRbe27lIt7tZqtVYT2toTane73/1WbK+3taL0oK0QbbduW9yWraXFegqKFLulrUISSAIxCUZCMIlAAoGQTGZ+7x+TISFMkpl5nnnWHD6f61rXzKy1nt+612T+Wk/u5wsAAEehFAIAAAAAAAAATVJKye9u3pwPNaEQ8pUlS/LiGTOalAwAAACAsUgpBAAAAAAAAACaoJSS/7Z5c65RCAEAAACgRZRCAAAAAAAAAKBBpZT8zubN+XCDhZBpBwshL1IIAQAAAGAAlEIAAAAAAAAAoAGllLxv06Z8ZOvWhtaZ1t6ery5ZkhcqhAAAAAAwQEohAAAAAAAAADBEpZS8d9OmXKsQAgAAAEAN2uoOAAAAAAAAAACjUbMKIdPb2/M1hRAAAAAAhsCkEAAAAAAAAAAYpFJK3rNpU/60GYWQpUtz8fTpTUoGAAAAwHiiFAIAAAAAAAAAg1BKyVWbNuXPFEIAAAAAqJlSCAAAAAAAAAAMUCklv71xY/78wQcbWmfGwULIjyuEAAAAANAApRAAAAAAAAAAGIBmFkJWLl2a/6QQAgAAAECDlEIAAAAAAAAA4DhKKfmtjRvzFwohAAAAAIwgSiEAAAAAAAAAcAyllPzmxo35aIOFkJkTJmTlkiX5MYUQAAAAAJpEKQQAAAAAAAAAjqKUkt/YuDEfa0Ih5JalS/OCadOalAwAAAAAlEIAAAAAAAAAoF+llPz6976Xv9y2raF1njNhQlYqhAAAAAAwDJRCAAAAAAAAAOAIpZS8+3vfy181oRByy9KluUghBAAAAIBhoBQCAAAAAAAAAIcppeTXvve9fFwhBAAAAIARrq3uAAAAAAAAAAAwUvQohAAAAAAwipgUAgAAAAAAAAA5VAi5rsFCyEkHCyEXKoQAAAAAMMyUQgAAAAAAAAAY93pKya9u2JDrH3qooXVOmjAhX1+6NJ0KIQAAAAC0gFIIAAAAAAAAAONaTyn5lQ0bskIhBAAAAIBRRikEAAAAAAAAgHGrp5RcuWFDPtFgIWTWhAn5emdnlp54YpOSAQAAAMDxKYUAAAAAAAAAMC71lJLlGzbkkwohAAAAAIxSSiEAAAAAAAAAjDvNKoQ8t6MjX1+6NEsUQgAAAACogVIIAAAAAAAAAONKTylZdt99+esf/rChdZ7b0ZFvLF2aCxRCAAAAAKiJUggAAAAAAAAA40ZPKXnXffflbxRCAAAAABgDlEIAAAAAAAAAGBd6Ssk777sv/7PBQsjJBwsh5yuEAAAAAFCztroDAAAAAAAAAMBwUwgBAAAAYCxSCgEAAAAAAABgTOsuJb+sEAIAAADAGDSh7gAAAAAAAAAAMFy6S8kv33tvPr19e0PrnNLRkW90dmbx1KlNSgYAAAAAjVMKAQAAAAAAAGBM6i4l77j33vyvJhRCbu3szCKFEAAAAABGmLa6AwAAAAAAAABAs3WXkl9qQiFktkIIAAAAACOYSSEAAAAAAAAAjCl9hZDPNKkQcp5CCAAAAAAjlEkhAAAAAAAAAAzI1VdfnRUrVtQd45i6S8nb+wohN9+cfOpTQ1pHIQQAAACA0cCkEAAAAAAAAACO6+qrr84HPvCBp39etmxZjWn6111K3rZ+ff5ux47eQsi11x46+Pa3D3idUydOzK1Ll+ZchRAAAAAARjilEAAAAAAAAACO6chCyPLly5OMrGLIgZ6evO3ee3NDf4WQT3+69+sAiiEKIQAAAACMJkohAAAAAAAAAIPQ3VOyaeee3L11dzZsfzy793Zl34Ge7O/uycT2tkya0JYZUzqycPa0LJk7I/NPPjHtbVXdsYfsyEJIn5FUDDnQ05O33ntv/nd/hZA+AyiGPG/ixNza2ZlzTjhheIICAAAAQJMphUCDqqqqkixI8p+S/NjBrxcmOfEYL9tSSjlj+NM9U1VVpdXXPMJlpZRbas4AAAAAAAAwKKWU3LH5kaxctz1rtu7K2m2PZW9X94Bff8LE9ix63vQsmTszly2anUvmn5Tet5hGvqMVQvqMhGLIgZ6evGX9+nxu586jF0L6HKMYohACAAAAwGikFAKDVFXV83Oo/PFjB7eZtYYCAAAAAACg6Xbv7coX7tyav71jSzbtfGLI6zy5vzvf2fJovrPl0fzNv96fBSdPzVsumZc3XDQ3M6Z0NDFxcx2vENKnzmJIV09PfmH9+tw4kEJIn36KIQohAAAAAIxWSiFwDFVVzU5v+ePwKSAn1xoKAAAAAACAYbXl4Sdy3W2bctNd2wY1EWSgNu18Ih+4eV0+9JX7cvmFc3LlpQsyb9bUpl+nUXPmzBnwuXUUQ7p6evLm9evzfwZTCOkza9bT3845WAhZqBACAAAAwCikFALH9tUkS+sOAQAAAAAAwPA70N2TT9x+f/70lg3Zf6Bn2K+3t6s7n/33B/L5Ox/MVZctzLteOj/tbdWwX3eg+goefYWP42llMaSrpyc/v25dPv+jHw2+EHLVVcnrX5+ktxDyzc7OnK0QAgAAAMAopRQyilVVNTXJC5M8L8lzk0xKsjvJ5iTfLaX8qMZ4AAAAAAAAMGps3PF43nPjmqx+YFfLr73/QE8++OV785V7fpgPX7EkZ50yreUZjmYkFkP29/Tk59atyz80WAg57eCEEIUQAAAAAEYzpZBRqKqqn0vyq0kuztH/DUtVVf+R5PoknymlNH+uNQAAAAAAAIxyPT0ln7h9cz6ysjXTQY5l1QO78rq/+Fbec3BqSNsImRoykooh+3t68l/XrctNTSiEfLOzM2cphAAAAAAwyimFNFFVVZOTtB3l8N5SSmlw/QuS/F2SxX27jnV6eksjP57kd6qq+uVSyrcbuT5j3s1J/mmYr7FumNcHAAAAAAAYsK7unrzvxtW5adW2uqM8bf+Bnvzxl+/N+oceyzVXLE1H+9HefmytkVAM2d/TkyvWrs0/PfywQggAAAAAHKQU0iRVVZ2a5IH0XwrZm+T0JI82sP5rk/zvJCfmUBnkeCWT6uB2bpJvVlX1a6WUTw41AwNSkmxM8lCSl9WcZbDu9PcBAAAAAACMF091defdN9yZW9bvqDtKv25atS179h3Ix958USZ3tNcdJ0m9xZB9BwshNzdYCDl90qTc2tmZBVOmNJwJAAAAAEaCkfGxMmPDzyZpz6EiRt+WJH9bSmmkEPLCJP+QZNrBNUsOFUKOvN7h1y2HbR1Jrq+q6p1DzUG/vp/kxiT/LclPJHlOKWVhkvfXGQoAAAAAAICj6+ruGdGFkD63rN+Rd99wV7q6e+qO8rRly5bl+uuvH/D5y5cvz4oVKxq65r6envxsEwohz580Kd9UCAEAAABgjDEppHnedPDr4dM7+gocg3gq+UxVVZ2Y5IYkE/PMIshxX3rY933FkCrJX1ZVdU8p5Y6hZhrHHkzyH0m+07eVUh6uNxIAAAAAAACD0dNT8r4bV4/4QkifW9Zvz/tuXJ1r39SZtraBvE04/Fo5MeSp7u68ce3afOmRR5pSCDlTIQQAAACAMUYppAmqqpqZ5MXpvxByeyllQwPL//ck83L0QkjJ0VWHfT18Ysh1VVVdVEoZOR8pNHJ9NMn2JP9RStledxgAAAAAAAAa84nbN+emVdvqjjEoN63alkVzpmfZyxbUHeVprSiGPNXdnTesXZsvN1gImTdpUm5VCAEAAABgjGqrO8AYcXGeWcA43D8NddGqqp6b5Ddz/EJI1c92+PEjX3tBkncPNdd4Ukr561LKFxVCAAAAAAAARr+NOx7PR1Y28nlu9fnw1zZk447H647xDMuWLcv1118/4POXL1+eFStWDOjcp7q78zNNKIScMXmyCSEAAAAAjGlKIc1x8TGODbkUkt7iRt/TycNLHX1TP6okjyb5qyS/kOQ1B79em2RnDk0IyRGvrZK8v6qqSQ1kAwAAAAAAgFHjQHdP3nPjmuw/0FN3lCHZf6An771xTbp7jnz7r17DUQzZ292dn77nnnylwULImQcLIWcohAAAAAAwhimFNMfhpZDDn8JuLKVsGsqCVVVVSd6Ro5c6kuSLSRaWUt5dSvlsKWXlwa/vTXJWks/lmcWQw4slM5NcPpRsAAAAAAAAMNp88lv3Z/UDu+qO0ZBVD+zKJ27fXHeMZ2lmMaSvEPK1Rx9tSiFk3uTJA389AAAAAIxCSiHNsTDPLG/0FTHubGDNlyWZe9h6yaFCSElye5KfKaU80t+LSyl7Sik/n+Tm9D8xJEne0kA+AAAAAAAAGBW2PPxErl25oe4YTXHtyg3Z8vATdcd4lmYUQ57s7s5/ueeerGywEDJ/8uTc1tmZ5yuEAAAAADAOKIU06OBEj9OPcnhNA0u/8YifyxHf/2oppXsA67w9ye4j1ugrl7y6qqrpDWQEAAAAAACAEe+62zZl/4GeumM0xf4DPbnutk11x+hXI8WQJ7u78/q7784tDRZCFhwshJyuEAIAAADAOKEU0rg5SSYe/L464lgjpZDX5tnTPfomfnyplLJuIIuUUh5N8rHDsh2ecUKSixrICAAAAAAAACPa7r1duemubXXHaKqb7tqWx57qqjtGv4ZSDPnoddflp+6+O9/YtauhQshZU6bktgsvzFyFEAAAAADGEaWQxh1tSkiSbBnKglVVnZFkQd+P/Zzy14Nc8u+OcezCQa4FAAAAAAAAo8YX7tyavV3ddcdoqr1d3fnCd7fWHeOoBlsM+Y1f+ZXc+pnPNFQIOXvKlHyzszOnTZo02LgAAAAAMKpNqDvAGHDiMY7tHuKaLz3i58MnhuxJ8uXBLFZKubeqqu8nmZdnTx9RCgEAAAAAAGBMKqXkM3cM6XPcRrzP3LElb3vRGamq/j5jrn7Lli1L0jsJZEAGUwZJnlEIWThlSm7t7MwchRAAAAAAxiGTQhp3wjGODbUU8uJ+9lXpLXTcUkrZP4Q116T/qSNnD2EtAAAAAAAAGPHu2PxINu98ou4Yw2LTzifyb/c/UneMYxrsxJABO6wQcs7BCSEKIQAAAACMVyaFNO5YpZDHh7jmi45x7KtDXPO+I34u6S2JzBjieoxhVVV1JFmQ5PlJTkoyOUlXkr1JdiXZmuSBUsre2kICAAAAAAAcx8p12+uOMKxWrtueS+bPqjvGMQ16YsjxHFYIOfeEE3Lr0qU5VSEEAAAAgHFMKaRxx3rCOCnJU4NZrKqq6UkWpbe00Z9bB7PeYR4+yv7pQ1yPsWdRVVUfSvKKJBfk2H/bSdJTVdWGJN9JckuSL5dSdgxzRgAAAAAAgAFbs3VX3RGG1Wi5v6YVQw4rhJx3wgn5hkIIAAAAACiFNMGx5k2fkEGWQpK8JElbDk3yOLwcsqOU8r1BrtfnaDlNCqHPFYM8vy3JuQe3t6S3JPKVJNcl+WIp5WjFJgAAAAAAgGHX3VOydttjdccYVmu3PZbunpL2tqruKMe1bNmy7O3uzm/96q8ObYHDCiGLTjgh3+jszOyJE5uYEAAAAABGp7a6A4wBx3qSfNIQ1nt5P/v6yiH/dwjr9dl/lP0+OodmaUvyuiT/lOQ7VVW9quY8AAAAAADAOLZp557s7equO8awenJ/dzbv3FN3jAF57MCBfO7ii3vLHYN1WCFk8Qkn5FaFEAAAAAB4mlJI43Yf49jZQ1jvlcc49q9DWK/P5KPsf7KBNeFoLkqysqqqv6mqanrdYQAAAAAAgPHn7q3Hehtv7Lj7wZF/n7sPHMhr1qzJtx9rbHLL+VOn5hudnTlFIQQAAAAAnjah7gBjwMPHOHZeki8PdKGqqk5LcmF6p4L05/ZB5DrSjKPsHx0fHcRo9UtJLqmq6vWllE11hxmMqqp+LckQ55cPyoIWXAMAAAAAAMadDdsfrztCS9w3wu9zV1dXXrNmTf798ceTm29Orr128Itce21OmzQp37j66pysEAIAAAAAz6AU0rhN6Z22MSXPLnNclmQwTzUvT1IdXKfva589Sb479JiZc5T9I/spMWPBeUnuqKrq5aWUtXWHGYSTkyyqOwQAAAAAADA0u/d21R2hJR4bwfe5q6srr16zJv/RSCHkoAf/+I/zD2eckWXLljUxIQAAAACMfkohDSqllKqq1iS5JIdKHH2ljpdVVTWzlLJrgMu9o599feWQfyml9DQQ9YyjrLu9gTUZO+5Jb+no7oPbA0l2H9z2Jzkpyawkp6T3b/1lSV6cZPoA139ukluqqnpxKWVzc6MDAAAAAAA8274Djby1Nnrs6xqZ9/nowULId5pQCOmzfPnyJFEMAQAAAIDDKIU0x13p/Y/yyTMnfExO8htJ/uB4C1RV9ZIkF+ZQoeRI32gw4+I8e5JJ0jvphPGnO8lXknwxyT+XUh44zvnbD27rknwzyQerqpqc5O1J3ptkwQCueWqSz1dV9cJSylNDzA0AAAAAADAg+7tHZlmi2faNwPt8tKsrl61ene/u2dO0QkgfxRAAAAAAeKa2ugOMEV/qZ19fueN3qqpacqwXV1XVnuRPj3ONfxxitlRVNSvJ6X0/HnFYKWR8eSjJHyaZV0r5qVLKdQMohPSrlPJUKeW6JAuT/HaSgcwm70zyR0O5HgAAAAAAwGBMbB8fb4VOGmH3+UhXV141TIWQPsuXL8+KFSuavi4AAAAAjEYj6wnh6PWVJDsOfn/4pI+S5IQk/1xV1Yv6e+HBaQufSfKCfl7bN3XkX0spmxvI95JjHNvYwLqMPs8vpfx+KeXBZi1YSukppfxZev/OtgzgJb9eVdUFzbo+AAAAAABAfyZNGB9vhU7qGDn3+XBXV35i9ercOZRCyFVX9W4DpBgCAAAAAL0m1B1gLCildFdV9dkkv5neEkdyqNBRkpyW5Laqqr6W3okfP0jv774zyTuSzDvsNf35mwYjvvIYx1Y3uDajSCnlwDCu/e9VVb0sye1Jnn+MUyck+YMkPzNcWZpkZ5J1LbjOgiSTWnAdAAAAAAAYV2ZM6ag7QktMHyH3+fDBCSGrhloIef3rkyTzJk/Olj8a2OD55cuXJ0mWLVs26LwAAAAAMFYohTTPNekteJyYQ1M+Di+GtCf5zwe3wx05GaTv+z5bkvxdg9lef9iah6/9aCnlvgbXhqeVUn5QVdXPJPnXJJOPcep/qarq7FLK91oUbdBKKX+Z5C+H+zpVVa1Nsmi4rwMAAAAAAOPNwtnT6o7QEueMgPv80f79edXq1Vn9xBMNFUL+07Rp+drVV+fv5817uvBxPIohAAAAAIx3I2eW8ChXStmW5Oo8e9rHkaWPI7eSZxZCDn9dSfI/SildQ81VVdULkpxxRJa+te8Y6rpwNKWUO5Mc7+Ob2pK8pQVxAAAAAACAceqCuTPqjtASF5xW733u3L8/r2xCIeTHp03L15YsycyOjixbtizXX3/9gJdZvnx5VqxYMdjoAAAAADAmKIU015+nt2jRV7roc3gx5Mjt8OPJMyd6fLmUckODmX7xGMe+3eDacDTXJNl+nHN+thVBAAAAAACA8WnBySdmSkd73TGG1QkT2zP/5BNru/6O/fvzE6tX5+4GCyEXT5uWry1dmpkdHU8fVgwBAAAAgIFRCmmiUkpPkv+SZH2eOQUk6X9KSN/29BKHnfu9JG9uJE9VVZMOrlGOcsrXG1kfjqaU8lSS645z2qKqqk5pRR4AAAAAAGD8aW+rsnjO9LpjDKvFc6anva06/onDYPv+/XnFqlUNF0IumT49X126NDMmTHjWaYohAAAAAHB8SiFNVkr5UZKXJFmZY08IOdbUkH9Ncmkp5bEG4/xCklmHrXt4OeRHpZQ7GlwfjuXvB3DOC4c9BQAAAAAAMG4tmTuz7gjDqq77e2jfvrx81aqse/LJhgohL5w+PV9dsqTfQkgfxRAAAAAAODalkGFQSnm0lPKaJO9IsiX9TwXpc/ixHyX53SSvLKVsb0KUq3KoCHJ4IaQk+XIT1oejKqWsS7LjOKed24osAAAAAADA+HTZotl1RxhWddzfgwcLIfc2WAh58cFCyPRjFEL6KIYAAAAAwNEd/wkbQ1ZK+VRVVZ9O8qokr0vy40nmJ5mZ3hLII+n9T/P/nuTrSW4upTzZjGtXVfXGJIuOccoXm3EdOI67krzmGMfPaFEOAAAAAABgHLpk/kmZf/LUbN75RN1Rmm7ByVNz8ZkntfSaW596Kq9YvTob9+5tqBDykhkz8qULLsi0ARRC+ixbtixJb+FjIPrO63sdAAAAAIxVSiHDrJRSkqw8uLXS95P8zDGOf61FORjfvn+c46e0IgQAAAAAADA+VVWVt14yLx+4eV3dUZrurZfMS1VVLbveD556Kq9YtSqbn3qqoULIS2fMyD8PshDSRzEEAAAAAJ5NKWSMKqV8N8l3687BuLf7OMdPaEkKAAAAAABg3HrDRXPzoa/cl71d3XVHaZopHe15wwvmtux639+7N69YvTrfb7AQ8rKDhZATh1AI6aMYAgAAAADP1FZ3AGBM23+c4x0tSQEAAADkfLyRAAAgAElEQVQAAIxbM6Z05PIL59Qdo6kuv3BOpk9uzdssm/fuzaWrVjVcCLl0xox8acmShgohfZYtW5brr79+wOcvX748K1asaPi6AAAAADASKYUAw2nKcY7vbUkKAAAAAABgXLvy0gWZOGFsvDU6cUJbrrx0QUuutfHJJ/PyVavyg337GiqEvHzmzPzzkiWZ2t7etGyKIQAAAADQa2w8+QRGqlOPc3xPS1IAAAAAAADj2rxZU3PVZQvrjtEUV122MPNmTR3263zvYCHkgQYLIa+cOTNfvOCCphZC+iiGAAAAAIBSCDC8zjrO8QdbkgIAAAAAABj33vmSM7P09Jl1x2hI5+kz866Xzh/269z35JO5dNWqPLh/f0OFkMue85xhK4T0UQwBAAAAYLxTCgGGRVVVk5J0Hue0+1uRBQAAAAAAYEJ7Wz5yxZJMnDA63yKdOKEtH75iSdrbqmG9zronnsild92VhxoshPznk07KP55/fqYMYyGkj2IIAAAAAOPZ6HziCYwGP5Fk0nHOWdOKIAAAAAAAAEly1inT8p7LFtYdY0je++qFOeuUacN6jXv27MkrVq3K9q6u3h0PPzzwFx9WCPnJk07KPyxe3JJCSJ/BFkO2bds2jGkAAAAAoHWUQoDh8ovHOd6V5D9aEQQAAAAAAKDPu146P5d3zqk7xqBc3jkn73zJ/GG9xpo9e/KK1auzo68QkiRvf3vytrcd/8WHFUJeP2tWPn/++ZncwkJIn4EWQ97//vfn6quvHv5AAAAAANACE+oOAIw9VVWdneRnj3Pav5RSnmpFHgAAAAAAGM+6e0o27dyTu7fuzobtj2f33q7sO9CT/d09mdjelkkT2jJjSkcWzp6WJXNnZP7JJ6a9rao79rBpa6tyzRVLs2ffgdyyfkfdcY7rVefNzjVXLE3bMP6brHr88bxq9eo8fODAsw++/e29Xz/96f5ffFgh5PLnPjefW7QoE9vq+2zCZcuWJUmWL1/e73GFEAAAAADGGqUQYDh8NMnxPv7p71sRBAAAAAAAxptSSu7Y/EhWrtueNVt3Ze22x7K3q3vArz9hYnsWPW96lsydmcsWzc4l809KVY2tkkhHe1s+9uaL8u4b7hzRxZBXnTc7H3vzheloH76SxZ0HCyGP9lcI6XO0YshhhZA3Pve5+eyiRemosRDS52jFEIUQAAAAAMYipRCgqaqqem+S1xzntMeSfK4FcQAAAAAAYNzYvbcrX7hza/72ji3ZtPOJIa/z5P7ufGfLo/nOlkfzN/96fxacPDVvuWRe3nDR3MyY0tHExPWa3NGej7/lBXnfjatz06ptdcd5lss75+SaK5YOayHkO489lsvWrMmuYxVC+hxZDDmsEPKmk0/O35533ogohPQ5shiiEAIAAADAWKUU0iRVVf1+3RmGopTyB3VnYHhVVXVRkvWllL0tuNbbkvzJAE79q1LK7uHOAwAAAAAA48GWh5/Idbdtyk13bRvURJCB2rTziXzg5nX50Ffuy+UXzsmVly7IvFlTm36dOnS0t+XaN3XmvOdNz0dWbsj+Az11R8rECW1576sX5p0vmZ+2tuGb0PJvjz2W16xend3dg/ib6SuGzJr1dCHk5085Jf/r3HMzYQQVQvr0FUO2bdumEAIAAADAmFWVUurOMCZUVdWTZNT9Mksp7XVnGIuqqnp5kluPccqWUsoZLcryZ0nelOSDSf66lDL0jwY7+jUmJvlQkt8cwOnbk5xbStnV7ByjUVVVa5MsOnL/okWLsnbt2hoSAQAAAAAwWhzo7sknbr8/f3pLa8sMEye05arLFuZdL52f9mEsLbTaxh2P5z03rsnqB+p7C6Pz9Jn58BVLctYp04b1Ot/evTuvWbMmjw+mENKPt86enf957rlpr8bO3wEAAAAAo9fixYuzbt26/g6tK6UsbnWeVhl5H9cy+lWjaGP8eF6SP0/yQFVVf1pV1dJmLXywAPOtDKwQkiS/oRACAAAAAACN2bjj8bzxum/nT75yb8unW+w/0JMPfvnevPHj/zcbdzze0msPp7NOmZbPX/nC/O5rz83ECa19G3XihLb83mvPzed/5UXDXgj51q5deXUTCiFvP/VUhRAAAAAAGAEm1B1gDBot00I8nR2gqqpelmThIF92znGOn1hV1TuHEOe2Usr3hvC6Ps9J8ltJfquqqg1JvpjkG0m+XUp5ZKCLVFV1apJXJfn1JD8+iOt/tJTy94M4HwAAAAAAOExPT8knbt+cj6xs7XSQ/qx6YFde9xffynsOTg1pGwNTQya0t+XKSxfkteefmutu25Sb7tqWvV2NlSeOZUpHey6/cE6uvHRB5s2aOmzX6fMvu3bldWvW5Imexv52fvnUU7PinHPSphACAAAAALWrShktHYaRraqqnvQWQkbDk8++nKWU0l53mJGuqqpPJXlb3TkO+qVSyqcG84Kqqv4sx5/iUZI8kOTeJN9P8sMkjybZd/D4c5LMSnJKkouTnD2YDAfdlOSKUsqBIbx2zKqqam2SRUfuX7RoUdauXVtDIgAAAAAARqqu7p6878bVuWnVtrqjPMvlnXNyzRVL09He2gkbw+2xp7ryhe9uzWfu2JJNO59o2roLTp6at14yL294wdxMn9zRtHWP5ZuPPpqfvPvuPNlgIWTZ856Xjy9cqBACAAAAwIizePHirFu3rr9D60opi1udp1VMCgGS3pLQ8w9uw+FzSd6qEAIAAAAAAEPzVFd33n3Dnbll/Y66o/TrplXbsmffgXzszRdlcsfY+Uyy6ZM78vYXn5m3veiM/Nv9j2Tluu1Zs3VX7nnwsUFNEDlhYnsWz5meJXNn5rJFs3PxmSelamGp4uuPPprX33139jZYCPnVOXPy0bPPVggBAAAAgBFEKaT56hy9crSnr8bBUJfuJP+jlPLBuoMAAAAAAMBo1dXdM6ILIX1uWb8j777hrnz8LReNuYkhVVXlkvmzcsn8WUmS7p6SzTv35O4Hd+e+7Y/nsb1d2dfVk33dPZnU3pZJHW2ZPqUj58yelgtOm5H5J5+Y9rZ6ihRfe+SR/PQ99+SpBgshv37aafnzs85qaZkFAAAAADg+pZDmqvMJaMmh8seROTyZpQ7/kWRZKWVV3UEAAAAAAGC06ukped+Nq0d8IaTPLeu35303rs61b+pMW00liFZob6ty9uxpOXv2tLqjHNNXHn44l99zT/aVxj5D7rfmzs21CxYohAAAAADACDS2PqKnRqWUtlZsSSYnOS3JBUlem+QPk3wjyf4cKn8cXhApSf4iyaR+1hs7s7s5lruSbG7h9e5M8rNJLlYIAQAAAACAxnzi9s25adW2umMMyk2rtuWT32rlWxP0558ffjg/3YRCyHtPP10hBAAAAABGMKWQUaaUsr+U8lApZW0p5aullPeXUl6V5PlJ/iDJzjyzHFIl+fUk/7eqqtn1pKZOpZRPl1IWpPdv5G1J/ibJmiRdTbzMxiR/luTHSikvKKV8vpQG32EAAAAAAIBxbuOOx/ORlRvqjjEkH/7ahmzc8XjdMcatf/rRj/Iz99yT/Q2+XfO7z39+PjR/vkIIAAAAAIxglf+3PbZUVXViko8n+YUcmhbS95R2c5LLSin315GNkaWqqolJzk+yJMmZSU4/uJ2WZHqSKUlOSDIpvZNonkqyO8lDSbYmuTfJ3Um+XUr5QavzjxVVVa1NsujI/YsWLcratWtrSAQAAAAAwEhwoLsnb7zu21n9wK66owxZ5+kz8/lfeVHa2xQKWukfdu7Mm9aty4EG3wf+f57//PzhmWcqhAAAAAAwaixevDjr1q3r79C6UsriVudplQl1B6C5Sil7kry1qqpbknwyvdNg+iaGzE9yS1VVl5RSdtYYkxGglLI/yZ0HNwAAAAAAYAT55LfuH9WFkCRZ9cCufOL2zbny0gV1Rxk3/s+OHfn59esbLoS8f968vP+MMxRCAAAAAGAUaKs7AMOjlPLpJO/OoSkhfU9+z0zyj1VVtdcSDAAAAAAAgGPa8vATuXblhrpjNMW1Kzdky8NP1B1jXPjcjh35uSZMCPmDM87I1SaEAAAAAMCooRQyhpVSrk/y0Ty7GHJxkt+tJRQAAAAAAADHdN1tm7L/QE/dMZpi/4GeXHfbprpjjHk3bN+eN69bl+4G1/n/zjwz/+8ZZzQjEgAAAADQIkohY9/vJ3nksJ9Leksi/6Oqqrn1RAIAAAAAAKA/u/d25aa7ttUdo6luumtbHnuqq+4YY9ZnfvjDvHX9+jRaI/qT+fPz3+fNa0omAAAAAKB1lELGuFLK7iQfyqFpIX0mJnlP6xMBAAAAAABwNF+4c2v2djU672Fk2dvVnS98d2vdMcakTz30UN52770NF0I+smBBfuf5z29KJgAAAACgtZRCxofPHvFz37SQd1RVNbGGPAAAAAAAAByhlJLP3LGl7hjD4jN3bEkppe4YY8pfP/RQ3nHffWn0t/pnZ52Vq04/vSmZAAAAAIDWUwoZB0opDyRZ18+hE5P8RIvjAAAAAAAA0I87Nj+SzTufqDvGsNi084n82/2P1B1jzFixbVve2YRCyMfOPju/OXduUzIBAAAAAPVQChk/vp3e6SBHUgoBAAAAAAAYAVau2153hGE11u+vVf7qwQezfMOGhtf5+Nln59dOO60JiQAAAACAOk2oOwAtc7Sn7Be0NAUAAAAAAAD9WrN1V90RhtVYv79W+OjWrfmNjRsbXmfFwoV515w5TUgEAAAAANTNpJDxY+cRP5f0Tg5ZWEMWAAAAAAAADtPdU7J222N1xxhWa7c9lu6eUneMUevDP/hBw4WQKslfn3OOQggAAAAAjCFKIeNH91H2z2xpCgAAAAAAAJ5l08492dt1tLdzxoYn93dn8849dccYlf5oy5a8b/Pmhtaoknzq3HPzjuc9rzmhAAAAAIARQSlk/DjlKPuntjQFAAAAAAAAz3L31t11R2iJux8cH/fZLKWUXH3//fl/7r+/oXXaknzmvPPyi6ee2pxgAAAAAMCIMaHuALTMvKPsP9DSFAAAAAAAADzLhu2P1x2hJe4bJ/fZDKWU/Pf7788Hf/CDhtZpT/K3552Xn5s9uznBAAAAAIARRSlk/Hh1ktLPfk/eAQAAAAAAarZ7b1fdEVrisXFyn40qpeS9mzbl2q1bG1qnPclnFy3KFaec0pxgAAAAAMCI01Z3AIZfVVUvT9L30T/VEV8faHkgAAAAAAAAnmHfgZ66I7TEvq767/Pqq6/OihUr6o5xVD2l5Dc2bjxUCLn55uRTnxr0OhOqKn+/eLFCCAAAAACMcSaFjHFVVVVJrjnK4ZLkvhbGAQAAAAAAoB/7u+svS7TCvprv8+qrr84HPvCBp39etmxZjWmeraeUXLlhQz7x0EO9O26+Obn22kMnvP3tA1qno6py4+LF+ennPrf5IQEAAACAEUUpZOz7oyQvSG8BpOrn+LdbGwcAAAAAAIAjTWxvqztCS0yq8T6PLIQsX748ycgphnSXknfed18+9cMf9u44shDy6U/3fj1OMWRiVeXzixfnpxRCAAAAAGBcUAoZo6qqmpDkg0l+O0cvhCTJl1oWCgAAAAAAgH5NmjBOSiEd9dznkYWQPiOlGHKgpydvu/fe3LBjR++OIwshfY5TDJlUVfnC+efndbNmDU9QAAAAAGDEUQoZY6qqakvyk0k+lGRhessg5bBTymH77iilbG55SAAAAAAAAJ5hxpSOuiO0xPQa7vNohZA+dRdDunp68gvr1+fGnTt7dxytENLnKMWQKW1t+cfzz89lJ500PEEBAAAAgBFJKWSUq6pqYpJzkixJ8sIkb0xySg5NBjnWlJBrhj0gAAAAAAAAx7Vw9rS6I7TEOS2+z+MVQvrUVQzZ19OT/7p2bf7x4Yd7dxyvENLniGLI1La2fPGCC/Ly5zxneIICAAAAACOWUkiTVFXVyokbVZITkkxLMqmfY8mh6SCHF0IOnxJyWynlpuEMCQAAAAAAwMBcMHdG3RFa4oLTWnufc+bMGfC5rS6GPNXdnTeuXZsvPfJI746BFkL6zJqVJJnW3p4vL1mSF88YH39DAAAAAMAzKYU0zxk59lSOVimHfX9kIaTPI0ne0Zo4AAAAAAAAHM+Ck0/MlI727O3qrjvKsDlhYnvmn3xiS6/ZV/DoK3wcT6uKIU92d+fye+7Jykcf7d0x2ELIVVclr399ZrS356tLl+bi6dOHJygAAAAAMOK11R1gDCo1b0lvGaS/QkiV5MkkbyilfL+ZNw0AAAAAAMDQtbdVWTxnbP/H/sVzpqe9rfWfr7Zs2bJcf/31Az5/+fLlWbFixbDl2XPgQH7y7rsbLoQ8Z8KEfL2zUyEEAAAAAMY5pZDRr+pnO9zhhZDtSV5VSrm9dfEAAAAAAAAYiCVzZ9YdYVjVeX8jpRjy2IEDee3dd+ebu3b17hhiIeS5HR25tbMzL5g2rekZAQAAAIDRRSmk+foraQzndqQjJ4f0nfcPSZaWUu5o8v0CAAAAAADQBJctml13hGFV9/3VXQzZ1dWVV69enW/t3t27Y4iFkNkdHflmZ2eWnnhi07IBAAAAAKOXUkjzHVnKaPWWPLM08tUkryilvLGUsmP4bhsAAAAAAIBGXDL/pMw/eWrdMYbFgpOn5uIzT6o7Rm3FkEe6uvKq1avzb48/3rtjiIWQORMn5rYLL8ziqWPz7wQAAAAAGDylkOZq9ZSQ/ra9SW5N8t+SzC+lvLaUctvw3jYAAAAAAACNqqoqb71kXt0xhsVbL5mXqqrqjpGk9cWQnfv355WrVuW7e/b07hhiIeT0SZNyW2dnzjnhhCFnAQAAAADGngl1BxhDPt3Ca5UkB5LsS7I7yY4kP0hyX5INpZTuFmYBAAAAAACgSd5w0dx86Cv3ZW/X2Hm7Z0pHe97wgrl1x3iGZcuWJektfAxE33l9rxuoH+7bl1etXp21Tz7Zu2OIhZAzJk/OrUuX5owpUwZ1fQAAAABg7FMKaZJSyi/VnQEAAAAAAIDRbcaUjlx+4Zx89t8fqDtK01x+4ZxMn9xRd4xnGe5iyLZ9+/LKVaty3969vTuGWAhZMHlybu3szOmTJw/8tQAAAADAuNFWdwAAAAAAAADgkCsvXZCJE8bG23gTJ7TlyksX1B3jqJYtW5brr79+wOcvX748K1asOO55Dzz1VC5tQiHknClT8i8XXqgQAgAAAAAc1dh4mgwAAAAAAABjxLxZU3PVZQvrjtEUV122MPNmTa07xjE1uxhy/969edmqVdnYYCFk8Qkn5LYLL8ycSZMG/loAAAAAYNxRCgEAAAAAAIAR5p0vOTNLT59Zd4yGdJ4+M+966fy6YwxIs4ohG598MpeuWpXvP/VU744hFkKWTp2aWzs7M3vixIG/FgAAAAAYl5RCAAAAAAAAYISZ0N6Wj1yxJBMnjM638yZOaMuHr1iS9raq7igD1mgx5N4nnsilq1blgX37encMsRDyghNPzDc6O3OyQggAAAAAMACj8ykyAAAAAAAAjHFnnTIt77lsYd0xhuS9r16Ys06ZVneMQRtqMeSePXvy8lWrsm3//t4DQyyEXDJ9em5ZujQndXQMMjkAAAAAMF5NqDsAAAAAAAAA0L93vXR+1j/0WG5ata3uKAN2eeecvPMl8+uOMWTLli1L0lv4GIjly5fnxI0bs+d1r+vdMcRCyEtmzMg/X3BBpk/wFi4AAAAAMHCeKAIAAAAAAMAI1dZW5ZorlmbPvgO5Zf2OuuMc16vOm51rrliatraq7igNGWwxZM811yTd3b0/DKEQ8oqZM/NP55+fExVCAAAAAIBB8lQRAAAAAAAARrCO9rZ87M0X5d033DmiiyGvOm92PvbmC9PR3lZ3lKYYbDFkUGWQ5OlCyGXPeU5uOv/8nNDePsiEo1d3T8mmnXty99bd2bD98eze25V9B3qyv7snE9vbMmlCW2ZM6cjC2dOyZO6MzD/5xLSP8qIRAAAAAAwXpRAAAAAAAAAY4SZ3tOfjb3lB3nfj6ty0alvdcZ7l8s45ueaKpWOmENJn0MWQgTpYCHndSSfl84sXZ/IYL4SUUnLH5keyct32rNm6K2u3PZa9Xd0Dfv0JE9uz6HnTs2TuzFy2aHYumX9SqkpJBAAAAAASpRAAAAAAAAAYFTra23Ltmzpz3vOm5yMrN2T/gZ66I2XihLa899UL886XzE/bGJ3k0PRiyMFCyE/PmpXPLV6cSW1jq0hzuN17u/KFO7fmb+/Ykk07nxjyOk/u7853tjya72x5NH/zr/dnwclT85ZL5uUNF83NjCkdTUwMAAAAAKNPVUqpOwPAuFVV1doki47cv2jRoqxdu7aGRAAAAAAAjAYbdzye99y4Jqsf2FVbhs7TZ+bDVyzJWadMqy1DK61YsaLxYsjBQsgVJ5+cvzvvvHSM0ULIloefyHW3bcpNd20b1ESQwZrS0Z7LL5yTKy9dkHmzpg7bdQAAAAAYHRYvXpx169b1d2hdKWVxq/O0yth8yggAAAAAAABj2FmnTMvnr3xhfve152bihNa+5TdxQlt+77Xn5vO/8qJxUwhJkrlvfGMmvOc9Q1/gYCHkzaeckhvGaCHkQHdPPv7NTbnsT/8ln/33B4a1EJIke7u689l/fyCX/em/5LrbNqW7xwciAgAAADD+TKg7AAAAAAAAADB4E9rbcuWlC/La8081lWGY/eOPfpQr1q7NgZ/6qaSU5NprB7fAwULI2089NZ8855y0V9XwBK1RndNr9h/oyQe/fG++cs8Px9X0GgAAAABIlEJSVdUvDuS8Usr/asY6I83x7gsAAAAAAICRbd6sqfnjNyzJ773uvHzhu1vzmTu2ZNPOJ5q2/oKTp+atl8zLG14wN9MndzRt3dHixh078ub163OgNDaF4l3Pe16uW7gwbWOsENLTU/KJ2zfnIys3ZP+BnlqzrHpgV173F9/Key5bmHe9dH7a2sbW7xoAAAAA+lOVBh9ejnZVVfUkOe4voZTS3ox1Rprj3RcwvKqqWptk0ZH7Fy1alLVr19aQCAAAAACA0a6Ukn+7/5GsXLc9a7buyj0PPjaoCSInTGzP4jnTs2TuzFy2aHYuPvOkVGOsyDBQN2zfnreuX5+nqw433zz4KSEHffy663Ll8uVNyzYSdHX35H03rs5Nq7bVHeVZLu+ck2uuWJqO9ra6owAAAADQIosXL866dev6O7SulLK41XlaZdxPCjnMsZ5kD6bsMZqeiI+6EgsAAAAAAADHVlVVLpk/K5fMn5Uk6e4p2bxzT+5+cHfu2/54HtvblX1dPdnX3ZNJ7W2Z1NGW6VM6cs7sabngtBmZf/KJaTdhIZ966KG84777Dr2h1kAhJEl+5cor01ZVWbZsWVPy1e2pru68+4Y7c8v6HXVH6ddNq7Zlz74D+dibL8rkDp+TBwAAAMDYpRRyyNEKEoN94j1aihae5AMAAAAAAIwD7W1Vzp49LWfPnlZ3lFHjrx58ML/2ve8d2tFgIaTP8oOTQkZ7MaSru2dEF0L63LJ+R959w135+FsuMjEEAAAAgDHLk69Dqn62Zq0z0jYAAAAAAACgHx954IFhKYT0Wb58eVasWNG09Vqtp6fkfTeuHvGFkD63rN+e9924Oj09o+Wz/QAAAABgcJRCAAAAAAAAgHGvlJI//P73895Nmw7tbHIhpM9oLoZ84vbNuWnVtrpjDMpNq7blk9/aXHcMAAAAABgWSiGHlH62Zq0z0jYAAAAAAADgoFJKfm/z5vz+979/aOdgCyFXXdW7DdBoLIZs3PF4PrJyQ90xhuTDX9uQjTserzsGAAAAADSdUkiv6hhbs9YZaRsAAAAAAACMez2l5Dc3bsyfPPDAoZ1DKYS8/vX589/+7Vx//fUDftloKoYc6O7Je25ck/0HeuqOMiT7D/TkvTeuSXePz9ADAAAAYGyZUHeAEeDMEbYOAAAAAAAA/P/s3XmY3XV9N/z3dyZ7SIgJBAhBJMGwJEwStUoRSlvBBQURRVuLSluZYKutjfa5bW0r9Gnr3ar0elqrBLm9tVpttSitiliwirtWzU5kSQADYYksWSDrzO/5IxkyGWYmM3POzJnMvF7Xda4557d8vu8D+M85vs+XIdBWVbnyzjtz/YMPHjg4wELIR5/73Fx5/PFJa2uSfYWPvui4rnX/fcPV9d+5Jys3PtHoGDVZsfGJfOzbG3LluXMbHQUAAAAA6mbUl0KqqrpvOM0BAAAAAAAABt/e9va85Wc/y2ceeeTAwQEUQsqFF+b6U07J7xx33NOHW0dYMeS+R5/MNbfc2egYdXHNLXfmFQuOzYkzJjc6CgAAAADURVOjAwAAAAAAAAAMpd3t7XnD7bfXXAhpuvDC/POppx5UCOnQ2tqaZcuW9XnckiVLct111/V9/SF07W3rs3tve6Nj1MXuve259rb1jY4BAAAAAHWjFAIAAAAAAACMGjva2vKaNWvyhV/84sDBARRCxlx0UT5z+um57Nhje7xsJBRDtuzYkxuXb2p0jLq6cfmmbN25p9ExAAAAAKAulEIAAAAAAACAUWH73r151erVuemxxw4cHEAhZNxFF+WG+fPzhpkzD3n54V4M+cJP78+OPW2NjlFXO/a05Qs/ub/RMQAAAACgLpRCAAAAAAAAgBFvy969edmqVfnvJ544cHAAhZCJr351vnTGGbnoqKP6fNvhWgypqiqf+sF9jY4xKD71g/tSVVWjYwAAAABAzZRCAAAAAAAAgBHt0T178pIVK/K9rVsPHBxAIeSIiy/OV1ta8tLp0/ud4XAshvxgw2PZsPnJhmYYLOs3P5kf3vPYoS8EAAAAgGFOKQQAAAAAAAAYsR7evTu/tmJFfrJ9+4GDAyiETHvNa3JLS0vOnTZtwFkOt2LILbc/3LC1h8JIf38AAAAAjA5jGh0AAAAAAAAAYDDcv3Nnzlu5Mnfs2HHg4AAKIUddckn+q6Uli6dMqTlTa1QGAH0AACAASURBVGtrkn2Fj77ouK7jvqG06v4nhnzNoTTS3x8AAAAAo4NSCAAAAAAAADDi3LtjR3595crcs3PngYMDKIQc+9rX5usLF+b0yZPrlu1wKIa0tVdZu2nrkK3XCGs3bU1be5XmptLoKAAAAAAwYE2NDgAAAAAAAABQT3c+9VTOWbGi5kLICa97Xb61aFFdCyEdWltbs2zZsj5fv2TJklx33XV1z9GT9Zu3Z8eetiFbrxGe2t2WDZu3NzoGAAAAANREKQQAAAAAAAAYMdZs355fWb489+/adeDgAAohcy69NN9evDjPnTSp/iH3G87FkNX3bxmSdRpt9QOj430CAAAAMHKNaXQABqaUMifJ+UnOSXJckqOSjE+yJcmGJD9O8pWqqn7WsJAAAAAAAAAwhH66bVteunJlHt2798DBARRCTn3DG3LrwoU5fvz4+ofsorW1Ncm+wkdfdFzXcd9gufPhbYM6f7i4Y5S8TwAAAABGLqWQw0wp5QVJ/ir7CiEHner0/AVJXp/k70op307yZ1VVfWeIIgIAAAAAAMCQ+/6WLXnFqlXZ0tZ24OAACiEtv/EbuWXhwswcN67+IXswHIshW3bsGbTZw8nWUfI+AQAAABi5lELqqJTSmp7/mf5rVVWP1Tj/6iR/1vGym0uq/cc7n/uVJLeVUq5N8s6qqnyqCQAAAAAAwIjyzccfz6tWr86T7e0Hn3j00b4PWbo0v/TGN+bmlpZMHzu2vgH7oL/FkE2bNg1mnOza237oi0aAXXtGx/sEAAAAYORSCqmTUsoLk1ybfcWMrjZUVfWRGud/MsllOVD46G6d7o53lESuTHJKKeWiqqqeqiULAAAAAAAADBc3P/poXrN2bXZ2LYQkyeWX7/v7yU/2PmTp0px92WX5yhlnZOqYxn2F2tdiyPve975cddVVg5pld9voKEvsGiXvEwAAAICRq6nRAUaQ1+//W7o8kuT/q2VwKeXPk7xp/7wqB+8IcqhH5+t/Lcm/1ZIFAAAAAAAAhosbN2/ORWvWdF8I6XD55clb3tLz+aVLc96b35ybW1oaWgjp0NrammXLlvV4figKIUkyrnl0fJU8fpS8TwAAAABGLp9w1c+lOVDA6HgkyZYkHx/o0FJKS5I/zzPLIF11XffpETlQDilJLiilvHugeQAAAAAAAGA4+NeHH87r1q7Nnqrr12Pd6KkYsnRpXvmWt+RLCxZkcnNz3TMOVE/FkKEqhCTJ+DGj46vk8WNHx/sEAAAAYOTyCVcdlFJOTnJCx8tOf6skX66q6qkaxn8wScdPEnUtg/RUBOnteEnyF6WUWTVkAgAAAAAAgIb5vw8+mDeuW5e2/tzUtRiydGle9zu/ky8sWJAJw6gQ0qFrMWQoCyFJcuTEsUO2ViNNHSXvEwAAAICRq/H7H48ML+rl3H8OdGgp5cwk5+VAmaOzjsJHx/HdSR5NMj3J+E7XdN5dpOOeydlXNnnjQLMBAAAAAABAI/zTAw/k7XfdNbCbL798398ZM/Kmt741Hz/llIxpGr6/o9fa2pok2bRp05AWQpJk3jFThnS9RjlllLxPAAAAAEYupZD6OLPT8867c+xJcnMNc/+wm2Ndd//4ZJJ/qqrqxx0HSikLkvxekiWd7ildnr++lPK/qqraWEM+AAAAAAAAGDIf/PnP88cbNtQ25PLL03rccfnovHlpKl1/l2346SiGDLUzZh/ZkHWH2hnHj473CQAAAMDINXx/9ubw8vwurzt25fifqqq2D2RgKWVakotzcAmk8+4gbUl+q6qq3+5cCEmSqqrWVFX1e0kuzL5iSse9nT/VLkl+ayDZAAAAAAAAYChVVZW/vPfe2gshSf7w+ONz7WFSCGmkuUcfkYljmxsdY1BNGtecOUcf0egYAAAAAFATpZD6OCnP3MEjSVbXMPPVScbvf961zFEl+duqqv61twFVVd2U5J1d7u8850015AMAAAAAAIBBV1VV3rNhQ9537701z/rTZz87f3/yySkKIYfU3FQyf9bURscYVPNnTU1zk/8WAAAAADi8KYXUqJQyIckxHS+7nF5Vw+iLu7zuXDp5Isn7+zKkqqprk6zMgTJJx98kObWUclINGQEAAAAAAGDQtFdV/uDuu/N3GzfWPOuvTjopfz1njkJIP7TMntboCINqpL8/AAAAAEYHpZDandjLuQHtFFJKGZPk1/PM3Uc6Ch0fr6rqqX6M/FAv557Xz3gAAAAAAAAw6NqqKq133JEPP/BAzbP+fu7cvPfE3r7Wozvnn37MoS86jI309wcAAADA6KAUUrvePincPMCZz08yZf/z7n6q6J/7Oe9LSfbuf961aLK4n7MAAAAAAABgUO1pb8+b163L/3nooZpnXTtvXt55wgl1SDX6nDlneuYcPbnRMQbF3KMn50UnTW90DAAAAAComVJI7Sb1cm7rAGee3eV15yLHhqqq+rUDSVVVW5KsSPcFk4X9zAYAAAAAAACDZnd7e95w++35zCOP1DSnKcknTz01S2bNqk+wUaiUkjedOTJ3WHnTmSemlO6+PgUAAACAw4tSSO16K4VsGeDMF3dzrGRfOeSmAc5c18NMn4IDAAAAAAAwLOxoa8vFa9bki7/4RU1zxpSSfz399Lz52GPrlGz0uuR5szNxbHOjY9TVxLHNueT5sxsdAwAAAADqQimkdr2VQnYOcOYv5+DdQTr7+gBnbujyumP+kQOcBwAAAAAAAHWzfe/evHL16nz1scdqmjOulHxh/vxcOnNmnZKNbkdOHJuLF4+s35m7ePGsTJ0wttExAAAAAKAulEJq19uewpP7PayUuUmO6TS7czmkSnJbf2fut62H41MHOA8AAAAAAADq4ok9e/KyVavyjSeeqGnOxKamfPmMM3LhUUfVKRlJcuW5czNuzMj4anncmKZcee7cRscAAAAAgLoZGZ/cNdbWXs71totIT87t5lhH8eT2qqq2DGBmkmzv4fiUAc4DAAAAAABgGLvqqqty3XXXNTrGIT2ye3d+beXKfO9f/iX5xCcGPOeI5ubc3NKS86dPr184kiQnzpicpefPa3SMulh6/rycOKPfv+0HAAAAAMPWmEYHGAF6K2nMTvJIP+f9ag/HqyTf7eesznoqAPW20wkAAAAAAACHoauuuipXX331069bW1sbmKZn9+/cmfNWrswdn/tccs01B05cfnm/5kwbMyZfa2nJC6dOrW9AnvbWs0/KV9c8lJUba9vNpZEWnTAtV5wzp9ExAAAAAKCu7BRSu952CnnuAOadl30FkO58ZwDzOkzs4fi2GmYCAAAAAAAwzHQthCxZsmRY7hhy91NP5ezly59ZCPnkJ/u1Y8hRY8fmGwsXKoQMsjHNTfnQpS0ZN+bw/Ip53JimfPDSljQ3+c08AAAAAEaWw/MTu+FlYy/nntefQaWUM5Mc2/Gym0u+3Z95XRzdw/HtNcwEAAAAAABgGOlaCOkw3Ioha7ZvzzkrVuS+f//3gwshHfpYDDlu3LjctmhRFk2ZUv+QPMPJM6fkXefPa3SMAXn3S+fl5Jn+OwEAAABg5FEKqVFVVZuTPNjxstOpkuQV/Rx3adfxnZ7fW1XVz/s5r7NZXV53lE562+kEAAAAAACAw0RPhZAOw6UY8qOtW3PuihV56IYbui+EdDhEMeTZ48fnW4sW5fTJk+sfkh5dcc6cXLyo61ePw9vFi2blrWfPaXQMAAAAABgUSiH1sTwHShYlB8oc80spi/syoJQyPslbcnARpPO8r9eYsbuf7KmS1FI0AQAAAAAAYBg4VCGkQ6OLId98/PG8ZOXKPPbFL/ZeCOnQQzFk7oQJ+dbixTl50qT6h6RXTU0lH7h0Yc47bWajo/TJeacdkw9cujBNTeXQFwMAAADAYUgppD7+p5dzf9nHGVcmmb7/eXefSN7ar0TPdHqeWThJkvU1zgUAAAAAAKDBZs3q+84NjSqGfOXRR/OK1auz/cYb+1YI6TBjxkEvT5s0Kd9avDgnTphQ54T01djmpnz4jc8b9sWQ8047Jh9+4+KMbfa1OAAAAAAjl0+/6uPfurzu2N2jJLmglPLu3m4upcxLcnUOLm10fv5kki8PNFwp5bQkUztl6+zugc4FAAAAAABgeGhtbc2yZcv6fP1QF0P+7ZFHcvGaNdn5H//Rv0LI0qXJhRc+/XLh5Mm5bdGizBo/fhBS0h8Txjbno5c9Pxcv6nshaShdvGhWPnrZ8zJhbHOjowAAAADAoFIKqYOqqn6WfbuFdJRBkoOLIX9bSvloKeXYrveWUl6e5OvpvrTRMePzVVU9VUPEc3o5d1cNcwEAAAAAABgmhmsx5GObNuU3b789e//zP2sqhLxwypR8Y9GiHD1u3CCkZCDGNjflmtcvyp+84tSMGzM8vnoeN6Ypf3rBqbnm9YvsEAIAAADAqDCm0QFGkP+T5Je6HOtcDGlN8rullB8n+Xn2/bNfmGROl+u6U+un8S/v5dyPapwNAAAAAADAMNHa2ppkX+GjLzqu67iv3j60cWPevX598qUv1VQI+bVp0/IfCxZkyhhfbw43TU0lS86dm5ecNjPv+vyqrNz4RMOyLDphWj54aUtOnjmlYRkAAAAAYKj5aZT6uT7Jyv3Pq07HOxc+xiR5UZJLk7wmydwcvLtIOt3fcfzLVVX9cKChSikTkpzfaY3Oa91VVdXjA50NAAAAAADA8DMcdgypqip/cc89dSmEvGrGjNx0xhkKIcPcyTOn5IYrfznvacCuIePGNOVPXnFqbnjbWQohAAAAAIw6Pjmtk6qq2kspb0vy3Y5DObDzR+fiR+fdQLqWR7oe25PkPTVGuyjJ5BxcNOn4+70aZwMAAAAAADAMNXLHkPaqyh/dfXf+4YEHai6E/MbMmfnnU0/N2Ca/dXc4GNPclCvPnZtXLDg21962Pjcu35Qde9oGbb2JY5tz8eJZufLcuTlxxuRBWwcAAAAAhjOlkDqqquoHpZSrklydfaWL7oohXXcFKXmmjmuXVlW1rsZYb+7l3Hd7OQcAAAAAAMBhrBHFkLaqyhV33JH/+9BDNRdCWo87Lh+ZNy/Npbuv0xjOTpwxOe+/pCV/csFp+cJP7s+nfnBf1m9+sm7z5x49OW8688Rc8vzZmTphbN3mAgAAAMDhSCmkzqqq+n9LKZOT/D85uARS0n0B5Olbu7z+x6qqPlJLllLKc5K8vJvZHb5Wy3wAAAAAAACGt6Eshuxub89vrVuXf9+8ueZCyB+fcEL+ds6cFIWQw9rUCWNz+YtPylvOek5+eM9jueX2h7Pq/iey5oGt/dpBZNK45syfNTUts6fl/NOPyYtOmu6/DQAAAADYTylkEFRV9Z5Syqok/5jkWel+h5DulCS7s2+HkJoKIfu9PUlTp7U7Z1hdVdX9dVgDAAAAAACAQXLVVVdl1qxZNe3eMRTFkKfa2vLatWtz8yc/mXz/+/sefdWlEPJXJ52UP332s/2f/keQUkrOnDMjZ86ZkSRpa6+yYfP2rH5gS+54eFu27tiTXXvas6utPeObmzJ+bFOmThybU46ZkjOOPzJzjj4izU3+ewAAAACA7iiFDJKqqj5TSrkpydIkv53k+EPcsj3Jp5L876qqNta6finlWUmuSPdllCrJl2tdAwAAAAAAgMFz1VVX5eqrr3769XAthmzZuzcXrl6db3/60/3bHSR5RiHkH04+Oe+YPbt/MzjsNDeVPPeYKXnuMVMaHQUAAAAADntKIYOoqqonkvxFkr8opSxM8sIkc5JMy75dQR5L8kiSHyX5UVVVe+u4fGuS9iRbezj/n3VcCwAAAAAAgDrqWggZyO4dXQ1GMeQXu3fnZatW5aef/WxNhZCmJB8/9dS85dhj+zcDAAAAAGCUUwoZIlVVrUyycgjX+9skfztU6wEAAAAAAFAfXQshHYZbMeSBXbty/sqVWfdv/1ZTIWRsKfns6afntUcf3b8ZAAAAAAAohQAAAAAAAMBw0VMhpMNwKYZs2LEj561cmXs+//maCiETm5ryxQUL8rLp0/s3AwAAAACAJEohAAAAAAAAMCwcqhDSodHFkLVPPpnzV67MgzfcUFMhZGpzc75yxhk5e9q0/s0AAAAAAOBpSiEAAAAAAAAwDMyaNavP1zaqGHLvjh257vnPz6Nf/GJNhZCjxo7N11pa8rwpU/o3AwAAAACAgyiFAAAAAAAAwDBQy+4dQ7Xm+9/5zuS885Jbb+3fQp0KIcePG5dbFi7MaZMn928GAAAAAADPoBQCAAAAAAAAw8ThUAyppRAyd8KE3LpwYZ4zcWL/ZgAAAAAA0C2lEAAAAAAAABhGDotiSF91KoTMnzQptyxcmOPGj6/vGgAAAAAAo5hSCAAAAAAAAAwzI6IY0qkQ8oIpU3JzS0tmjB1bn9kAAAAAACRJmhodAAAAAAAAAHim1tbWLFu2rM/XL1myJNddd92QrtmjToWQc488Ml9fuFAhBAAAAABgECiFAAAAAAAAwDDViGLIFVdckVf99V8PfECnQsgrp0/PV1taMnXMmJoyAQAAAADQPaUQAAAAAAAAGMaGshhSVVXetX59vnzWWcl55/V/QKdCyBuOPjpfWLAgE5ubB5QFAAAAAIBD85M8AAAAAAAAMMy1trYm2Vf46IuO6zru64u2qsqSO+7I/3nooeRLX0puvbX/Qfd763HH5dp589JcyoBnAAAAAABwaKO+FFJK+XijMzRQVVXV7zY6BAAAAAAAAIc2mMWQ3e3tedO6dfnc5s37CiHXXDOwkNdck/Oe9axc9973piiEAAAAAAAMulFfCklyeZKq0SEaoGTf+1YKAQAAAAAAOEwMRjFkR1tbXrd2bW567LHaCiH73frnf56PzZzZr11KAAAAAAAYGKWQA/xUEQAAAAAAAMNePYshW/fuzUWrV+e2LVvqUgjpy5oAAAAAANSPUsgBo223ECUYAAAAAACAw1Q9iiGP7tmTl69alR9v21bXQkhvawIAAAAAUF9KIQeMppLEaCvAAAAAAAAAjDi1FEM27dqV81euzO1PPTUohZDu1gQAAAAAoP6UQg5QlAAAAAAAAOCwMpBiyObdu/PxF7wgG3buHFghZOnSfX/7eJ9iCAAAAADA4FEKAQAAAAAAgMNYf4shf/aOd/S72PG0pUuTCy/MlObmLDnhhHzwj/6oT7cphgAAAAAADA6lkOTnsUsIAAAAAAAAh7H+FkP6XQZJni6EzBgzJje3tOQF55yT506a1K9dSjpnBQAAAACgdqO+FFJV1XManQEAAAAAAABq1e9iSH/sL4QcN25cbl24MKdPnjygNRVDAAAAAADqa9SXQgAAAAAAAGCkGJRiyP5CyEkTJuTWhQszZ+LEmtZUDAEAAAAAqB+lEAAAAAAAABhB6loM2V8IOX3SpPzXwoU5fvz4uqypGAIAAAAAUB9NjQ4AAAAAAAAA1NcVV1yRC/76r2sbsr8Q8vwjjshtixb1WAjp0NrammXLlvV5/JIlS3LdddfVlhEAAAAAYJRTCgEAAAAAAIARpK2q8rY778xNZ521r9gxEPsLIecceWT+e9GiHDVuXJ9uUwwBAAAAABhaYxodAAAAAAAAAKiPXe3tuWzduvz75s0DH3LeecmFF+bl06fnhvnzM6m5uV+3t7a2JtlX+OiLjus67gMAAAAAoO/sFAIAAAAAAAAjwPa9e/Oq1asPFEK+9KXkmmv6P+jWW/P8b34z/7FgQb8LIR3sGAIAAAAAMDSUQgAAAAAAAOAw94vdu/OSlStz6+OP7zsw0ELIfj+5+up84vrra8qkGAIAAAAAMPjGNDoAAAAAAAAAMHAbd+7MS1etys+eemrfgRoLIR2WLFmSZF+5Y6A67u2YNRRrAgAAAACMJkohAAAAAAAAcJj62ZNP5qWrVmXjrl37DtSpENJBMQQAAAAAYHhTCgEAAAAAAIDD0I+3bs0rVq/OL/bs2XegzoWQDoohAAAAAADDV1OjAwAAAAAAAAD989+PP55fW7mytkLIeef1+dIlS5bkuuuu69/8LlpbW7Ns2bIhXRMAAAAAYKSzU0iDlVLmJ1mcZEGS2UmOTzI1ycQk45OU/ZdWVVXNbUhIAAAAAAAAho0vbN6c37z99uyuqn0HBlIIWbo0017zmlzxqlflA+98Z59usWMIAAAAAMDwoxQyxEopzUkuTPL6JOclmdHdZd0cq/q5zrQk03s4/VhVVU/0Zx4AAAAAAACNd/2mTVly551p7zgwwELIsa99bb7W0pKWs8/OyRMnDmlJo7/FkE2bNg14LQAAAACAkU4pZIiUUiYn+YMkf5jk6I7DvdzSuQTS23U9aUnyjR7OfS3JBQOYCQAAAAAAQANUVZW/27gx79mw4cDBARZC5lx6aW5ZuDBzJk5M0pjdO/q65vve975cddVVA14HAAAAAGCka2p0gNGglPLmJPck+askM7Ov5FGyr/jR06MmVVV9K8m3O63V+XF+KeW4WtcAAAAAAABg8FVVlT9ev74uhZCFv/Eb+e7ixU8XQjq0trZm2bJlfR61ZMmSXHfddf1bv4tDrakQAgAAAABwaEohg6iUcmQp5UtJ/m+So/LMIkjSfWmj86MWHd8EdF2zKclv1TgbAAAAAACAQba3vT2/c8cd+dD99x84OMBCyNmXXZZvLlqUY8eP7/aS4VQMUQgBAAAAAOgbpZBBUkqZk+R/klyQg8sgyTNLH3XdJaSTLyW5t7t4SS6v4zoAAAAAAADU2Y62trx27dp84qGHDhwcYCHkVZdfnq+1tGTa2LG9XjqQYshr3nF1bvjJ/bnr4W1pa+//V11d11QIAQAAAADouzGNDjASlVLmJvlGktn7D3Uug6TLsXRzri6qqqpKKf+c5C/2r1c6/T2tlHJyVVV313tdAAAAAAAAarNl795ctHp1vrVly4GD/S2EnHlmctZZefNb35rrTzklY5sO/XtxVVXljJe8Nhf+3qZ86SNX92mZGz98Vb511y8yZdHLM2lcc04/bmpaZk/L+acfkzPnTE8ph/4arLW1NUmyadMmhRAAAAAAgH4oVVXPjSkopUxN8qMk89J7GaTzsQeT/DzJo0mOSvLCPLPEUVVV1TyAPHOT3NXdvCS/X1XVtf2dCdRPKWVtktO7Hj/99NOzdu3aBiQCAAAAAKDRHt69Oy9ftSortm8/cLC/hZClS5MLL8wfzZ6dD86dm6ZDFDO27NiTL/z0/nz6B/dl/eYnkyTbVtycx7724T4vOf1lb8+URS8/6NjcoyfnsjNPzCXPm50jJ/a+SwkAAAAAQC3mz5+f22+/vbtTt1dVNX+o8wwVO4XU3yfSeyGk4/WPknwsyTerqlrfcUEp5XezrxRSF1VVrS+lrEmyIM/cneS8JEohAAAAAAAAw8Q9O3bkpatW5e4dOw4cHGAh5G9OOinvefaze92p475Hn8y1t63Pjcs3ZceetoPOdRQ8+loM6biuczFk/eYnc/WXbs/f3XxHLl48K1eeOzcnzpjc9/cCAAAAAECvlELqqJRySZKL88xCSOfXK5Israrqm0MY7absK4V06Cin/OoQZgAAAAAAAKAXa7Zvz0tXrcqDu3cfODiAQki58MJcO29eWmfN6vGyvW3t+di378nf33pndu9t7/G6ehRDkmTHnrZ89kcbc8NPH8jS8+flinPmpLmp991LAAAAAAA4tKZGBxgpSinNST7Q+dD+vx0FjJLkuiS/PMSFkCTpvF7nT9efVUo5bYizAAAAAAAA0MX3tmzJOStW1FwIGXfRRfnc6af3Wgi5+5Ftee2138/f3vyzXgshHaYsenmmv+ztfY7x2Nc+nG0rbu723O697fnfX/1ZXvvR7+XuR7b1eSYAAAAAAN1TCqmf30xyUg6UQNLpeZXk76qqurKqql0NyPaDHNitpOpyTikEAAAAAACggb766KM5b+XKPLF374GDAyiETH71q/OVM87I62bO7PaS9vYqy25bnwv+4TtZufGJfmWsZzEkSVZsfCIX/MN3suy29Wlv7/r1FQAAAAAAfaUUUj+/2+V150LIDVVVvWfoI+0PUlVPJNnYw+lThzILAAAAAAAAB3z24Ydz0Zo12dHeaceOARRCZrzmNfnvRYty3vTp3V6yp609Sz+3Iu//at92B+lOvYshu/e25/1f/VmWfm5F9rQNLBMAAAAAwGinFFIHpZTjkvxKut+NY3uS3xvyUM/0sxzYwaQzpRAAAAAAAIAG+PD99+e31q3L3qrTV0sDKITMft3r8u3Fi/PCqVO7vWTnnra87dM/yY0rNtWYuP7FkCS5ccWmvO3TP8nOPW21xgMAAAAAGHWUQurjV3OgcNH5b5XkQ1VV/aIRobq4r4fjc4Y0BQAAAAAAwChXVVWuuueevOPuuw/6pbGBFEJOef3r893Fi3Pa5MndXrKnrT1v/8xPc+u6R2rK3NlgFENuXfdI3v6Z5XYMAQAAAADoJ6WQ+nhxL+c+PmQpevdQN8dKkmlDHQQAAAAAAGC0aq+qvOOuu3L1fd38ntejj/Z90NKlecEb35hvL16cZ0+Y0P1a7VX++PMr61oI6dDfYkjb9kO/t1vXPZw//vzKtLdXh7wWAAAAAIB9lELq45ROz6sc2C3k9qqq7m9Anu483uV1x6fpU4Y6CAAAAAAAwGi0u709l61bl3/atKn7Cy6/PHnLWw49aOnS/Pqb3pT/XrgwR48b1+NlH/v2hty4ooe16qCvxZAjX/ybmXb2b/Vp5o0rNuX672yoNRoAAAAAwKihFFIfJyXp+pNFVZLvNiBLT3b2cFwpBAAAAAAAYJA92daWV69Zk88+cohdOw5VDFm6NJf89m/nppaWTBkzpsfL7n5kWz50y50DC9sPhyqG9KcQ0uGD/3Vn7n5kW63RAAAAAABGBaWQ+pjew/GHhzTFwBzR6AAAAAAAAAAj2WN79uT8lStz82OP9e2GnoohS5fmitbWfG7+/Ixv6vlrvr1t7XnXkpsMNAAAIABJREFU51dl9972gQXup56KIQMphCTJ7r3teffnV6WtvetvsgEAAAAA0JVSSH1M7uH4IX7qaUg9q4fjbUOaAgAAAAAAYBT5+c6dOXv58nx/69b+3di1GLJ0af7k938/y+bNS3Mpvd56/XfuycqNT/Q/bA26FkMGWgjpsGLjE/nYtzfUIxoAAAAAwIjW857S1ENzowN00tNuJk8NaQoAAAAAAIBRYs327Xn5qlV5YPfugQ24/PJ9f2fMyIfe+c4sPeGEQ95y36NP5ppb7hzYejWasujlSZK27Y/WVAjpcM0td+YVC47NiTN6+n02AAAAAACUQurjySRHdnO8pyJGI8zo4Xg/f5YKAAAAAACAQ/nWE0/kotWrs6Wttk3bmy+/PB8/9dS8+dhj+3T9tbetz+697TWtWYuOYkg97N7bnmtvW5/3X9JSt5kAAAAAACNNU6MDjBA9FSt6KmI0wuIur0uSKsn9DcgCAAAAAAAwYt2weXNeunJlzYWQCU1N+eKCBX0uhGzZsSc3Lt9U05rDzY3LN2Xrzj2NjgEAAAAAMGwphdTHz7OvZNHVwqEO0p1SypFJzsi+EkhX9w1xHAAAAAAAgBHrnx54IJeuXZtdVXdfy/Td1ObmfK2lJRcedVSf7/nCT+/Pjj21FVGGmx172vKFn/iNMwAAAACAniiF1MeGLq+r7CuJ/FIpZVwD8nR1dg78u+5aXlk9xFkAAAAAAABGnKqq8t4NG/L2u+7q9le6+mPm2LG5bdGi/Mq0af1a/1M/GJm/BfapH9yXqsaSDQAAAADASKUUUh8/7fS8c+liXJJfGeIs3bm8l3P/M1QhAAAAAAAARqI97e35nTvuyN/8/Oc1z3rOhAn57uLFWTRlSr/u+8GGx7Jh85M1rz8crd/8ZH54z2ONjgEAAAAAMCwphdTHd3s59wdDlqIbpZS5SV6TPP2jVJ1/Rml3kh8OeSgAAAAAAIAR4sm2trx6zZp84qGHap61YPLkfHfx4pw8aVK/773l9odrXn84G+nvDwAAAABgoJRC6mN5ks37n3cuX5QkF5RSTmtIqn3emwP/nkunv1WS/66qamT+ZBQAAAAAAMAg27x7d359xYp89bHad7E4a+rUfGvRoswaP35A96+6/4maMwxnI/39AQAAAAAMlFJIHVRV1Z7khhxcuujQlOT6UkrzUOcqpVya5PIcKKh09fkhDQQAAAAAADBCbNixIy9evjw/2rat5lmvnD49/7VwYZ41duyA7m9rr7J209aacwxnazdtTVt7degLAQAAAABGGaWQ+rm+y+uO3TiS5MwkfzOUYUop8/Zn6vzpeOfnjyX57FBmAgAAAAAAGAmWb9uWs37609y1Y0fNs37n2GNz44IFmdw88N8XW795e3bsaas5y3D21O62bNi8vdExAAAAAACGHaWQOqmq6qdJvp6DyyAdz0uSd5dSrhqKLKWUM5PclmRKpxzp9LxKsqyqql1DkQcAAAAAAGCkuPWxx3LuihV5eM+emmf9+Ykn5vpTTsmYptq+slt9/5aasxwOVj8wOt4nAAAAAEB/KIXU15/lQCGku2LIn5dSPlFKmdLdzfVQSvndJN9IckyndTvnSZJfJPm7wcoAAAAAAAAwEn3m4YdzwerV2dZW264cJclHnvvc/OVJJ6WUcsjrD+XOh7fVPONwcMcoeZ8AAAAAAP2hFFJHVVX9MMnHcvDOHMnBxZA3Jbm7lNJaShn4PuBdFyjlVaWUnya5Lsn4HFwC6ZrjvVVVba3X2gAAAAAAACPdhzZuzG+tW5c9VXdfwfTd+FJyw/z5edvxx9cpWbJlR+27lhwOto6S9wkAAAAA0B9KIfX37iR37H/e+VuBzsWQo5N8NMlDpZRlpZSXllJm9GeRss+LSynvL6WsTfIfSRZ1WqdjzY4cHce/XFXV9QN4XwAAAAAAAKNOe1XlXXffnXevX1/zrGljxuTWhQvzmqOPrkOyA3btba/rvOFq157R8T4BAAAAAPpjTKMDjDRVVW0vpVyS5HtJpuZAISN5ZmFjRpK37n+klLI5yfaeZpdSrklyUpI5+x+TOs16OkKXY52LKeuT/Ha/3xQAAAAAAMAotLu9PZf/7Gf57COP1Dxr9vjxubmlJfMnT65DsoPtbhsdZYldo+R9AgAAAAD0h1LIIKiqal0p5YIkNyc5It0XQ7qWN5JkZvbtIpIu13f8/cNu7nl62W7OdT72cJKXVVX1WL/eDAAAAAAAwCi0de/evHbt2tz6+OM1z5o/aVJubmnJ7AkT6pDsmcY1Nw3K3OFm/Ch5nwAAAAAA/eGT00FSVdX3k7wsScdPR3UtgpQuxzse3RU+Ohzqvp4KIfcl+dWqqu4Z4NsBAAAAAAAYNR7atSvnrlhRl0LIOUcemW8vXjxohZAkGT9mdHzlN37s6HifAAAAAAD94ZPTQVRV1Q+SvDDJT/LMMkdyoMjRtezR48he7u96Tcf57yc5q6qqOwb8RgAAAAAAAEaJO596KmctX54V27fXPOuSo47Kf7W05Fljx9YhWc+OnDi484eLqaPkfQIAAAAA9IdSyCCrqmpjkl9O8mdJdqf7ckiHrgWPrrorkTy9VA4ug+xN8pdJzqmq6sGB5gcAAAAAABgtfrR1a168fHnu2bmz5lm/N2tWPjd/fiY0N9chWe/mHTNl0NcYDk4ZJe8TAAAAAKA/lEKGQFVVbVVV/U2S5ya5PvsKG13LIV13ATnk2G7u6Zj5hSSnV1V1VVVV7bW/AwAAAAAAgJHtpkcfza+tWJFf7NlT86y/OumkfPi5z01z6e23wOrnjNlHDsk6jXbG8aPjfQIAAAAA9IdSyBCqqur+qqpakzw7yXuT3Jnud//orijSUwmk4/GLJP+Y5NSqql5XVdX6oXhPAAAAAAAAh7tPPPhgLlq9Ok+11/ZbW81JPn7KKXnviSemDFEhJEnmHn1EJo4d/B1JGmnSuObMOfqIRscAAAAAABh2xjQ6wGhUVdXDSd6f5P2llDlJXp7kRUkWJ5mXZFwfxmxOsjzJD5PcmuQ7VVX1dZcRAAAAAACAUa+qqrz/5z/Pe++5p+ZZE5ua8vn58/PKGTPqkKx/mptK5s+amh/f9/iQrz1U5s+amuamoSvaAAAAAAAcLpRCGqyqqg1JPrL/kSQppRyTZFaSKUkmJhmbZFeSp5I8muTnVVU9NfRpAQAAAAAARoa2qsof3nVX/mnTpppnzRgzJl9pacmLpk6tQ7KBaZk9bUSXQlpmT2t0BAAAAACAYUkpZBjav5PIw43OAQAAAAAAMBLtbGvLZevW5YZf/KLmWc+ZMCFfa2nJvEmT6pBs4M4//Zh8/Lu173gyXJ1/+jGNjgAAAAAAMCw1NToAAAAAAAAADJUn9uzJy1atqkshZNERR+R7ixc3vBCSJGfOmZ45R09udIxBMffoyXnRSdMbHQMAAAAAYFhSCgEAAAAAAGBUuH/nzpyzYkW+tWVLzbNeMm1ablu0KMeNH1+HZLUrpeRNZ57Y6BiD4k1nnphSSqNjAAAAAAAMS0ohAAAAAAAAjHi3P/lkzlq+PGuefLLmWb85c2ZuamnJ1DFj6pCsfi553uxMHNvc6Bh1NXFscy55/uxGxwAAAAAAGLaUQgAAAAAAABjRvrtlS85evjwbd+2qedbS2bPz6dNOy7im4fc125ETx+bixbMaHaOuLl48K1MnjG10DAAAAACAYWv4fVoNAAAAAAAAdXLj5s05b+XKPL53b82zPjh3bj508slpKqUOyQbHlefOzbgxI+MrwHFjmnLluXMbHQMAAAAAYFgbGZ8IAwAAAAAAQBfXPvBAXrt2bXa2t9c0Z2wp+fRpp+VdJ5xQp2SD58QZk7P0/HmNjlEXS8+flxNnTG50DAAAAACAYW1MowMMV6WUZyX5QHovzny9qqp/GaJIvSqlTEjyd0mO6OWy71VVdf0QRQIAAAAAAGiIqqpy1b335i/vu6/mWUc0N+eL8+fnvOnT65BsaLz17JPy1TUPZeXGJxodZcAWnTAtV5wzp9ExAAAAAACGPaWQnv11kt9JUvVwflWSPxi6OL2rqmpnKeWmJP+ZpLmHy36zlPKNqqrWD2E0AAAAAACAIbO3vT1vu+uuXP/ggzXPOmbs2NzU0pLnTZlSh2RDZ0xzUz50aUsu+IfvZPfe2nZJaYRxY5rywUtb0txUGh0FAAAAAGDY620XjFGrlNKSpDX7CiGlm8fDSS6oqmp7w0J2o6qqm5O8I/syJs/MPT7J3zcmHQAAAAAAwODatndvLlqzpi6FkJMnTsz3nve8w64Q0uHkmVPyrvPnNTrGgLz7pfNy8szD8587AAAAAMBQs1NI967KvsJMlYN3CilJ2pO8qaqq2r9NGARVVS0rpfxqkjfkmbuclCSvLKW8qKqqHw55OA5LpZTxSeYlmZ1kSpJJSZ5Ksi3J/UnuqKpqd+MSAgAAAABAsmnXrrxq9eos3177b3r90pQp+coZZ+TocePqkKxxrjhnTtY9uDU3rtjU6Ch9dvGiWXnr2XMaHQMAAAAA4LChFNLF/l1CXp0DhYqSAzuGVEk+UFXV1xsUr69ak7wwyXP2v+7I3uGqJK8Y2kgcTkopZya5OPv+O5mfpLmXy9tKKWuT3JTkP6qq+sEQRAQAAAAAgKet2b49F6xenY27dtU86xXTp+dzp5+eI8Yc/l+jNTWVfODShdm+a29uXfdIo+Mc0nmnHZMPXLowTU2l0VEAAAAAAA4bTY0OMAz9QfaVKJJnlinuzb5CxbBWVdW2HPw+koPLLS8tpZzWiGwjUdnn5FLKb5ZSPlRK+VYpZVspperlcW+jc3enlPKGUspPknw/yf9K0pLeCyHZf74lyXuSfL+U8uNSyhsGNykAAAAAAOzz9ccfz4uXL69LIeTyY4/NfyxYMCIKIR3GNjflw298Xs47bWajo/TqvNOOyYffuDhjm319CQAAAADQHz5V7aSUMjXJb+TgIkhyoFDxh1VV1f6NwhCoquorSb6cZxZbOrxtaBONHKWUZ5dSLimlvL+UckuSx5LcleQzSZYmOSfJEY3M2F+llFNLKd9M8q9JnlfjuOcn+ddSyjdKKafUHA4AAAAAAHrwyYceystXrcrWtraaZ/3ps5+dj59ySsY2jbyvzyaMbc5HL3t+Ll40q9FRunXxoln56GXPy4Sxh/qdKgAAAAAAuho5P3NUH69LMikHdtTo/PcHVVV9uYHZBuJPk7xy//Oq09+S5LJSytKqqvY2JNlhopRyTJJf2v94wf6/Rzc0VJ2VUi5J8snUv8jyq0l+XEp5c1VVX6zzbAAAAAAARrGqqvKX992Xq+69t+ZZJck/nHxy3j57ds2zhrOxzU255vWLctpxU/OhW+7M7r3tjY6UcWOa8u6Xzstbz56TpqbS6DgAAAAAAIclpZCDvbaXc+8fshR1UlXVmlLKl5NcmIMLLklyZJLzk3y1QfEOF19LsrDRIQZLKeX3k/xj9v23MRiOSHJDKeXtVVV9ZJDWAAAAAABgFNnd3p4ld96ZTzz0UM2zxpWSfznttLxu5sw6JBv+mppKlpw7Ny85bWbe9flVWbnxiYZlWXTCtHzw0pacPHNKwzIAAAAAAIwEI2//6wEqpUxO8pIcvKNGh7sPw11COvx9L+deM2QpGHZKKW/J4BZCnl4qyYdLKW8e5HUAAAAAABjhtuzdmwtWrapLIeTI5ub818KFo6YQ0tnJM6fkhit/Oe95xakZN2Zovy4cN6Ypf/KKU3PD285SCAEAAAAAqAM7hRxwVpJxOXhHjY6/n2lgrppUVfXNUsrGJLNzcOGlJPn1hgWjoUopv5TkY+lbIeR72fe/ge8luTfJtiRTkszJvv/dvDHJmYdaMsnHSinrqqr6nwHGBgAAAABgFPv5zp25YNWqrH3qqZpnHT9uXL7a0pIzjjiiDskOT2Oam3LluXPzigXH5trb1ufG5ZuyY0/boK03cWxzLl48K1eeOzcnzpg8aOsAAAAAAIw2SiEHnNvLucO2FLLfvyb54xxcdEmSk0opx1dV9UDDkjHkSilTk/xbkrGHuPSuJG+rqurr3Zx7PMlP9j/+sZTy0iQfSTK3l3njkvxbKWVRVVVb+58cAAAAAIDRavm2bXnl6tV5cPfummfNnzQpN7W05NkTJtQh2eHvxBmT8/5LWvInF5yWL/zk/nzqB/dl/eYn6zZ/7tGT86YzT8wlz5+dqRMO9dUEAAAAAAD9pRRywPM7Pa86Pd9YVdVdQx2mzm7JvlJId34piVJI/VRJ7k7yYJJfaXCWnvxlkpMOcc2tSV5XVdWWvgysquq/SikvSPKFJL/Wy6UnJbkqydK+zAUAAAAAgJsefTSvX7s2T7a31zzrJdOm5YYFC3LkGF+RdTV1wthc/uKT8paznpMf3vNYbrn94ay6/4mseWBrv3YQmTSuOfNnTU3L7Gk5//Rj8qKTpqeUvmxcDgAAAADAQPjE+4AFObgM0rGjxm2NiVNX30uyJ/v+fVddzi1IcuOQJxo57k3yP0l+vP/xk6qqtpRSfjXJNxqYq1ullNOT/P4hLvt+kldXVfVUf2ZXVfVEKeXCJP+d5IW9XPqOUsrHqqpa15/5AAAAAACMPtdt2pTfu/PO9L2S0LO3HHNMrjvllIxraqrDtJGrlJIz58zImXNmJEna2qts2Lw9qx/Ykjse3patO/Zk15727Gr7/9m78zA7y/p+/O9nZrITEhIgC3uA7IEQrNXW7WddsGpdWq2iVNvaBJfafrXa+q17W5e6VcUl0VqtC+0XVFyqWGhr60ZVQoBsBEgggUgCCdknycyc5/dHMpCEZM5k5jlzJsnrdV1zJXPu+7zvz7lY/siT99y1DGttybAhLTl5xJBMmzA6c84YkymnnZTWFiUQAAAAAICBohSSpCiKUUnOyL7CRHcZpNsvmjJUhcqy3FUUxYokF+WxpZAZTRjpWHV/Di6A/LIsy03NHemovSs9/3e/OcnvH20hpFtZljuLonhpkiVJxh5hW1uSdyZ5eV/OAAAAAADg+Fcry/z1mjX5wNq1leS9+9xz885zznFjRR+0thS5cMLoXDhhdLNHAQAAAADgMJRC9jmjh7U7B2yKxroz+0ohhzpzoAc5xnwyyYYkvyjLckOzh+mPoiimJPndOtveXpbluv6cU5blvUVRvCvJx3vY9pKiKP5vWZZr+nMWAAAAAADHnz21Wl69cmX+ZePGfme1FUU+P21aXjVxYgWTAQAAAADA4ON+7H0m9bB294BN0ViHfo7uW1F6+uwnvLIs/7Esy+8e64WQ/V6fpLWH9TuTLKrorE8nWd3DemuS11V0FgAAAAAAx4nNHR155q23VlIIObm1NddfdJFCCAAAAAAAxzWlkH1O6WFty4BN0VgPH+H1nj47x4miKFqTvLzOto+VZdlVxXllWXam55tCkuTyoij8PwgAAAAAgCTJ6vb2/MbixfnR1q39zjpr2LD8+JJL8luneAwCAAAAAMDxzV/I3mdED2vbB2yKxtpxhNd7+uwcP56enm+F2Z3kKxWf+aUke3pYn5zkaRWfCQAAAADAMejn27blCYsX54729n5nzT3ppNw0b17mnHRSBZMBAAAAAMDgphSyz7Ae1vYO2BSNdaTP0dNn5/jx/Drr/1aWZaUFqLIstya5vs62enMBAAAAAHCcu+7BB/O0JUvyYEdHv7OeM25c/mfu3Ewe5vEHAAAAAAAnBqWQfXoqfowasCkaa+QRXu8c0ClolmfUWf+3Bp1bL/eZDToXAAAAAIBjwCfuuy8vXrYs7bVav7MWTJqUb8+endFtbRVMBgAAAAAAxwalkH129bB2pDLFseZI5ZaePjvHgaIoJiWZUWfbjQ06/oY667OKopjYoLMBAAAAABikusoy/+euu/Jnd92VsoK8D0yZks9MnZq2Fo++AAAAAAA4sfiT8X16KkacMWBTNNbkI7yuFHL8e3yd9XVlWa5rxMFlWd6T5Fd1tv1aI84GAAAAAGBw2tXVlZcsW5Z/uO++fmcNLYpcPWNG/vLss1MURQXTAQAAAADAsUUpZJ+Helg7b8CmaKxDP0f3k5EHB3oQBty8OuuLG3z+L+usX9Lg8wEAAAAAGCQ27t2bpy9Zkm8+1NOjmd45pa0tN1x8cV42YUIFkwEAAAAAwLFJKWSfe3pYmzFQQzTYzOQxN7CXSe5twiwMrLl11m9r8Pm31llXCgEAAAAAOAGs2rUrT1y8OP+7fXu/s84bPjw/veSSPGXs2AomAwAAAACAY1dbswcYDMqy3FwUxY4ko/LY4sRvNmGkShVFMSnJOdn32Yoc/BnvacZMDKipddbvbPD5d9dZv7DB5wMAAAAA0GQ/3rIlL1i6NJs7O/ud9fjRo/PtOXMyYejQCiYDAAAAAIBjm5tCHnVH9hUmunUXKJ5YFMWxXp55Wg9rKwdqCJrmnDrrdzX4/Hr55zX4fAAAAAAAmuhfN27MM269tZJCyAvGj89/zZ2rEAIAAAAAAPsphTzqZwf8/sByyMlJLhvgWar20h7WbhqwKRhwRVFMTDKizrb1DR7j/jrrI4uiOL3BMwAAAAAAMMDKsszfr12bly1fnj3loRe1H703nnFGvj57dka2tlYwHQAAAAAAHB+UQh7VUzniFQM2RcWKohiffaWW7qctBz512ZnktgEfioE0uRd7HmjwDL3J782cAAAAAAAcIzprtbzuzjvzl6tX9zurSPKx88/Pxy+8MK1FUXc/AAAAAACcSNqaPcAg8sM8tjhRZt+zht8timJKWZb9f3Ix8P4sybA8+lkO/PVHZVnBj+ZiMBtfZ31bWZZ7GjlAWZbtRVHsSHJSD9vqzQkAAAAAwDFiR2dnXrZ8ef5t8+Z+Zw1vaclXZ8zIi087rYLJAAAAAADg+OOmkP3Kslyf5GfZV5jIAb8mSWuSdw74UP1UFMWpSd6Qg28HOdC1AzgOzTGuzvq2AZmi/jn15gQAAAAA4Bjwqz178tQlSyophJw6ZEj+6+KLFUIAAAAAAKAHbgo52LVJfuOA7w+8WeOKoii+WJblD5sxWB99LMnYHHw7SLfOJNc1YygG1Cl11geyFDK5h/VBVwopiuL1SV43AEedPwBnAAAAAAA03LKdO/Pbt92WtXv6f0H1hSNG5PsXXZTzR4yoYDIAAAAAADh+KYUc7KtJ3pdkWB4tUuSA3/9TURSPK8tyU5Pm67WiKF6a5BU5+HMkj5ZDrivL8uFmzMaAGl5nfdeATJHsrLNeb85mOC3JzGYPAQAAAABwLPjPhx/Oi5cuzdaurn5n/ebJJ+dbc+Zk/JAhFUwGAAAAAADHt5ZmDzCYlGX5YJIv57Elim5nJ7m2KIpB/RSiKIp5Sb6Qg28GOdSHB2gcmmtonfXOAZmi/jn15gQAAAAAYJD65wceyGW33VZJIeSlp52WGy++WCEEAAAAAAB6SSnksT6cpPupRXepovt2jSLJU5J8qyiKwXizQYqieFySf08ysvul/b92z18m+Z+yLH/RhPEYeEohAAAAAAA0RK0s8/bVq/OqlSvTUfb0c6p6561nnZWrZ87M8NbWCqYDAAAAAIATg1LIIcqyvDPJp3PwDSHJwcWQZye5sSiKyQM8Xo+KonhhkhuTjMujsyYH3xhSS/KmAR6N5qn333j/f2xb79Q7xxM+AAAAAIBjyK6urvz+8uX5u7Vr+53VkuTTF16YD55/flqKQx/PAAAAAAAAPVEKObx3JNm4//cHFioOLIb8RpIlRVG8aIBne4yiKEYVRfHxJF9PcnIOnvmRbftf/1xZlrcM5Hw0Vb0bOtoGZIr653QMyBQAAAAAAPTbr/bsyVOXLMm1Dz7Y76xRLS359pw5ee0ZZ1QwGQAAAAAAnHgG6i+EH1PKstxWFMWCJN/MYwsWBxZDTk1ybVEUNyR5a1mWtw3knEVRtCS5Isn7kkw8YLbuOXPA92WSNUn+aiBnpOn21lkfqP8HDKmzXm/OZngwyfIBOOf8JMMG4BwAAAAAgH5bsn17nr90ae7bs6ffWROHDs1358zJpaNHVzAZAAAAAACcmJRCjqAsy28VRfHhJH+RR0sg3Q4tXzwzyS37yyFXJflBWZYNu/mgKIqJSV6R5E+TnJXHFkAO9/3uJL9XluW2Rs3FoFTv38OhAzLFMVgKKcvyU0k+1ehziqJYlmRmo88BAAAAAOivbz/0UC5fvjw7a7V+Z80cOTLfu+iinDN8eAWTAQAAAADAiUsppGdvS3JRkmflyMWQA19/5v6vrUVRfDvJfyb5YVmWa/szxP4bQR6X5GlJLkvy5CQtOXIZ5NDXaknml2W5pD9zcEzaUWd9oH782sl11uvNCQAAAABAk5RlmY+sW5e3rl79mOvV++L/Gzs235g1K2OH1Pt5QgAAAAAAQD1KIT0oy7KrKIoXJrk+yVNy+GJI8thSxtgkV+z/SlEUDydZlmRlkvVJHkjyUPbd3rE7SWeSYfu/TkoyYf/XOUlmJZmag290OPTcA1/LIa+VSd5YluVXevmxOb5srrM+UKWQeufUmxMAAAAAgCbYW6vldatW5R8feKCSvCsmTMjnp03L0JaWSvIAAAAAAOBEpxRSR1mWu4uieG6S72TfTR2Hu5WjXkljXJIn7f86Wocre/RUBjn0hpA/L8vy0304l+PDpjrrYwdkimRMnfV6cwIAAAAAMMA2d3Tkd5ctyw+3bKkk7x3nnJP3nHtuiuJwjz4AAAAAAIC+8GOYeqEsy51JnpXk8zl8AaRbccj6gV9FH78Ol3XoWTlgX/fajiQvLMvyqqP9vBxXHqqzPqwoioYWQ4qiGJ+Db7o5HKUQAAAAAIBBZNWuXXnC4sWVFELaiiL/OG1a3nveeQohAAAAAABQMaWQXirLsrMsy/lJXpdkZ/YVLw4saRyoN8WOo/k6UuYj4x2y79YkTyzL8rt9/sAcL9b2Ys+EBs/Qm/zezAkAAAAAwAD4z4cfzhNkYQ4EAAAgAElEQVQWL86d7e39zhrT2prvz5mTP5o0qYLJAAAAAACAQymFHKWyLD+b5OIkP8zhCx+H09dbQo5UAnlknBxcBulM8u4kv1aW5bI+fDyOM2VZ7kj9WzjOafAY9fI37r+NBwAAAACAJvv8+vV59m235eHOzn5nnT98eG6aNy/PGDeugskAAAAAAIDDUQrpg7Is15Rl+fQkL0qyNEe+EaQhx+exZZAyyVeSTC/L8r1lWfb/SQ3HkzV11i9s8Pn18uvNBwAAAABAg3WVZf7irrvyJ6tWpbPs/yOOJ48Zk5vmzcv0UaMqmA4AAAAAADgSpZB+KMvyW0nmJnlpkv/Y//KRCiJ9KYoc6f3dZ2xL8pkkc8qy/IOyLP3leg6n3q0x0xp8/tQ66261AQAAAABooh2dnXnR0qX5yH33VZL36okTc8PFF+fUoUMryQMAAAAAAI6srdkDHOvKsiyTXJvk2qIopiS5PMlzk/xaDi7dlIf8ejSKA36/LckNSb6d5NqyLNv7kMeJZXGSV/WwfkmDz59XZ/2WBp8PAAAAAMARrN29O79z++25defOSvI+MGVK3nrWWSmKov5mAAAAAACg35RCKlSW5eokf5vkb4uiGJ/kqUkuzb6/dD8nyaQc3e0su5OsTrIk+/7i/M+T/Kwsy84q5+a4t7jO+tyiKFrLsuyq+uCiKNqSXFxnm1IIAAAAAEAT/HzbtvzO7bdnQ0dHv7NGtrTkKzNm5EWnnVbBZAAAAAAAQG8phTRIWZabknxj/1eSpCiK1iSTk5yRZEyS4UlGZN8/hz1J2vd/PZTkvv0Z0F+/zL6C0fAjrJ+UfeWlnzfg7McnGdnD+u4kNzfgXAAAAAAAevD/Nm7Mq1auzO5ard9Zk4cOzXfmzMm80aMrmAwAAAAAADgaSiEDaP9NDOv2f8GAKMtyd1EUP0nyWz1se2YaUwp5Rp31H5VlubsB5wIAAAAAcBhlWeZv770377znnkry5p10Ur49Z07OGDaskjwAAAAAAODotDR7AGBA3FBn/cUNOvf36qz/e4POBQAAAADgELu7unLFihWVFUJefOqp+Z9LLlEIAQAAAACAJlIKgRPDtXXW5xVFMa3KA4uimJVkTp1tX6/yTAAAAAAADm/j3r15+q235qsbN1aS97azz841s2ZlVGtrJXkAAAAAAEDfKIXACaAsy7uT3FRn259WfOwb66z/pCzLNRWfCQAAAADAIZbu2JFfX7w4P9u2rd9ZQ4oiX5w+Pe+bMiUtRVHBdAAAAAAAQH8ohcCJ4wt11v+wKIpJVRxUFMWZSf6gzrYvVnEWAAAAAABH9v1Nm/Ibt9ySe3bv7nfW+La23HjxxXnVxIkVTAYAAAAAAFRBKQROHF9OsrGH9ZFJPlDRWR9MMryH9Q375wEAAAAAoAHKsswn7rsvz7v99mzv6up33vSRI/O/l16ap4wdW8F0AAAAAABAVZRC4ARRluXuJB+vs+0PiqJ4UX/OKYriJUkur7PtH8qy3NOfcwAAAAAAOLyOWi2vv/PO/Nldd6VWQd4zTzklP7vkkpw/YkQFaQAAAAAAQJWUQuDE8g9J1tbZ86WiKB7fl/CiKJ6Q5At1tq1N/XIKAAAAAAB9sKWjI8+9/fZ8Zv36SvKunDw5/zZnTsYOGVJJHgAAAAAAUC2lEDiBlGW5K8mb62wbneTfi6J43tFkF0XxgiQ/SHJSna1vKsuy/WiyAQAAAACo7+729jzxlltyw8MP9zurJcnHL7ggn77wwgxp8TgJAAAAAAAGq7ZmDwCDXVEUT0ky9SjfNq3O+klFUbymD+P8d1mWd/bhfY8oy/Laoii+luTyHraNSfLtoiiuTvI3ZVmuPNLGoihmJnlnkt/vxfFfLcvy60c1MAAAAAAAdf1oy5a8aOnSbOrs7HfW6NbW/MvMmfnt8eMrmAwAAAAAAGgkpRCo74+SvKrizPFJPteH9/1hkn6VQvZbkGRekuk97CmyrzhyeVEUtyT5aZI1SXZk320i5yX5zSQX9/LMlUmu7OvAAAAAAAAc3pceeCB/cscd6SjLfmedM2xYvjNnTuacVO9SaAAAAAAAYDBQCoETUFmWO4qieHaSHyU5uxdvuWT/V1+tTfLssix39CMDAAAAAIAD1Moyb1+zJu9fu7aSvCecfHKumz07E4YOrSQPAAAAAABovJZmDwA0R1mWa5P8VpK7G3zUXUmevv88AAAAAAAqsLOrKy9ZtqyyQsjLTz89/3XxxQohAAAAAABwjFEKgRNYWZZ3Jfm1JD9o0BHXJ3l8WZaNLp4AAAAAAJww1u/Zk6fecku+8dBDleS959xz89UZMzK8tbWSPAAAAAAAYOAohcAJrizLh8uyvCzJq5NsrCh2Y5JXlWX5nLIsH64oEwAAAADghLd4+/Y8/uabc/OOHf3OGlYUuXrGjLzz3HNTFEUF0wEAAAAAAANNKQRIkpRl+aUkU5K8PsmKPsYs3//+88qy/OeqZgMAAAAAIPmXDRvypFtuyf179/Y7a8KQIfnh3Ll52YQJFUwGAAAAAAA0S1uzB4DBrizLV2ffLRrHvbIsdyb5dJJPF0UxNcllSeYlmZXkjCSjk4xMsivJ9iT3ZV8RZHGS75dleWcz5gYAAAAAOJ51lWXevmZNPrB2bSV5c0aNynfmzMk5w4dXkgcAAAAAADSPUghwWGVZrkqyqtlzAAAAAACcyLZ2duYVy5fn3zZvriTvuePG5eqZMzO6zSMiAAAAAAA4HvgTfwAAAAAAgEFo1a5decHSpVm5a1clef/nzDPzofPPT2tRVJIHAAAAAAA0n1IIAAAAAADAIHP9pk152fLl2drV1e+stqLIpy68MPMnT65gMgAAAAAAYDBRCgEAAAAAABgkyrLMR9aty1+uXp1aBXlj29py7axZ+a1TTqkgDQAAAAAAGGyUQgAAAAAAAAaB9q6uzF+1Kl/ZsKGSvAtGjMh358zJtJEjK8kDAAAAAAAGH6UQAAAAAACAJrt/z568cOnS/HL79krynjpmTL4+e3bGDxlSSR4AAAAAADA4KYUAAAAAAAA00c+2bs2Lly3LA3v3VpL3RxMn5jNTp2ZoS0sleQAAAAAAwOClFAIAAAAAANAkX/jVr/LaVauytyz7ndWS5INTpuTNZ52Voij6PxwAAAAAADDoKYUAAAAAAAAMsM5aLW++++584v77K8kb09qaf5k5M5eNH19JHgAAAAAAcGxQCgEAAAAAABhAmzo68tJly/KfW7ZUkjdtxIh8e86cTB05spI8AAAAAADg2KEUAgAAAAAAMEBu37EjL1i6NGt2764k77fHjcvXZs7MmDaPfAAAAAAA4ETkCQEAAAAAAMAA+OaDD+aKFSuys1arJO9tZ5+dvznvvLQWRSV5AAAAAADAsUcpBAAAAAAAoIFqZZm/vffevOueeyrJG9HSki9Mm5aXTZhQSR4AAAAAAHDsUgoBAAAAAABokB2dnXnVypX5xkMPVZJ35rBh+dbs2Zk3enQleQAAAAAAwLFNKQQAAAAAAKAB1rS35wVLl+b2nTsryXvSmDG5dtasTBg6tJI8AAAAAADg2KcUAgAAAAAAULH/fPjhvHTZsmzq7Kwkb/6kSfnkhRdmaEtLJXkAAAAAAMDxQSkEAAAAAACgImVZ5lP3358/v+uudFWQ11YU+fgFF+S1kyenKIoKEgEAAAAAgOOJUggAAAAAAEAF9tRqef2qVfnHBx6oJO/UIUNyzcyZedopp1SSBwAAAAAAHH+UQgAAAAAAAPppw969efHSpfnptm2V5F00alS+NXt2zh0xopI8AAAAAADg+KQUAgAAAAAA0A+/3LYtL1q2LPft2VNJ3u+ddlq+OH16RrW2VpIHAAAAAAAcv5RCAAAAAAAA+uhrGzbkj++4I7trtUry/ubcc/PX55yToigqyQMAAAAAAI5vSiEAAAAAAABHqass839Xr87fr1tXSd5Jra35yowZecGpp1aSBwAAAAAAnBiUQgAAAAAAAI7Clo6OXL5iRb6/eXMleecPH55vzZmTWaNGVZIHAAAAAACcOJRCAAAAAAAAeumOXbvyO7ffnlXt7ZXkPeOUU/KvM2dm3JAhleQBAAAAAAAnFqUQAAAAAACAXvjepk15+fLl2dbVVUnen595Zj40ZUraWloqyQMAAAAAAE48SiEAAAAAAAA9KMsyH1q3Ln+1enXKCvKGFkUWTp2aV0+aVEEaAAAAAABwIlMKAQAAAAAAOIJdXV15zR135OqNGyvJmzR0aL4xa1aeMGZMJXkAAAAAAMCJTSkEAAAAAADgMNbu3p0XLV2axTt2VJL3+NGj883ZszN52LBK8gAAAAAAAJRCAAAAAAAADvEfDz+cly1fnoc6OirJu2LChCyaOjXDW1sryQMAAAAAAEiUQgAAAAAAAB5RlmU+uHZt/nrNmtQqyGtJ8uHzz8+fn3lmiqKoIBEAAAAAAOBRSiEAAAAAAABJtnV25tUrV+abDz1USd7Ytrb868yZeda4cZXkAQAAAAAAHEopBAAAAAAAOOEt37kzL166NHe0t1eSN2PkyHxr9uxcOHJkJXkAAAAAAACHoxQCAAAAAACc0K7ZuDF/uHJldtZqleQ9f/z4fGXGjJzc5jEMAAAAAADQWJ5GAAAAAAAAJ6TOWi1vW7MmH163rrLMvz777Lz3vPPSUhSVZQIAAAAAAByJUggAAAAAAHDC2bh3b35/+fL8cMuWSvJGtLTki9On56Wnn15JHgAAAAAAQG8ohQAAAAAAACeUm7Zuze8tW5b79+6tJO/sYcPyrdmzM3f06EryAAAAAAAAekspBAAAAAAAjnNdtTJ3P7gjt9+3Nas2bM/W9o7s6axlb1ctQ1tbMqytJWNGDMnUCaNz0ZljMuW0k9LaUjR77MqVZZmF69fnjXfdlY6yrCTzyWPG5NpZs3L60KGV5AEAAAAAABwNpRAAAAAAADjOlGWZm1Zvzg3LN+S2+7Zk2fptae/o6vX7Rw5tzcxJJ+eiM8fmmTMn5AlTxqUoju2SSHtXV167alW+tGFDZZmvmzw5H7vgggxtaaksEwAAAAAA4GgohQAAAAAAwHFia3tHvrH4vnzlpntz94M7+5yza29Xfnnvw/nlvQ/nCz9Zk/NPG5VXPuGcvHjemRkzYkiFEw+MNe3t+d1ly3LLjh2V5A1vacnCqVPzBxMnVpIHAAAAAADQV0ohAAAAAABwjLt308589r/vznW3rD+qG0F66+4Hd+Y931mev7/+jrzwksm58qnn55zxoyo/pxF+sHlzLl++PJs7OyvJO2/48Hxj1qzMHT26kjwAAAAAAID+UAoBAAAAAIBjVGdXLZ/70Zp87MZV2dtZa/h57R1dufrn6/L1xffnTc+cmj958pS0thQNP7cvamWZ9917b955zz0pK8p8zrhx+cqMGRk35Ni7LQUAAAAAADg+KYUAAAAAAMAx6K6N2/Pma27Lreu2DPjZeztr+cD3V+b6pQ/kwy+5KBecPrhuzdjS0ZE/WLky39m0qbLMd55zTt517rlpKQZnCQYAAAAAADgxKYUAAAAAAMAxpFYr87kfrc5HbhiY20F6smTdlvz2J36cN++/NaRlENwacvuOHXnxsmW5q729kryxbW358vTped6pp1aSBwAAAAAAUCWlEAAAAAAAOEZ0dNXylmtuzXVL1jd7lEfs7azl/d9fmRW/2pYPveTiDGltadosV2/YkNfccUd21aopy1w0alS+MXt2zh8xopI8AAAAAACAqimFAAAAAADAMWB3R1fe8LXFuXHFxmaPcljXLVmfHXs6c9Xl8zJ8SOuAnt1Rq+Utd9+dj99/f2WZrzj99CyaNi0jWwf2swAAAAAAAByN5v24LgAAAAAAoFc6umqDuhDS7cYVG/OGr92Sjq5qburojV/t2ZOn33prZYWQtqLIJy64IF+eMUMhBAAAAAAAGPSUQgAAAAAAYBCr1cq85ZpbB30hpNuNKzbkLdfcmlqtbPhZP9m6NZfefHN+vHVrJXmThg7ND+fOzZ+eeWaKoqgkEwAAAAAAoJGUQgAAAAAAYBD73I9W57ol65s9xlG5bsn6fP7HqxuWX5ZlPnnffXnakiX51d69lWQ+ecyY3HzppfnNMWMqyQMAAAAAABgISiEAAAAAADBI3bVxez5yw6pmj9EnH/73Vblr4/bKc3d1deWKFSvyxrvuSmdZzW0kf3bGGfmPiy/OpGHDKskDAAAAAAAYKEohAAAAAAAwCHV21fLma27L3s5as0fpk72dtfzFNbelq1ZNcSNJ7tq1K09cvDhf3bixkryRLS352owZ+YcLL8yQFo9MAAAAAACAY48nHAAAAAAAMAh9/sdrcuu6Lc0eo1+WrNuSz/1odSVZ333ooTzu5ptz286dleRdMGJEbpo3Ly+fMKGSPAAAAAAAgGZQCgEAAAAAgEHm3k0789EbVjV7jEp89IZVuXdT34sctbLMu9asyfOXLs3Wrq5KZnr++PH5xbx5mXPSSZXkAQAAAAAANItSCAAAAAAADDKf/e+7s7ez1uwxKrG3s5bP/vfdfXrv5o6OPO/22/Pee++tZJYiyd+ce26umz07Y4cMqSQTAAAAAACgmZRCAAAAAABgENna3pHrblnf7DEqdd0t67Ntd8dRvWfJ9u153M035/ubN1cywyltbfnenDl5+7nnpqUoKskEAAAAAABoNqUQAAAAAAAYRL6x+L60d3Q1e4xKtXd05Rs339fr/f/8wAN54i23ZM3u3ZWcf8lJJ+XmSy/NZePHV5IHAAAAAAAwWCiFAAAAAADAIFGWZb58073NHqMhvnzTvSnLssc9e2u1vH7Vqrxq5crsrtUqOffVEyfmJ5dckvNGjKgkDwAAAAAAYDBRCgEAAAAAgEHiptWbs/rBnc0eoyHufnBn/nfN5iOur9u9O09bsiSfXr++kvOGFEU+c+GF+cK0aRnR2lpJJgAAAAAAwGCjFAIAAAAAAIPEDcs3NHuEhjrS5/vepk2Z+8tf5mfbtlVyzhlDh+Z/5s7NlWeckaIoKskEAAAAAAAYjNqaPQAAAAAAALDPbfdtafYIDXXo5+us1fL2NWvywXXrKjvjaWPH5l9nzszpQ4dWlgkAAAAAADBYKYUAAAAAAMAg0FUrs2x9NTdlDFbL1m9LV61Ma0uR+/fsycuWL8+Pt26tLP8vzjor7z/vvLS1uCgdAAAAAAA4MSiFAAAAAADAIHD3gzvS3tHV7DEaatferqx+cEdWD+nIK1esyEMdHZXkjmppyT9Nn56XnH56JXkAAAAAAADHCqUQAAAAAAAYBG6/r7obMwarskjedvfqfH3vw5VlThsxIt+YPTszR42qLBMAAAAAAOBYoRQCAAAAAACDwKoN25s9QkN1Divy0MXDKi2EvOjUU/PF6dNzcpvHHQAAAAAAwInJUxIAAAAAABgEtrZ3NHuEhmkf35KHLhqe2rCikryWJO+bMiVvPeusFEU1mQAAAAAAAMcipRAAAAAAABgE9nTWDvv6lh9/Na0njc/ouZcN8ER9s33J9enasSljn/SKlEm2XjAkW88fklRU3jh1yJBcPWNGnjFuXCV5AAAAAAAAxzKlEAAAAAAAGAT2dj22FLLlx1/N1p9c/cj3g70Ysn3J9dn8g6uSJLXWIh1v/KPsHt9aWf7jRo/O12fNytnDh1eWCQAAAAAAcCxrafYAAAAAAABAMrT14D+yP7QQsvkHV2X7kusHeqxeO7AQkiTb/+dr2f2dL1eWf+XkyfnR3LkKIQAAAAAAAAdwUwgAAAAAAAwCw9oeLYUcWgjp1l26GGw3hhxaCHnEl76079dXv7rP2Se1tmbR1Kl5+YQJfc4AAAAAAAA4XimFAAAAAADAIDBmxJAkRy6EdBtsxZAjFkK69aMYctGoUfl/s2Zl2siRfRsOAAAAAADgOKcUAgAAAAAAg8DUCaPrFkK6DZZiSN1CSLc+FEP+ZNKkfPyCCzKitbVvwwEAAAAAAJwAlEIAAAAAAGAQmHPmmLSeNL7X+5tdDOl1IaTb+N59tpEtLVk4dWpeOXFiHycDAAAAAAA4cSiFAAAAAADAIHD+aSfl9F97bpL0umzRrGLIURdC3vSm5PnPr7tt1siRuWbWrMwYNaof0wEAAAAAAJw4lEIAAAAAAGAQaG0pMmvyyWnfX/AYrMWQRhVC/nDixFx14YUZ2draj+kAAAAAAABOLC3NHgAAAAAAANjnojPHJtlX8Bj37Df0+n2bf3BVti+5vlFjPaIRhZARLS354vTp+cL06QohAAAAAAAAR0kpBAAAAAAABolnzpzwyO8HWzFk6+3VF0JmjByZX1x6aV41cWI/pwMAAAAAADgxKYUAAAAAAMAg8YQp4zLltFGPfD9YiiEP3/GDbPletYWQKyZMyM/nzcusUaN63AcAAAAAAMCRKYUAAAAAAMAgURRFrnjCOQe91sxiSJnkwXX/nm3XfbL3b6pTCBne0pLPT5uWL02fnpPa2vo/JAAAAAAAwAlMKQQAAAAAACr27ne/O4sWLerTe18878yMGNJ60GuNLoZsX3J9tvz4qwe91tWW/GrTjdn1tU/0OqdeIWTaiBH5+bx5+eNJk1IURe9zAQAAAAAAOCw/ggsAAAAAACr07ne/O+95z3se+X7+/PlH9f4xI4bkhZdMztU/X3fQ66PnXpZkX+GjN7r3db/vSLYvuf6gzLFPekX2jGnJhl/dkPLz/9D7wesUQi4//fR8durUjHY7CAAAAAAAQGU8eQEAAAAAgIocWghZsGBBkqMvhlz51PPz9cX3Z29n7aDXqy6GHFoI2fqTq7NnTEt2T5uQfPJjvR+4h0JI0VXm784+N391wbluBwEAAAAAAKhYS7MHAAAAAACA48GhhZBuCxYsyKJFi44q65zxo/KmZ0497NrouZdl3LPf0OuszT+4KtuXXP+Y1w8thHTb/b2vJh/7aO+H7aEQ0razlre1TszbLjxPIQQAAAAAAKABlEIAAAAAAKCfjlQI6daXYshrnnReLj5r7GHX+lsMOVIh5Kj1UAgZ+avOPGvt0Lz3KdP7fw4AAAAAAACH1dbsAQAAAAAA4FhWrxDSbcGCBUmS+fPn9yq3rbUlH3nJRfntT/w4eztrj1kfPfeyJOl1uePAfQ0thNTKjFuxN+N+VcvH3/jraW1xQwgAAAAAAECjuCkEAAAAAAD6YfLkyb3ee7Q3hlxw+ui8+ZlTj7jelxtDGlkIadtVy8Sbdmf0us685VlTc8Hpo/t/FgAAAAAAAEekFAIAAAAAAP0wf/78LFy4sNf7j7YY8idPnpIXzj1y8eRoiyH9doRCyMgHOjPpp+0Ztq2WF86dnNc8acrAzQQAAAAAAHCCamv2AAAAAAAAcKybP39+kn2Fj97o3tf9vp60tBT50Esuzo49nblxxcbD7hk997IkqeYWkJ4crhBSK3PKyr0ZvbYzRZJnzJiQD73k4rS0FI2dBQAAAAAAADeFAAAAAABAFRp5Y8iQ1pZcdfm8PGPG6Ufc0/AbQw5TCGndVcvEm3bn5AMKIVddfkmGtHr8AAAAAAAAMBA8lQEAAAAAgIo0shgyfEhrPvPKS/PCuZOPuKdhxZDDFEJGbOjMpJ+2Z9i2WpLkhXMn5zOvnJfhQ1qrPx8AAAAAAIDDamv2AAAAAAAAcDyZP39+kn2Fj97o3tf9vp4MaW3JR186NzMmnZyP3LAqeztrj9kzeu5lSZLNP7iqtyP37NBCSK3MKXfszeh7990OMrStJX/xrKl5zZOmpKWlqOZMAAAAAAAAekUpBAAAAAAAKtbIYkhLS5EFTz0/vzXj9Lz5mtty67otfR+0nkMKIa3ttZy2ZE+Gbd1XRpl71th8+CUX5YLTRzduBgAAAAAAAI6opdkDAAAAAADA8Wj+/PlZuHBhr/cvWLAgixYt6vX+C04fna9f+cT81XOmZ2jbo3/cv33J9dXcEnJIIWTExs5M+ml7hm2tZWhbS972nOn5+mt/QyEEAAAAAACgidwUAgAAAAAADdLIG0OSpK21JVc+9fw8Z/bEfPa/784X/unz1RdCamXGrurIyfd0ZOSQ1rzw8ZNz5VPPzznjR/X/HAAAAAAAAPpFKQQAAAAAABqo0cWQJDln/Kjsvfc/svG7nzz6AXvQ2l7LqbfuyawhI3LF8y/Miy89MycPH1LpGQAAAAAAAPSdUggAAAAAADRYI4shHbVaXvD+9+f7b3973wc81Ec/mpP3FHntZa/OC186Kb9+3rgURVFdPgAAAAAAAJVoafYAAAAAAABwIpg/f34WLlzY6/0LFizIokWLetyzur09097xjmoLIftt+9RHMmX9T/OEKeMVQgAAAAAAAAYpN4UAAAAAAMAAqfLGkK9u2JA//vCHs+fDH65uwKM4HwAAAAAAgOZTCgEAAAAAgAHU32LI9s7OvOHOO/PPn/988tGPNmbIHs4HAAAAAABg8FAKAQAAAACAAdbXYsglL3tZXr58ee6+5poBKYQcer5iCAAAAAAAwOCiFAIAAAAAAE3Ql2JIy6pVqZVlNYWQN70pU0aMyOq/+7ten58ohgAAAAAAAAwmSiEAAAAAANAkR1sMqX3kI5WcW7zpTXn7G96Qd55zTr5w9tlHfWOJYggAAAAAAMDgoBQCAAAAAABNdLTFkP4a+9a35ltve1ueMnZsn85XDAEAAAAAABg8lEIAAAAAAKDJBqoYcsk735kb3/72jBsypF/nK4YAAAAAAAAMDkohAAAAAAAwCDS6GPKKD34wX37LW1IURSXnK4YAAAAAAAA0X0uzBwAAAAAAAJKyLFN77nPT9uY3V579rk98Il9561uPWAjpNn/+/CxcuLDXuQsWLMiiRYv6Ox4AAAAAAAB95KYQAAAAAABoss0dHXnNHXfkmw89lDzveUlZJh/9aCXZV33mM3n9lVf2er8bQwAAAAAAAI4dSiEAAAAAANBEP3z44bxyxUwVLJgAACAASURBVIrcv3dv5dkLFy7sU1lDMQQAAAAAAODYoBQCAAAAAABN0FGr5T333JP3rV2b8sCF73ynkltC+loI6aYYAgAAAAAAMPgphQAAAAAAwABb096ey1esyE3bth28MEgKId0UQwAAAAAAAAY3pRAAAAAAABhAV2/YkCtXrcq2rq6DFyoqhFRNMQQAAAAAAGDwUgoBAAAAAIABsL2zM39655350oYNj12suBBSdTFDMQQAAAAAAGBwUgoBAAAAAIAG+/m2bXnlihW5s739sYsNuiFEMQQAAAAAAOD4pxQCAAAAAAAN0lGr5W/vvTd/d++96TrchgYVQrophgAAAAAAABzflEIAAAAAAKABVu7cmStWrswvt28//IYGF0K6KYYAAAAAAAAcv5RCAAAAAACgQrWyzFX335+/XL06u2u1w28aoEJIN8UQAAAAAACA45NSCAAAAAAAVGTd7t35ozvuyI0PP3zkTRUVQhYuXJikecWMoy2GrF+/vpJzAQAAAAAAeJRSCAAAAAAA9FNZlvnaxo15/apV2drVdeSNFRZCDix3DPZiyLve9a68+93vruRMAAAAAAAAHqUUAgAAAAAA/bCpoyOvXbUq1zz4YM8bG1QIOdobOwa6GKIQAgAAAAAA0DgtzR4AAAAAAACOVddv2pQ5v/hF5YWQp733vfm/73jHY14/tBDSbf78+Vm4cGGv8xcsWJBFixb1en89RzpfIQQAAAAAAKCx3BQCAAAAAABHaWdXV95y9935zPr19TcfZSHkdR/5SD71pjclSYa0tOQ973lPkiMXQroNthtDFEIAAAAAAAAaTykEAAAAAACOwk1bt+aKlStzV3t7/c1HWQj5wFVX5S9f//pHvu8uVUyePLlX5Y3BUgxZv369QggAAAAAAMAAKMqybPYMACesoiiWJZl56OszZ87MsmXLmjARAAAAAEeyt1bLe++5J+9fuza13rzhKAshn/nsZ3NlL8sc9SxatKjXxZCk/i0kAAAAAAAAg92sWbOyfPnywy0tL8ty1kDPM1DcFAIAAAAAAHUs37kzV6xYkcU7dvTuDUdZCKm6lNHsG0MAAAAAAAAYGEohAAAAAABwBLWyzCfuuy9/tXp19vT25u0mF0K6KYYA/P/s3WmUXHd9Jv7nVqul1r7Llqyt1ZK8gQATg5OwhASHQxaGkIGZyZCEnBBj/oSY2CYMiRPbLMYYY/bEYEJCFpLBA3FI2GJnBgIkxAZveJVaarVakq1dspZu9VL3/yLyDHFAm+tW9fL5nFPH53Td+j7fK1lvqvqpHwAAAADA+KcUAgAAAAAAP8CWgYG87pFH8n/27z/5F42SQsiTFEMAAAAAAADGN6UQAAAAAAD4PmVZ5s937MibN2zIEyMjJ//CUVYIeZJiCAAAAAAAwPilFAIAAAAAAMfsHhzMG9avz+d37z61F47SQsiTFEMAAAAAAADGJ6UQAAAAAABI8sU9e/LrjzySHUNDp/bCUV4IeZJiCAAAAAAAwPijFAIAAAAAwIR2aHg4V2zcmE889tjpDdiz56QvbVUh5EmnWgzZvn17lesAAAAAAADwNCmFAAAAAAAwYX3rwIH8ysMPZ9PAwOkPed3r/u2/n/70cS9rdSHkSSdbDLn66qtzzTXXNGEjAAAAAAAATpdSCAAAAAAAE85gvZ5rNm/Oe7dsSb0RA09QDBkthZAnnagYohACAAAAAAAwNtRavQAAAAAAADTTA4cO5fl33533NKoQcswz3/SmvOHtb/8PPx9thZAnXXLJJfn4xz/+H36uEAIAAAAAADB2OCkEAAAAAIAJoV6W+cDWrfndTZsyWJYNm1skuXLZsryzszNTLrwwZ06enGuvvTbJ6C2EPOmpJ4YohAAAAAAAAIwtSiEAAAAAAIx7m/v787pHHsnXDxxo6NwVU6bkz849Ny+aM+f//uzJUsWSJUtGdSHkSU/uuH37doUQAAAAAACAMaYoG/htaACcmqIoHkxy3lN/ft555+XBBx9swUYAAAAA40tZlvn044/nt7q7c3BkpKGzf+3MM/PB1asza5LvXwIAAAAAAGi1888/Pw899NAPeuqhsizPb/Y+zeKTKgAAAAAAxqVdg4O5ZP363LZ7d0PnLmxvzy1nn53/tGBBQ+cCAAAAAADAqVIKAQAAAABg3Pm73bvz+kcfzc6hoYbOfcX8+bnl7LOzaPLkhs79QUbqZTbuOpTvbT2Q9TsO5kD/UI4O1zM4Us/ktlqmTKpl9tT2rD1jZtYtnZ1VC2ekrVZUvhcAAAAAAACjh1IIAAAAAADjxt6hoVzW3Z2/2LGjoXNntLXlw6tX53VnnpmiqKZ4UZZlvr1pb25/aEfu37o/D25/Iv1DIyf9+mmT23Le4llZt3ROLj7vjFy0al5luwIAAAAAADA6KIUAAAAAADAu3LZrVy5dvz47Gnw6yAtnz86nzzknnVOnNnTukw70D+Xzd2/NX3y7Nxt3HT7tOUcGR/Kd3n35Tu++fOpbPelaOD2vvWhFXnXB0sye2t7AjQEAAAAAABgtlEIAAAAAABjTdg8O5s3d3fnrnTsbOndyUeRdnZ25fNmytFVw4kbvnsO5+esbc9s920/pRJCTtXHX4Vz7dw/lhq88mlc+Z0kufXFXVsyf3vAcAAAAAAAAWkcpBAAAAACAMevWnTvzpg0bsqvBp4Osmz49f37uuVk3Y0ZD5ybJ8Eg9t3yjJx+4Y30Gh+sNn/9U/UMj+as7+/K5u7fl8ovX5jdeuCpttcaXXAAAAAAAAGg+pRAAAAAAAMacnYODedOGDflfu3Y1dG6R5HeWLcu1nZ2ZUqs1dHaSdO88mCtuvT/39e1v+OwTGRyu5/ovP5KvPPB4bnz1uqxeNLPpOwAAAAAAANBYSiEAAAAAAIwZZVnmr3fuzJs3bMie4eGGzu7s6MifnXNOXjBnTkPnJkm9XuaWb2zK+29vzukgx3Nv3/78zIe/mSuOnRpSc2oIAAAAAADAmKUUAgAAAADAmPDY0aN54/r1+ds9exo++/WLF+emrq7MnNT4t82HRup566335bZ7tzd89ukaHK7nPV9+JA8/9kTe9+pnpb2t8aeiAAAAAAAAUD2lEAAAAAAARrWyLPMXO3bksu7u7Gvw6SCL2tvzybPPzs8vWNDQuU8aGBrJb37m7tzx8M5K5j9dt927PYeODuejv3RBOtrbWr0OAAAAAAAAp8hXfwEAAAAAMGptO3o0P/+97+VXHnmk4YWQX1iwIA9ceGFlhZChkfqoLoQ86Y6Hd+Y3P3NPhkbqrV4FAAAAAACAU6QUAgAAAADAqFOWZT712GM5/84788W9exs6e2ZbW/70nHPyufPPz8LJkxs6+0n1epm33nrfqC+EPOmOh3fkrbfel3q9bPUqAAAAAAAAnIJJrV4AAAAAAAC+35aBgVzy6KP56r59DZ998dy5ueXss7Oio6Phs7/fLd/YlNvu3V5pRqPddu/2nLdkVi55UVerVwEAAAAAAOAkOSkEAAAAAIBRoSzLfHz79jzjrrsaXgiZ1daWW9auzVfXrau8ENK982Def/v6SjOqcuM/rE/3zoOtXgMAAAAAAICTpBQCAAAAAEDLbe7vz8X33ZdL16/PwZGRhs5++bx5eeDCC/P6JUtSFEVDZz/V8Eg9V9x6fwaH65XmVGVwuJ4rb70/I/Wy1asAAAAAAABwEpRCAAAAAABomXpZ5mPbtuUZd92Vf9y/v6Gz50yalD8955x88ZnPzLKKTwd50ie/2ZP7+hp7H812b9/+3PKNTa1eAwAAAAAAgJMwqdULAAAAAAAwMW3s78+vP/JIvn7gQMNn//z8+bl57dosmTKl4bN/mN49h3PT7eubllelm25fn5c/48ysmD+91asAAAAAAABwHE4KAQAAAACgqeplmQ9t3Zp1d93V8ELIvEmT8pfnnpu/fcYzmloISZKbv74xg8P1pmZWZXC4npu/vrHVawAAAAAAAHACSiEAAAAAADTN+iNH8qJ77slburtzpN7YAsWrFizIgxdemF8644wURdHQ2SdyoH8ot92zvamZVbvtnu15YmCo1WsAAAAAAABwHEohAAAAAABUbqQs8/6+vjzrO9/Jt554oqGzF7S353+ed17+1/nn58wmnw7ypM/fvTX9QyMtya5K/9BIPv/dra1eAwAAAAAAgONQCgEAAAAAoFIPHz6cF9xzT67cuDEDDT4d5DULF+ahCy/MaxYtavrpIE8qyzJ//u3elmRX7c+/3ZuyLFu9BgAAAAAAAD/EpFYvAAAAAADA+DRcr+fGvr5cs3lzjja4WLCovT1/tHZtXrVwYUPnno5vb9qbTbsOt3qNSmzcdTj/2rM3F62a3+pVAAAAAAAA+AGUQgAAAAAAaLgHDh3Krz36aL5z8GDDZ//3RYvyoTVrMr+9veGzT8ftD+1o9QqVuv2hHUohAAAAAAAAo5RSCAAAAAAADTNUr+e9W7bkHb29GWrw6SCLJ0/OzWvX5hULFjR07tN1/9b9rV6hUuP9/gAAAAAAAMYypRAAAAAAABrivkOH8muPPJJ7Dh1q+OzXnXlmburqytxRcjrIk0bqZR7c/kSr16jUg9ufyEi9TFutaPUqAAAAAAAAPIVSCAAAAAAAT8tgvZ7renvz7i1bMtzg00HOmjw5t5x9dl4+f35D5zbKxl2H0j800uo1KnVkcCSbdh3KmjNmtnoVAAAAAAAAnkIpBAAAAACA0/bPBw7kkkcfzYNHjjR89usXL86NXV2ZPWn0vpX9va0HWr1CU3xv2wGlEAAAAAAAgFFo9H6SBgAAAADAqHVgeDhv37QpN2/fnsaeDZIsnzIlnzz77Fw8b16DJzfe+h0HW71CUzw6Qe4TAAAAAABgrFEKAQAAAADgpJVlmc/v3p03b9iQxwYHGz7/jUuW5L2rVmXmKD4d5Psd6B9q9QpN8cQEuU8AAAAAAICxZmx8qgYAAAAAQMv1DQzkNzdsyBf27Gn47M6Ojvzx2WfnJXPnNnx2lY4O11u9QlMcHZoY9wkAAAAAADDWKIUAAAAAAHBcI2WZj27blqt6enJoZKTh89981lm5rrMzM8bI6SDfb3BkYpQljk6Q+wQAAAAAABhrxt4nbAAAAAAANM29Bw/mkvXrc9fBgw2fvXrq1Hzq7LPzwjlzGj67WSa31Vq9QlNMmSD3CQAAAAAAMNYohQAAAAAA8B8cGRnJNZs356a+vjT6bJAiyW8vXZp3dnZmWltbg6c315RJE6MsMaV9YtwnAAAAAADAWKMUAgAAAADAv/PVvXvzxvXr0zMw0PDZZ0+dmk+dc05+bPbshs9uhdlT21u9QlPMmiD3CQAAAAAAMNYohQAAAAAAkCTZOTiY3+7uzmd27mz47FqSK5ctyzUrV2bqGD8d5PutPWNmq1doirMnyH0CAAAAAACMNUohAAAAAAATXFmW+dTjj+etGzdm3/Bww+efN21a/uScc/K8WbMaPrvVnrl0fJx4ciLPPGti3CcAAAAAAMBYoxQCAAAAADCBPXrkSN7w6KP5+oEDDZ89qSjytmXL8vsrV2ZKrdbw+aNB18IZmdrelv6hkVavUplpk9uyauGMVq8BAAAAAADAD6AUAgAAAAAwAR2t1/PeLVvy7t7eDJZlw+f/6KxZ+cTatXnGjPFdJmirFTl/yax8p3dfq1epzPlLZqWtVrR6DQAAAAAAAH4ApRAAAAAAgAnmm/v355L16/PwkSMNnz2rrS3Xr1qVNyxZkloxMYoE65bOGdelkHVL57R6BQAAAAAAAH6IWqsXAAAAAACgOfYNDeUNjz6aF957byWFkF9csCAPP+95eeNZZ02YQkiSXHzeGa1eoVLj/f4AAAAAAADGMieFAAAAAACMc2VZ5rO7duWyDRuyY2io4fOXTpmSj61Zk1csWNDw2WPBRavmZdXC6dm063CrV2m4roXT8/zOea1eAwAAAAAAgB/CSSEAAAAAAONY78BAfu5738t/feihhhdCiiSXnXVWHrrwwglbCEmSoijyyxetaPUalfjli1akmECnvgAAAAAAAIw1SiEAAAAAAOPQcL2em/r6ct6dd+ZLe/c2fP6zpk/Pv15wQT64Zk1mTnIo9asuWJqp7W2tXqOhpra35VXPXdrqNQAAAAAAADgOpRAAAAAAgHHm7oMH8/y7784VGzfmSL3e0NlTa7W8b9WqfOe5z82Fs2Y1dPZYNntqe175nCWtXqOhXvmcJZnV0d7qNQAAAAAAADgOpRAAAAAAgHHi0PBwrujuzoXf/W7uPnSo4fNfNnduHrzwwly5fHkm1by9/FSXvrgrkyeNjz+XyZNqufTFXa1eAwAAAAAAgBMYH59OAQAAAABMcF/csyfn33VXbtq6NY09GyRZ2N6ez5x7br68bl06p05t8PTxY8X86bn84rWtXqMhLr94bVbMn97qNQAAAAAAADiBSa1eAAAAAACA0/f40aO5rLs7n921q5L5v37mmbmhqyvz2tsrmT/evP4FnfnyA4/nvr79rV7ltD172Zz8xgtXtXoNAAAAAAAAToKTQgAAAAAAxqB6WeYT27fnnDvvrKQQcvbUqfnas5+dT55zjkLIKZjUVsv7X70ukyeNzbffJ0+q5cZXr0tbrWj1KgAAAAAAAJyEsfmpFAAAAADABPbw4cN58b335g3r1+fAyEhDZ7cXRa5esSL3XXhhXjxnTkNnTxSrF83MFRevbfUap+XKn16b1YtmtnoNAAAAAAAATtKkVi8AAAAAAMDJOTwykut6e/O+vr4MlWXD579w9ux8fO3anDt9esNnTzS/8cJVefixJ3LbvdtbvcpJe+Wzl+T1L1jV6jUAAAAAAAA4BUohAAAAAACjXFmW+Zvdu/OW7u70HT3a8PlzJk3KDatW5dcXL06tKBo+fyKq1Yq879XPyqGjw7nj4Z2tXueEXnruGXnfq5+VWs3fPwAAAAAAwFhSa/UCQPMVRVG2+PHSVv8ZAAAAAIwVG44cycvvvz+/+OCDlRRC/svChXn4wgvzG0uWKIQ0WHtbLR/9pQvy0nMXtXqV43rpuWfko7/0nLS3+cgAAAAAAABgrPEJDwAAAADAKHRkZCRXbdqUZ9x1V766b1/D56+YMiVffOYz89fnn58zp0xp+Hz+TUd7W/7otc/NK5+9pNWr/ECvfPaS/NFrL0hHe1urVwEAAAAAAOA0TGr1AgAAAAAA/D9lWeZvd+/OW7q701vBySC1JL+9dGmu7ezM9DZFgGZob6vlptc8O+cunpX3374+g8P1Vq+UyZNqufKn1+b1L1iVWs0JMQAAAAAAAGOVUggAAAAAwCjRfeRILuvuzpf27q1k/nNnzMgnzj47F8ycWcl8frharcgbXtyVnzp3Ua649f7c17e/Zbs8e9mc3PjqdVm9yP8HAAAAAAAAY51SCAAAAABAix0ZGcn1W7bkvVu2ZLAsGz5/eq2Wd3Z25s1nnZVJtVrD53PyVi+amc9d+qP55Dd7clOTTw2ZPKmWKy5em9e/cFXanA4CAAAAAAAwLiiFAAAAAAC00Bd2785l3d3ZPDBQyfyfnTcvH1u7Nis6OiqZz6mb1FbLpS/uysufcWZu/vrG3HbP9vQPjVSWN7W9La98zpJc+uKurJg/vbIcAAAAAAAAmk8pBHiqv0vyhYozHqp4PgAAAMCot7G/P5dt2JAv7t1byfwz2tvzkTVr8p8XLkxROBViNFoxf3re86p1efvPnJvPf3dr/vzbvdm463DD5nctnJ5fvmhFXvXcpZnV0d6wuQAAAAAAAIweSiHAU91dluUnW70EAAAAwHjVPzKS927Zkuu3bMnRsqwk4w2LF+f6Vasyp10RYCyY1dGe1/14Z371x1bmX3v25vaHduT+rfvzwLYnTukEkWmT23L+kllZt3ROLj7vjDy/c55CEAAAAAAAwDinFAIAAAAA0CR/v3t3fqu7Oz0DA5XMP2/atHx87dq8YM6cSuZTraIoctGq+blo1fwkyUi9zKZdh/K9bQfy6I6DeaJ/KEeH6jk6Us+UtlqmtNcya2p7zj5jZp551uysWjgjbTUlEAAAAAAAgIlEKQQAAAAAoGI9/f25rLs7f7dnTyXzp9dquWblyvzW0qWZXKtVkkHztdWKrDljZtacMbPVqwAAAAAAADBKKYUAAAAAAFRkYGQkN/T15T1btmSgXq8k478sXJgbu7qytKOjkvkAAAAAAADA6KUUAgAAAABQgS/t2ZPf2rAhGwcGKpl/zrRp+eiaNfmpuXMrmQ8AAAAAAACMfkohAAAAAAANtLm/P2/p7s7f7tlTyfxptVquXrkyb1m6NJNrtUoyAAAAAAAAgLFBKQQAAAAAoAEGRkZyY19f3r1lSwbq9UoyXr1wYd7f1ZVlHR2VzAcAAAAAAADGFqUQAAAAAICn6St79uTN3d3p7u+vZP7aqVPz0TVrcvG8eZXMBwAAAAAAAMYmpRAAAAAAgNPUOzCQ3+7uzt/s3l3J/Gm1Wn5/xYr89rJlmVKrVZIBAAAAAAAAjF1KIQAAAAAAp+hovZ739/XlXb296a/XK8n4xQULctPq1Vne0VHJfAAAAAAAAGDsUwoBAAAAADgFX927N2/esCEb+vsrmb9m6tR8ZM2avGzevErmAwAAAAAAAOOHUggAAAAAwEnYMjCQy7u787nduyuZP7VWy1UrVuSKZcsypVarJAMAAAAAAAAYX5RCAAAAAACOY7Bez019fXlnb2+O1OuVZPzCggX5wOrVWdHRUcl8AAAAAAAAYHxSCgF+qKIo2pN0JVmeZF6SjiRDSfqT7E+yNUlfWZb9LVsSAAAAoCJlWeZLe/fm8u7urO+v5u2Pro6OfGTNmrx8/vxK5gMAAAAAAADjm1II8FTnFUVxQ5KXJHlmkiknuL5eFMX6JN9JckeSL5dlubPiHQEAAAAq9dDhw7m8uztf3bevkvkdtVp+d/nyvHXZsnS0tVWSAQAAAAAAAIx/SiHAU736FK+vJTnn2OO1+beSyFeS3Jzk78uyLBu8HwAAAEBl9g4N5erNm/NH27ZlpKKMV8yfnw+uXp3OqVMrSgAAAAAAAAAmCqUQoNFqSX7m2OPuoijeVpblHS3eCQAAAOC4hur13Lx9e67evDn7hocryVjV0ZEPrV6dn1uwoJL5AAAAAAAAwMSjFAJU6YIktxdF8SdJ3lKW5ROtXggAAADgqb66d29+u7s7Dx85Usn8KUWRt69YkbctW5aOtrZKMgAAAAAAAICJSSkEaIZfS3JRURQ/X5blxlYvczKKonhTkv+vCVFdTcgAAAAAfoBHjxzJ5d3d+dLevZVl/Nz8+fnQ6tVZNXVqZRkAAAAAAADAxKUUAjTLuUm+XRTFT5Rl+WCrlzkJC5Oc1+olAAAAgMbbNzSUd/T25qPbtmW4LCvJWNnRkQ+vXp2fX7CgkvkAAAAAAAAAiVII8O89kOS7Sb537NGX5MCxx2CSeUnmJ1mU5KIkL0ry40lmneT8BUnuKIrix8uy3NTY1QEAAACOb7hezy2PPZbf7+nJnuHhSjKmFEXetnx5/sfy5Zna1lZJBgAAAAAAAMCTlEJgYhtJ8pUkf5/ki2VZ9p3g+h3HHg8l+VqS64ui6EjyuiRXJuk6icwzk3yuKIofLcty4DT3BgAAADgl/7hvX97S3Z0HDh+uLOPl8+blw6tXZ/W0aZVlAAAAAAAAAHw/pRCYmB5L8skkHy/LctvTGXSs2HFzURSfSPJbSW5I0n6Clz07yXVJLn862QAAAAAn0n3kSK7YuDFf2LOnsowVU6bkQ2vW5BXz56coispyAAAAAAAAAJ5KKQQmpuVlWQ43cmBZlvUkHyyK4p+TfDbJihO85M1FUfxJWZbfa+QeAAAAAElyYHg47+rtzYe2bs1QWVaSMbko8jvLl+fty5dnWltbJRkAAAAAAAAAx6MUAhNQowshT5l9Z1EUL0ryjSTLj3PppCTvSPILVe3yNO1K8lATcrqSTGlCDgAAAEwII2WZTz32WK7q6cnOoaHKcn5hwYK8r6srXVOnVpYBAAAAAAAAcCJKIUDDlWW5pSiKX0jyrSQdx7n0FUVRrCnLckOTVjtpZVl+LMnHqs4piuLBJOdVnQMAAAATwdf27ctburtz3+HDlWWsmz49H1i9Oj85d25lGQAAAAAAAAAnq9bqBYDxqSzLu5Ncd4LLakle24R1AAAAgHFsU39/fvGBB/KS++6rrBCyoL09N69dm7t/5EcUQgAAAAAAAIBRQykEqNL7kuw4wTX/uRmLAAAAAOPPweHhvH3Tppx75535/O7dlWRMKopcvnRpNjzveXnDkiVpK4pKcgAAAAAAAABOx6RWLwCMX2VZDhRFcXOSq49z2XlFUSwqy3Jns/YCAAAAxrZ6WebTjz+e3+3pyeODg5Xl/Pz8+bmxqytrp02rLAMAAAAAAADg6VAKAar22Ry/FJIkP5rkb5uwCwAAADDGfXP//lzW3Z27Dx2qLOP8adPygdWrc/G8eZVlAAAAAAAAADSCUghQqbIsHyqKYmeSRce57JwohQAAAADH0TswkN/ZuDGf3bWrsoz5kyblHZ2duWTx4kyq1SrLAQAAAAAAAGgUpRCgGe5J8rLjPL+ySXsAAAAAY8yh4eG8t68vN/b1ZaBeryRjUlHkTUuW5OqVKzO3vb2SDAAAAAAAAIAqKIUAzbD5BM8f7xQRAAAAYAKql2X+cseO/I9Nm7J9cLCynJfPm5eburpyzvTplWUAAAAAAAAAVEUpBGiGAyd4flpTtgAAAADGhG8fOJDLurtz58GDlWWcM21aburqysvnz68sAwAAAAAAAKBqSiFAM5zo6zzbm7IFAAAAMKr19Pfn93p68lc7d1aWMWfSpFy7cmXeuGRJ2mu1ynIAAAAAAAAAmkEpBGiGqSd4vr8pWwAAAACj0p6hoby7tzcf3bYtQ2VZSUZbkkuXLMm1nZ2Z3+77KQAAAAAAAIDxcLX0XwAAIABJREFUQSkEaIYzT/D8oaZsAQAAAIwq/SMj+fC2bXlPb28OjIxUlvPTc+fmptWrc/706ZVlAAAAAAAAALSCUgjQDKtP8Py2pmwBAAAAjAojZZm/2LEjV/X0ZOvRo5XlrJk6NTd1deVn589PURSV5QAAAAAAAAC0ilIIUKmiKKYkefYJLutpxi4AAABA63117978zsaNuf/w4coyZre15Q9WrsxvnnVWJtdqleUAAAAAAAAAtJpSCFC1n0oy5QTX3N+MRQAAAIDWuefgwbxt06bcvm9fZRm1JL+xeHHe2dmZhZMnV5YDAAAAAAAAMFoohQBV+5UTPD+U5K5mLAIAAAA0X+/AQK7q6clf7tiRssKcn5wzJx9YvTrrZsyoMAUAAAAAAABgdFEKASpTFMWaJP/5BJf9U1mWA83YBwAAAGiefUNDuW7Llnx469YMltXVQbo6OnJjV1f+04IFKYqishwAAAAAAACA0UgpBKjSR5K0neCazzZjEQAAAKA5BkZG8rHt2/Pu3t7sGx6uLGdmW1uuWrEily1dmim1WmU5AAAAAAAAAKOZUghQiaIorkzyshNc9kSS/9mEdQAAAICK1csyf7VzZ35v06b0Hj1aWU6R5NcXL867OjtzxuTJleUAAAAAAAAAjAVKITBBFEVxQZKHy7Lsb0LWryZ570lc+odlWR6oeh8AAACgWv+4b1/eunFj7jl0qNKcF82enQ+uXp3nzJxZaQ4AAAAAAADAWKEUAhPHryR5TVEU1yf547IsDzc6oCiKyUluSHLZSVy+IydXHAEAAABGqfsPHcrbNm3KV/burTRn7dSpec+qVfmFBQtSFEWlWQAAAAAAAABjiVIITCyLk3woyTVFUXw6yZ+WZXlfIwYXRfET+bdCyIUn+ZLfKstyfyOyAQAAgObqGxjIH2zenE8//njKCnMWtbfnmpUr8/rFi9Neq1WYBAAAAAAAADA2KYXAxDQ3yVuSvKUoivVJ/j7J/07yL2VZnvRXexZFcWaSlyZ5c5LnnUL+R8qy/OwpXA8AAACMAvuHhvLevr58cOvWDNTrleVMq9Vy5bJluXLZssyc5C1MAAAAAAAAgB/GJ6rA2iSXH3uURVH0JXkkyeYkjyfZl+TosWvnJpmfZFGS5ydZcxp5tx3LAgAAAMaIo/V6/mjbtryztzd7h4cry2lL8vrFi3P1ypVZPGVKZTkAAAAAAAAA44VSCPD9iiTLjz2q8D+T/HJZltX99ggAAADQMPWyzK27duXtmzalZ2Cg0qz/NH9+3rNqVc6dPr3SHAAAAAAAAIDxRCkEaIaRJFeVZXl9qxcBAAAATs7X9u3L72zalLsOHqw05/kzZ+Z9XV154Zw5leYAAAAAAAAAjEdKIUDV7kpySVmW97Z6EQAAAODEHjx8OG/buDFf3Lu30pyujo5cv2pVfnHhwhRFUWkWAAAAAAAAwHilFAITxz1JNiVZ1aS8u5Ncl+TzZVmWTcoEAAAATtO2o0dzdU9P/uTxx1OvMGdBe3uuXrEilyxZksm1WoVJAAAAAAAAAOOfUghMEGVZfjrJp4uiWJbkJUlenORHkpybpL1BMd1J/j7JX5Rl+d0GzQQAAAAq9MTwcG7YsiU3bd2a/np1dZCptVouX7o0v7N8eWZN8rYkAAAAAAAAQCP49BUmmLIs+5L82bFHiqKYnOQZSdYl6Uyy7NjjrCSzkkxNMi3JlCSDSQaSHEjyWJKtSR5J8r0k/1KW5ZZm3gsAAABw+gZGRnLz9u25bsuW7BoaqiynluTXzjwz13Z25qwpUyrLAQAAAAAAAJiIlEJggivLcjDJ3cceAAAAwDg3VK/nTx9/PO/o7c3Wo0crzfrZefNy/apVecaMGZXmAAAAAAAAAExUSiEAAAAAMAHUyzJ/vXNn/qCnJxsHBirN+pGZM3PDqlV5ydy5leYAAAAAAAAATHRKIQAAAAAwjpVlmS/s2ZOrenrywOHDlWZ1dnTkus7OvGbRotSKotIsAAAAAAAAAJRCAAAAAGBcKssyd+zbl6t6enLnwYOVZs2bNCm/v2JF3njWWZlSq1WaBQAAAAAAAMD/oxQCAAAAAOPMPx84kN/r6cnX9u+vNGdKUeQtS5fmfyxfnjnt7ZVmAQAAAAAAAPAfKYUAAAAAwDhx78GDuaqnJ1/cu7fSnCLJr5xxRt7R2ZnlHR2VZgEAAAAAAADwwymFAAAAAMAY98jhw7l68+Z8dteuyrNeNndu3tvVlWfNmFF5FgAAAAAAAADHpxQCAAAAAGPU5v7+XNvbmz97/PHUK856zowZuWHVqrx03ryKkwAAAAAAAAA4WUohAAAAADDGPHb0aN7d25tPPPZYhsqy0qzlU6bkulWr8t8WLUqtKCrNAgAAAAAAAODUKIUAAAAAwBixZ2goN2zZko9s25b+erVng8yZNClXrViRNy1Zko62tkqzAAAAAAAAADg9SiEAAAAAMModHB7OB7Zuzfv7+vLEyEilWVNrtbz5rLPytuXLM6+9vdIsAAAAAAAAAJ4epRAAAAAAGKX6R0byh9u35/otW7J7aKjSrPaiyBuWLMnvLl+exVOmVJoFAAAAAAAAQGMohQAAAADAKDNYr+dTjz2Wd/b2ZvvgYKVZtSS/euaZ+YMVK7Jy6tRKswAAAAAAAABoLKUQAAAAABglRsoyn9mxI1dv3pyegYHK816zcGGuXbky50yfXnkWAAAAAAAAAI2nFAIAAAAALVaWZf5m9+78fk9PHjpypPK8n503L+/q7MyzZ86sPAsAAAAAAACA6iiFAAAAAECLlGWZr+7dm6t6evLdQ4cqz/uJOXPy7s7O/Njs2ZVnAQAAAAAAAFA9pRAAAAAAaIFv7N+f3+vpyTcOHKg868KZM3NdZ2d+au7cFEVReR4AAAAAAAAAzaEUAgAAAABN9N2DB3NVT0++sndv5VnPmD497+rszCvmz1cGAQAAAAAAABiHlEIAAAAAoAnuP3Qo127enM/v3l151uqpU3PtypX5L4sWpU0ZBAAAAAAAAGDcUgoBAAAAgArdd+hQ3tGkMsjSKVPyBytW5HVnnpn2Wq3yPAAAAAAAAABaSykEAAAAACpw78GDeUdvb/6mCWWQhe3t+d3ly3PpkiXpaGurPA8AAAAAAACA0UEpBAAAAAAa6J6DB3Pt5s352z17Ks+a3daWty5fnsvOOiszJnmrDwAAAAAAAGCi8UkxAAAAADTA3cfKIF9oQhlkWq2Wy5YuzVuXLcvc9vbK8wAAAAAAAAAYnZRCAAAAAOBp+O6xMsjfNaEMMrkocumSJfndFStyxuTJlecBAAAAAAAAMLophQAAAADAafjOE0/k2t7e/H0TyiBtSV535pn5g5Urs7yjo/I8AAAAAAAAAMYGpRAAAAAAOAV3PvFErt28OV/au7cpef9t0aJcs3Jl1k6b1pQ8AAAAAAAAAMYOpRAAAAAAOAn/eqwM8uUmlUFeMX9+3tnZmXUzZjQlDwAAAAAAAICxRykEAAAAAI7j2wcO5Nre3nylSWWQn5ozJ+/q7MxFs2c3JQ8AAAAAAACAsUspBAAAAAB+gH85cCDXbt6cr+7b15S8i2bNyrs7O/OTc+c2JQ8AAAAAAACAsU8pBAAAAAC+zz8fK4P8Q5PKIM+ZMSPXrlyZn5s/P0VRNCUTAAAAAAAAgPFBKQQAAAAAknzrwIFcs3lz7mhSGeSCGTNyjTIIAAAAAAAAAE+DUggAAAAAE9o39+/PNZs35x/3729K3nOPlUF+VhkEAAAAAAAAgKdJKQQAAACACemf9u/PtZs35383qQxy4cyZuXrlyvzMvHnKIAAAAAAAAAA0hFIIAAAAABPK14+VQf5Pk8ogzztWBnm5MggAAAAAAAAADaYUAgAAAMCE8LV9+3Jtb2++1qQyyPNnzsw1K1fmZcogAAAAAAAAAFREKQQAAACAcassy3zt2MkgXz9woCmZF82alWtWrsxPz52rDAIAAAAAAABApZRCAAAAoMFG6mU27jqU7209kPU7DuZA/1CODtczOFLP5LZapkyqZfbU9qw9Y2bWLZ2dVQtnpK3mF8ehkcqyzD/u25d39vbmn5pUBvnRY2WQi5VBAAAAAAAAAGgSpRAAAAB4msqyzLc37c3tD+3I/Vv358HtT6R/aOSkXz9tclvOWzwr65bOycXnnZGLVs3zC+VwmuplmS/s3p3rtmzJXQcPNiXzx2fNytUrV+alyiAAAAAAAAAANJlSCAAAAJymA/1D+fzdW/MX3+7Nxl2HT3vOkcGRfKd3X77Tuy+f+lZPuhZOz2svWpFXXbA0s6e2N3BjGL+G6vX89c6duX7Lljx05EhTMl8we3auWbkyPzlnjjIIAAAAAAAAAC2hFAIAAACnqHfP4dz89Y257Z7tp3QiyMnauOtwrv27h3LDVx7NK5+zJJe+uCsr5k9veA6MBwMjI/mTxx/PDX192Tww0JTMFx4rg7xEGQQAAAAAAACAFlMKAQAAgJM0PFLPLd/oyQfuWJ/B4Xrlef1DI/mrO/vyubu35fKL1+Y3XrgqbTW/gA5J8sTwcG7evj039fVlx9BQUzJfdKwM8hPKIAAAAAAAAACMEkohAAAAcBK6dx7MFbfen/v69jc9e3C4nuu//Ei+8sDjufHV67J60cym7wCjxe7BwXx427Z8ZNu27B8ebkrmT8yZk6tXrMhPzJ3blDwAAAAAAAAAOFlKIQAAAHAc9XqZW76xKe+/vTmngxzPvX378zMf/mauOHZqSM2pIUwgWwcG8v6tW/OJ7dtzpN6cf4svmTMnV69cmRfPmdOUPAAAAAAAAAA4VUohAAAA8EMMjdTz1lvvy233bm/1Kv/X4HA97/nyI3n4sSfyvlc/K+1ttVavBJXacORI3rtlS/5sx44MlWVTMn/yWBnkRcogAAAAAAAAAIxySiEAAADwAwwMjeQ3P3N37nh4Z6tX+YFuu3d7Dh0dzkd/6YJ0tLe1eh1ouPsOHcp7entz665dadYZPT91rAzyQmUQAAAAAAAAAMYIpRAAAAB4iqGR+qguhDzpjod35jc/c0/+6LUXODGEceNbBw7kut7efGnv3qZlXjx3bq5euTI/Pnt20zIBAAAAAAAAoBGUQgAAAOD71Otl3nrrfaO+EPKkOx7ekbfeel9ues2zU6sVrV4HTktZlvmHfftyXW9v/unAgabl/vSxMsiPKYMAAAAAAAAAMEYphQAAAMD3ueUbm3LbvdtbvcYpue3e7Tlvyaxc8qKuVq8Cp2SkLPM3u3blui1bcs+hQ03LfdmxMsiPKoMAAAAAAAAAMMYphQAAAMAx3TsP5v23r2/1Gqflxn9Yn588Z1FWL5rZ6lXghAbr9fzljh1575YtebS/vymZRZJXLViQt69YkefO9O8EAAAAAAAAgPFBKQQAAACSDI/Uc8Wt92dwuN7qVU7L4HA9V956fz73xh9LW61o9TrwAx0ZGckfP/ZY3tfXl76jR5uSOako8t8XLcrbli/PudOnNyUTAAAAAAAAAJpFKQQAAACSfPKbPbmvb3+r13ha7u3bn1u+sSmXvrir1avAv7N/aCh/uH17Prh1a3YNDTUls6NWy+sXL86Vy5ZlRUdHUzIBAAAAAAAAoNmUQgAAAJjwevcczk23r2/1Gg1x0+3r8/JnnJkV852IQOvtHBzMB7duzce2bcsTIyNNyZzZ1pY3nXVW3rJ0ac6YPLkpmQAAAAAAAADQKkohAAAATHg3f31jBofrrV6jIQaH67n56xvznleta/UqTGC9AwO5sa8vn/z/2bv3OLvrws7/7++ZS+4XkkzmzCSBEpAKVETtttRqcVexq1tbFsWuKASrXFRqKcju2l8fa9jH/h72J0prVy2XeglYrWVRrO1iF1vrVlvtegMFFQVKk0zOZHK/TTK37++PdayiyVwyc76TnOfz8eChcL7z/bxPmKCB8+K7bVsOjzXn59aqjo789tq1eWNvb5Z3dDTlTAAAAAAAAAComigEAACAlrZ3cDj3fa2v6hkz6r6v9eWtLz07S+f7YDzN9e2DB/P/bd6cD/f3Z6Qsm3Lmunnz8pZ16/L6np4sbGtrypkAAAAAAAAAMFeIQgAAAGhpH//qlgwOj1Y9Y0YNDo/m41/Zkit/8fSqp9AivrB3b965eXM+uWNHmpOCJGctWJD/fOqpeXV3dzprtSadCgAAAAAAAABziygEAACAllWWZe7+4pNVz5gVd3/xyWx47k+lKIqqp3CSGi3L/PmOHbll8+b8w759TTv3/MWL8zunnppLurrS5vsbAAAAAAAAgBYnCgEAAKBlffHxXXl84GDVM2bFYwMH86UnduWC9SurnsJJZnB0NJsajdy6ZUu+OzjYtHOfv2xZfufUU/PLK1aInQAAAAAAAADg+0QhAAAAtKwHHumvesKseuCRflEIM2ZgaCjv6+vLe7ZuzY7h4aad+9IVK/LWU0/N85Yvb9qZAAAAAAAAAHCiEIUAAADQsh7asqfqCbPqZH9/NMf3Dh3KrVu25IONRg6PjTXlzCLJpV1d+c+nnppnLVnSlDMBAAAAAAAA4EQkCgEAAKAljY6VebhvX9UzZtXDffsyOlamrVZUPYUT0Bf37s0tmzfnEzt2pGzSmR1FkSu6u/MfTz01Zy1c2KRTAQAAAAAAAODEJQoBAACgJT02cCCDw6NVz5hVh4ZG8/jAgTyt25MWmJyxssyndu7MLf/8z/nCvuZFUwtqtVzd05Mb163Luvnzm3YuAAAAAAAAAJzoRCEAAAC0pG9s2Vv1hKb4xta9ohAmdHh0NHf19+ddmzfn0cHBpp27rK0tv7l2bd68Zk26Ojubdi4AAAAAAAAAnCxEIQAAALSkR/v3Vz2hKb7TIu+T6dk5PJz3bd2a92zdmu3Dw007d3VHR25Yty5v6O3N0nZ/ewoAAAAAAAAApss/dQcAAKAl7R1s3gfgq7SvRd4nU/P44GB+f8uWfGDbthwaG2vauafNm5ebTj01v1GvZ0FbW9POBQAAAAAAAICTlSgEAACAlnRkpHkfhK/SkeHWeJ9Mzj/u25d3bt6cewcG0szvjKcvXJi3nnpqXrV6dTpqtSaeDAAAAAAAAAAnN1EIAAAALWlotDViiSMt8j45urGyzF/u3Jl3bt6c/713b1PPvmDp0ty0bl0uXrUqtaJo6tkAAAAAAAAA0ApEIQAAALSkzrbWeFrBvBZ5n/y4w6Oj+XB/f961ZUu+fehQ084tkvzqypW56dRT84vLljXtXAAAAAAAAABoRaIQAAAAWtK89taIJeZ1tMb75F/sGh7ObX19+cMtW9I/PNy0c+cVRTbU67lh3br89MKFTTsXAAAAAAAAAFqZKAQAAICWtGxBR9UTmmJpi7xPkicGB/MHW7bk/du25eDYWNPOXdHenjetWZPr1qzJ6s7Opp0LAAAAAAAAAIhCAAAAaFFndS+pekJT/HSLvM9W9pX9+3PLP/9z7hkYSPNSkGT9/Pm5Yd26XFmvZ1FbWxNPBgAAAAAAAADGiUIAAABoSc9Yu6zqCU3xjDWt8T5bzVhZ5v5du/LOzZvzt3v2NPXsf7VkSW5aty6XdHWlrSiaejYAAAAAAAAA8KNEIQAAALSkM7oWZ0FHWwaHR6ueMmsWdrZlfdfiqmcwgw6MjOSu/v68e8uWPDo42NSzX7ZyZd6ybl2ev2xZCjEIAAAAAAAAAMwJohAAAABaUlutyLm9S/PlJ3dXPWXWnNu7NG01H94/Gfzz4cN5z9atuXPbtuwZGWnauZ1Fkcu7u3PjunU5e9Gipp0LAAAAAAAAAEyOKAQAAICWdd7a5Sd1FHLe2uVVT+A4lGWZf9i3L3+wZUs+PjCQZj7T5pT29ryhtze/uWZN6vPmNfFkAAAAAAAAAGAqRCEAAAC0rIvO6c4HvvBE1TNmzUXndFc9gWkYGhvLPQMDefeWLfk/+/c39eyfmj8/v712bX6jXs/idn/bCAAAAAAAAADmOv90HwAAgJZ1wfoVWd+1KI8PHKx6yow7o2tRfv70FVXPYAp2DA3l9m3b8t6tW7NtaKipZz9n8eLcdOqpefmqVWmv1Zp6NgAAAAAAAAAwfaIQAAAAWlZRFLn8gtNy86ceqXrKjLv8gtNSFEXVM5iEbx44kHdv3ZoP9/fn8NhYU89+6YoVuWnduly4fLnvFwAAAAAAAAA4AYlCAAAAaGmXPHtt3vHp72RweLTqKTNmQUdbLnnO2qpncAxjZZn7d+3KH2zZks/s3t3UszuKIq/p7s6N69bl3EWLmno2AAAAAAAAADCzRCEAAAC0tGULOnLxs3rz0X/cXPWUGXPxs3qzdH5H1TP4CQ6MjGRTf3/evWVLvjs42NSzl7W15dre3rx57dr0zpvX1LMBAAAAAAAAgNkhCgEAAKDlXXvhGbn3q1szNDJW9ZTj1tley7UXnlH1DJ7iycOH856tW3NnX1/2jjb3qTTr5s3Lb69dm9f39GRJu78VBAAAAAAAAAAnE58EAAAAoOWdtnJRbrjorPze/d+uespxu+Gis3LaykVVzyBJWZb5wt69effWrfn4wECanRydv3hxblq3Lpd2daWjVmvy6QAAAAAAAABAM4hCAAAAIMnrn3d67v9mIw9u3lP1lGk7f93yXPX89VXPaHlDY2P5s+3b8wdbtuQrBw40/fxfPuWU3HTqqfk3y5enKIqmnw8AAAAAAAAANI8oBAAAAJK0t9XyrkvPy0v/8PMZGmn2Mx2OX2d7Le+89Ly01UQAVRkYGsrtfX15X19ftg0NNfXseUWR13R357fWrs0zFi9u6tkAAAAAAAAAQHVEIQAAAPB9Z65ekhsvOitvv//bVU+Zsre8+KycuXpJ1TNa0jcOHMi7t2zJh/v7c6Qsm3p2T2dn3tjbm2t6e9PV2dnUswEAAAAAAACA6olCAAAA4Idc9fz1+da2fbnv631VT5m0i8/vzeuft77qGS1lrCzzP3fuzB9s2ZK/3rOn6ec/Z/Hi/Pa6dbm0qyudtVrTzwcAAAAAAAAA5gZRCAAAAPyQWq3ILZc+MweOjOQz39pe9ZwJvejs7txy6TNTqxUzet+NGzemt7c3V1999Yzed7bccccd6evry8aNG2f1nAMjI/lQo5F3b92a7w0OzupZT1VLcklXV65fuzbPXbo0RTGzf84BAAAAAAAAgBOPKAQAAACeoqOtlvdc9uxc95Gvzukw5EVnd+c9lz0rHW0z+6SIjRs35uabb/7B78/1MOSOO+7INddc84Pfn40w5InBwbx369b88bZt2Ts6OuP3P5ZlbW25qrc3161Zk9Pmz2/q2QAAAAAAAADA3CYKAQAAgJ9gfkdb/ug1z8lN9zyY+77eV/WcH3Px+b255dJnznoQMh5bzNUw5KlByPj2mQhDxsoyn9m9O+/ZujV/sXNnyuO+49Q8bcGC/NbatdnQ3Z3F7f4WDgAAAAAAAADw43yiAAAAAI6io62WW195fs7uWZp3PfBohkbGqp6UzvZa3vLis/L6561PrVbM6L2fGoSMm6thyFODkHHHG4bsHRnJpkYj7926NY8ODh7PxGl50Smn5Pq1a/OSFStSK2b2zzEAAAAAAAAAcHIRhQAAAMAx1GpFrrnwjLzw7NW58Z6H8uDmPZVtOX/d8rzz0vNy5uolM37vowUh4+ZaGHK0IGTcdMKQbx44kPf29eXuRiMHx5obAM2v1XJ5d3fevGZNfmbx4qaeDQAAAAAAAACcuEQhAAAAMAlnrl6Se6/9hfzx55/IrU1+akhney03XnRWXv/89Wmb4aeDJBMHIePmShgyURAybjJhyPDYWD65Y0fe29eXv93T/OCnp7Mz161Zk6t7erKqs7Pp5wMAAAAAAAAAJzZRCAAAAExSe1st1154Rl7yM/Xc9rnHct/X+jI4PDpr5y3oaMvFz+rNtReekdNWLpq1c3p7eyd9bdVhyGSDkHFHe2/9Q0O5s68vt/X1ZevQ0EzNm7SfXbIkv712bV7R1ZXOWq3p5wMAAAAAAAAAJwdRCAAAAEzRaSsX5e2XnJe3vvTsfPwrW3L3F5/MYwMHZ+z+Z3QtyuUXnJZLnrM2S+d3zNh9j2Y88JhsbFFVGDLVIOT222//kY1lWeaL+/blvVu35s8GBjJclrMx86hqSV7e1ZXr167NLyxdmqKY+ae+AAAAAAAAAACtRRQCAAAA07R0fkeu/MXTs+G5P5UvPbErDzzSn4e27Mk3t+6b0hNEFna25dzepTlv7fJcdE53fv70FU0PBuZ6GHI8Qcjg6Gj+dPv2vGfr1nz1wIHZmnhUy9vbc1VPT960Zk1Omz+/6ecDAAAAAAAAACcvUQgAAAAcp6IocsH6lblg/cokyehYmccHDuQbW/fmO/37s29wOEeGx3JkdCzz2mqZ11HL0gUd+enuJXnGmmVZ37U4bbXqnxoxV8OQ6QYhTwwO5o/6+vL+bduya2RkFhf+ZGctWJDr167NFfV6FrW1Nf18AAAAAAAAAODkJwoBAACAGdZWK/K07iV5WveSqqdM2VwLQ6YahPzRbbflp17xivzqN76Rv9i5M+WsrDq2F59ySq5fuza/vGJFak1+4gsAAAAAAAAA0FpEIQAAAMCPmCthyFSDkFf+3u/l1vPPz3cfemhGd0zG/FotV3R3581r1+bcRYuafj4AAAAAAAAA0JpEIQAAAMCPqToMmWoQ0nnjjfmzn//5ZHBwRs6frN7Ozly3Zk2u7u3Nyo6Opp4NAAAAAAAAACAKAQAAAH6iqsKQqQYhueGGDP3KrxzXmVP1i0uX5k1r1uQVXV3pqNWaejYAAAAAAAAAwDhRCAAAAHBUzQ5DphOE5GUvm9ZZU7WgVsuru7vzpt7enL9kSVPOBAAAAAAAAAA4FlEIAAAAcEzNCkPmahCyfv78vHHNmry2Xs+Kjo5ZPw8AAAAAAAAAYLJEIQAAAMCEZjsMmYtByEtWrMh1a9bk365YkVpRzOpZAABOQAxZAAAgAElEQVQAAAAAAADTIQoBAAAAJmW2wpC5FIQsb2/Pa+v1vLG3N2cuXDgrZwAAAAAAAAAAzBRRCAAAADBpMx2GzJUg5LxFi3LdmjW5rLs7i9raZvz+AAAAAAAAAACzQRQCAAAATMlMhSG/99735q3XXTf5g2c4CGkvirx81aq8ac2aPG/ZshRFMWP3BgAAAAAAAABoBlEIAAAAMGXTDUNed9VV+fSuXXnrH/5hvvFf/+vkD5zBIKTe2ZlrenpydW9veufNm5F7AgAAAAAAAABUQRQCAAAATMt0wpC3PvZYdo2MJLfeOvmDZigIed6yZXlTb28u6epKZ6123PcDAAAAAAAAAKiaKAQAAACYtqmGIbve8Y6pHXCcQciCWi2v7u7Om3p7c/6SJdO+DwAAAAAAAADAXCQKAQAAAI7LVMOQSTuOIGT9/Pl545o1eW29nhUdHTO7CwAAAAAAAABgjhCFAAAAAMftqquuymODg3nH9dfPzA2nGYS8ZMWKXLdmTf7tihWpFcXMbAEAAAAAAAAAmKNEIQAAAMC07RsZyZ/09+e2vr489Mxn/t+Y49Zbj++mUwxClre35zfq9byhtzdnLlx4fGcDAAAAAAAAAJxARCEAAADwQzZu3Jje3t5cffXVVU+ZlDvuuCN9fX3ZuHFjU8/9+v79ua2vL3+yfXsOjI7+ywvjMcd0w5ApBCHnLVqU69asyWXd3VnU1ja98wAAAAAAAAAATmCiEAAAAPi+jRs35uabb/7B78/1MOSOO+7INddc84Pfn+0w5NDoaP5s+/bc1teXL+3ff/QLpxuGTCIIaS+KvHzVqly3Zk1+cdmyFEUxtTMAAAAAAAAAAE4iohAAAADIjwch47HFXA1DnhqEjG+fjTDkWwcP5va+vmzq78+ekZEZv/9k1Ds7c01PT67u7U3vvHmVbAAAAAAAAAAAmGtEIQAAALS8pwYh4+ZqGPLUIGTcTIYhQ2Nj+cSOHbmtry9/u2fP1L74U5+a+lNCkn/5mh96WshFp5ySa3t787KVK9NRq039ngAAAAAAAAAAJzFRCAAAAC3taEHIuLkWhhwtCBl3vGHIE4ODuWPbtnxg27ZsHx6e+g2mG4SMu/XWLGpryxuuuSZX9/TkaQsXTv9eAAAAAAAAAAAnOVEIAAAALWuiIGTcXAlDJgpCxk01DBkZG8v/3LUrf9TXl7/atSvldAcebxDyfQdvuSVPO/PMPG2OhDgAAAAAAAAAAHOVKAQAAICW1dvbO+lrqw5DJhuEjJvMe3vy8OF8YNu2fKDRyJYjR45n3owFIeOq/vEGAAAAAAAAADgRiEIAAABoWePBwWRji6pChakGIbfffvtRNw6PjeVTO3fmzm3bju+pID9shoOQccIQAAAAAAAAAIBjE4UAAADQ0uZ6GDJTQcj3Dh3KH2/blg81GukfHp65gVMMQn7x5pvzS8uW5e3XXz+p64UhAAAAAAAAAABHJwoBAACg5c3VMOR4g5AjY2P5+MBA7ty2LZ/ds2fmB04xCPn9970v17/hDUmSn1qwYM79eAMAAAAAAAAAnGhEIQAAAJC5F4YcTxDyrYMHc+e2bbmr0cjOkZFZ2TfVIOSpwcpc+/EGAAAAAAAAADgRiUIAAADg++ZKqDCdIOQ1r3tdNjUaubOvL1/Yt29G9/yY4wxCxs2VH28AAAAAAAAAgBOVKAQAAAB+SNWhwlSDkN9997vz4AtekP/493+fvaOjM7LhmGYoCBlX9Y83AAAAAAAAAMCJTBQCAAAAT1FVqDDVIOS03/md/Lfzzkv6+o7r3Emb4SBknDAEAAAAAAAAAGB6alUPAAAAgLno6quvzu233z7p66+55prccccd0z5vqkFIbrghT1500bTPm7JZCkLGNfvHGwAAAAAAAADgZCAKAQAAgKNoVqgwnSAkL3vZlM+ZtlkOQsYJQwAAAAAAAAAApkYUAgAAAMcw26HCXA9Czvrrv25KEDJOGAIAAAAAAAAAMHmiEAAAAJjAbIUKczUIWd7enjevWZON3/hGHv1v/23SX3e8Qcg4YQgAAAAAAAAAwOSIQgAAAGASZjpUmItByC8tW5a7n/709P3CL+Tcz342G9/85kl/7UwFIeOEIQAAAAAAAAAAE2uvegAAAACcKMajh8nGHOPXPTWWmEtBSFdHRzbU63l9T09+euHCae2b6SBk3Ez9eAMAAAAAAAAAnKxEIQAAADAFxxMqjJZlrv/93897brxx8gfOUhBy0Smn5KqenvzaqlXprP3Lg0TnShAyThgCAAAAAAAAAHB0ohAAAACYoumECvcNDOQf9u3Lnne8Y/IHzXAQ0tPZmd+o1/O6np6cvmDBj70+14KQccIQAAAAAAAAAICfTBQCAAAA0zDVUOH+3/3dqR0wQ0FILclLVqzIVb29+XcrVqT9h54K8sPmahAyThgCAAAAAAAAAPDjRCEAAAAwTVMNFSZtBoKQU+fNy+t6evIb9XrWzp9/zGvnehAyThgCAAAAAAAAAPCjRCEAAABwHK6++uocGBnJjW9608zc8DiCkPaiyK+uXJmrenpy0YoVaSuKSX1dX1/fpM+oKggZN9UwZCrvDQAAAAAAAADgRCMKAQAAgGkYLcs8sGtX3t9o5JPnnvt/Y45bbz2+m04zCDlzwYK8vqcnG7q7U583b8pfv3HjxiTJzTfffMzrqg5Cxk02DHnb2972g/cGAAAAAAAAAHAyEoUAAADAFDw+OJgPNhr5UKORLUeO/MsL4zHHdMOQKQYhnUWRS7q6clVPT16wfHlqk3wqyNFMFIbMlSBk3ERhiCAEAAAAAAAAAGgFohAAAACYwODoaO4dGMgHGo18ds+eo1843TBkCkHI2QsX5qqenlze3Z1VnZ1TO2cCRwtD5loQMu5oYYggBAAAAAAAAABoFaIQAAAA+AnKssxX9u/P+xuNfLS/P3tHRyvbsqBWyyu7unJVb2+eu3RpiuN8KsixPDUMmatByLinhiGCEAAAAAAAAACglYhCAAAA4IfsHB7Oh/v784Ft2/LQwYNT++JPfWrqTwlJ/uVrnvK0kPMXL85VPT25bPXqLO/omPp9p2k8qujt7Z3TQci48Y19fX2CEAAAAAAAAACgpRRlWVa9AaBlFUXxcJJznvrHzznnnDz88MMVLAIAaE2jZZnP7N6dD2zblvt27MjQdH6tPN0g5IfdcEMWX3xxXrV6da7u6clzliyZ1aeCAAAAAAAAAACcLM4999w88sgjP+mlR8qyPLfZe5rFk0IAAABoWU8MDuaDjUY+1Ghk85Ej07/RTAQhSXLrrfl/zzwzb37DG47/XgAAAAAAAAAAnPREIQAAALSUwdHRfGLHjrx/27b8zZ49x3/DmQpCvu+33vjGzG9ry9VXXz1j9wQAAAAAAAAA4OQkCgEAAOCkV5ZlvnbgQN6/bVs+sn179oyMzMyNZzgIGXfNNdckiTAEAAAAAAAAAIBjEoUAAABw0to5PJyP9Pfn/du25cGDB2f25lMMQlb+p/+U5y5dmk/9P//PpK4XhgAAAAAAAAAAMBFRCAAAACeVkbGx/K/du/PBRiN/vmNHhspy5g+ZYhBy/a235l3XX59aUeSOVat+EHxMRBgCAAAAAAAAAMCxiEIAAAA4KXzr4MF8qNHI3f392TY0NHsHTTEIuf32238k6hj/78IQAAAAAAAAAACOlygEAACAE9ae4eF8bGAgH9y2LV/av3/2DzzOIGScMAQAAAAAAAAAgJkgCgEAAOCEMlqW+Zvdu/PBRiOf2LEjh8fGmnPwDAUh44QhAAAAAAAAAAAcL1EIAAAAJ4TvHTqUDzUauau/P5uPHGnu4TMchIwThgAAAAAAAAAAcDxEIQAAAMxZ+0dGcs/AQD7YaOTze/dWM2KWgpBxwhAAAAAAAAAAAKZLFAIAAMCcMlaW+d979uSDjUb+x8BADo2NVTdmloOQccIQAAAAAAAAAACmQxQCAADAnPBPg4PZ1N+fTY1Gnjh8uNIty9vbc/5nP5u/bUIQMk4YAgAAAAAAAADAVIlCAAAAqMyh0dHcOzCQDzUa+Zs9e6qekxcuX57X9fRk5yc+kd/8L/9l0l93vEHIOGEIAAAAAAAAAABTIQoBAACgqcqyzN/v25cPNRr52Pbt2T86WumedfPm5bX1eq6s13P6ggW544478ptveMOkv36mgpBxwhAAAAAAAAAAACZLFAIAAEBTbDl8OHf39+dDjUYeHRysdEtnUeTiVavyup6evPCUU9JWFEmSO+64Y9IxRjLzQcg4YQgAAAAAAAAAAJMhCgEAAGDWHB4dzSd37swHt23LA7t3Z6ziPecvXpzX1ut5dXd3VnZ0/MhrcyUIGScMAQAAAAAAAABgIqIQAAAAZlRZlvny/v35YKORj27fnj0jI5XuWdXRkVevXp0r6/Wcv2TJT7xmrgUh44QhAAAAAAAAAAAciygEAACAGdE4ciQf7u/PhxqNPHzoUKVb2pK8dOXKvLZez79buTKdtdpRr52rQci4EzkMGR0r89jAgXxjy9482r8/eweHc2RkLEOjY+lsq2Veey3LFnTkrO4lOW/tsqzvWpy2WlH1bAAAAAAAAACAE4YoBAAAgGk7PDqaP9+5M5sajfzVrl0ZrXjPuQsX5rU9PXn16tWpz5s34fVzPQgZd6KEIWVZ5ouP78oDj/TnoS178nDfvgwOT/67YmFnW87pWZrz1i7PRed054L1K1IUIhEAAAAAAAAAgKMRhQAAADAlZVnmS/v2ZVN/f/50+/bsGRmpdM/y9vZctnp1rqzX87NLlkwpIujr65v0tVUFIeOmGoZM5b0dr72Dw/n4V7fkw198Mo8NHJz2fQ4NjebLT+7Ol5/cnQ984Ymc0bUor7ngtFzy7LVZtqBjBhcDAAAAAAAAAJwcRCEAAABMypbDh3N3f382NRr5zuBgpVtqSV68YkWurNfzaytXZn5b27Tus3HjxiTJzTfffMzrqg5Cxk02DHnb2972g/c2m57ceTC3fe6x3Pe1vik9EWSyHhs4mJs/9Uje8env5OJn9ebaC8/IaSsXzfg5AAAAAAAAAAAnKlEIAAAAR3VodDSf2LEjH2o08te7d6eseM9ZCxbkyno9V9TrWTNv3ozcc6IwZK4EIeMmCkOaEYSMjI7lzr97Ir//mUczNDI2q2clyeDwaD76j5tz71e35oaLzspVz1+fttrknwgDAAAAAAAAAHCyEoUAAADwI8qyzN/t3ZtNjUbuGRjI/tGZfwLEVCxpa8t/WL06V9br+YWlS1MUMx8DHC0MmWtByLijhSHNCEK+t31/brznoTy4ec+snvOTDI2M5ffu/3Y+/c1G3nnpeTlz9ZKmbwAAAAAAAAAAmEtEIQAAACRJnhgczF39/bmr0cjjhw9XPScvXL48V9bruaSrKwvb2mb9vKeGIXM1CBn31DBktoOQsbEyd/7d43nXA815OsixfH3znrz0Dz+fG7//1JCap4YAAAAAAAAAAC1KFAIAANDC9o+M5H8MDGRTo5HP7d1b9ZycPn9+rqzXs6Fez2nz5zf9/PGoore3d04HIePGN/b19c1qEDI8Opab7nkw9329b9bOmKqhkbG8/f5v51vb9uWWS5+ZjrZa1ZMAAAAAAAAAAJquKMuy6g0ALasoioeTnPPUP37OOefk4YcfrmARANAKxsoyn92zJ5sajdw7MJBDY9U+9WFhrZZLu7ry2p6ePH/ZstQKT32YSw4Pj+a6j3w1n/nW9qqnHNWLzl6d91z27MzvmP0nygAAAAAAAAAAc9O5556bRx555Ce99EhZluc2e0+zeFIIAABAi3j00KFsajRyd39/Nh85UvWcPH/Zsry2Xs8rurqypN0vT+ei4dGxOR+EJMlnvrU9133ka/mj1zzbE0MAAAAAAAAAgJbiUzcAAAAnsT3Dw/nYwEA2NRr5h337qp6TdfPmZUO9ng3d3Tlz4cKq53AMY2NlbrrnwTkfhIz7zLf6c9M9D+bWV56fWs3TZgAAAAAAAACA1iAKAQAAOMmMjI3lgd27s6nRyH07duRIWVa6Z36tlktWrcpr6/X861NOSVvhA/sngjv/7vHc9/W+qmdMyX1f78s5vUtz9S+dUfUUAAAAAAAAAICmEIUAAACcJB4+eDCbGo18uL8/24aGqp6T5y5dmg31el7Z1ZXlHR1Vz2EKvrd9f971wKNVz5iWd/6vR/Nvnr46Z65eUvUUAAAAAAAAAIBZJwoBAAA4ge0cHs5H+/vzoUYjXzlwoOo5WTdvXq7o7s4V9XrOWriw6jlMw8joWG6856EMjYxVPWVahkbG8pZ7Hsq9b3hu2mqeSgMAAAAAAAAAnNxEIQAAACeYobGx3L9rVzY1GvmLnTszXJaV7llYq+XlXV25sl7PC5YvT63wQfwT2R9//ok8uHlP1TOOy9c378mdf/d4rr3wjKqnAAAAAAAAAADMKlEIAADACaAsy3z1wIFsajTy0e3bs2N4uOpJuXDZslxZr+flXV1Z0u6XlyeDJ3cezK0PPFr1jBlx6wOP5iU/U89pKxdVPQUAAAAAAAAAYNb41A4AAMActvXIkfxJf382NRp55NChqudk/fz52VCv5/Lu7py+YEHVc5hht33usQyNjFU9Y0YMjYzlts89lrdfcl7VUwAAAAAAAAAAZo0oBAAAYI45NDqaT+zYkbsajXxm9+5U/RH9JW1teWVXVzbU63nesmUpiqLiRcyGvYPDue9rfVXPmFH3fa0vb33p2Vk6v6PqKQAAAAAAAAAAs0IUAgAAMAeMlWX+bu/ebGo0cs/AQA6Mjla6p0jyolNOyYZ6Pf9+1aosbGurdA+z7+Nf3ZLB4Wq/72ba4PBoPv6VLbnyF0+vegoAAAAAAAAAwKwQhQAAAFTou4cO5e7+/tzd359/Ony46jn56QULcmW9ntd0d2ft/PlVz6FJyrLM3V98suoZs+LuLz6ZDc/9KU+4AQAAAAAAAABOSqIQAACAJtszPJyPDQzkrkYjf79vX9Vzsry9Pa9avTob6vX83JIlPjzfgr74+K48PnCw6hmz4rGBg/nSE7tywfqVVU8BAAAAAAAAAJhxohAAAIAmGBkby1/t3p1NjUb+fMeOHCnLSve0Jfm3K1ZkQ72el61cmfltbZXuoVoPPNJf9YRZ9cAj/aIQAAAAAAAAAOCkJAoBAACYRQ8eOJBNjUb+pL8/24eHq56TZyxalA31el69enXq8+ZVPYc54qEte6qeMKtO9vcHAAAAAAAAALQuUQgwKUVRzEtyVpK1SZYkWZjkUJL9SbYk+U5ZlkPVLQQAmDsaR47kI9u3Z1OjkYcOHqx6TlZ1dOSy1atzZb2e8xcvTlEUVU9iDhkdK/Nw376qZ8yqh/v2ZXSsTFvN9z4AAAAAAAAAcHIRhQBHVRTFBUkuTvKSJOcmaTvG5aNFUTyc5H8m+WRZll9swkQAgDnj8OhoPrlzZ+5qNPJXu3ZltOI97UWRX1m5MlfW63nJihXprNUqXsRc9djAgQwOV/0dO7sODY3m8YEDeVr3kqqnAAAAAAAAAADMKFEI8GOKovj1JP8xybOn8GVtSc77/m//uSiKryS5pSzLj83CRACAOaEsy/z9vn3Z1Gjkz7Zvz97R6j9Y/+zFi3NlvZ5XrV6dVZ2dVc/hBPCNLXurntAU39i6VxQCAAAAAAAAAJx0RCHADxRF8fQktyW5cAZu95wkf1oUxbVJri3L8jszcE8AgDnhicHB3N3fn7sajTx2+HDVc9LT2ZnXdHfniu7u/MzixVXP4QTzaP/+qic0xXda5H0CAAAAAAAAAK1FFAIkSYqiuCTJpiQz/SnCFyT5clEUV5Rl+YkZvjcAQNPsGxnJ/xgYyKZGI/97b/VPVphfq+Xfr1qVDfV6Xrh8edprtaoncYLaOzhc9YSm2Nci7xMAAAAAAAAAaC2iECBFUbwpyX9PUszSEYuT3FsUxXVlWb5vls4AAJhxo2WZz+zenU2NRj6xY0cOj41VPSm/tGxZrqjXc2lXV5a2+yUdx+/ISPXf181wZLg13icAAAAAAAAA0Fp8gghaXFEUGzK7QcgPjkrynqIoDpRledcsnwUAcFy+eeBA7urvz4f7+7NtaKjqOTlj/vxcUa/nNd3dWb9gQdVzOMkMjbZGLHGkRd4nAAAAAAAAANBaRCHQwoqi+FdJ7szkgpC/T/KR7//nPyXZn2RJkvVJnpvksiQXTHRkkjuLovhWWZb/Z5qzAQBmxfahoXx0+/ZsajTytQMHqp6TpW1t+fXVq7OhXs9zly5NUcx2w0ur6myrVT2hKea1yPsEAAAAAAAAAFqLKARaVFEUS5N8LEnHBJd+N8kbyrL865/w2u4kX/n+b/+9KIoXJ3lfkjOOcb/OJB8riuL8siz3TX05AMDMOTw6mr/YuTOb+vtz/86dGa14Ty3JL69YkQ31en515cosaGureBGtYF57a8QS8zpa430CAAAAAAAAAK1FFAKt678mOX2Caz6T5BVlWe6dzA3LsvxfRVH8bJKPJ/nXx7j09CQbk9wwmfsCAMyksizzxX37sqnRyMcGBrJnZKTqSXnGokXZUK/n1atXpz5vXtVzaDHLFkzUiZ8clrbI+wQAAAAAAAAAWosoBFpQURTnJHnTBJf9Q5JfK8vy0FTuXZblnqIoXpbkb5L83DEu/c2iKO4sy/JbU7k/AMB0/dPgYD7c35+7+vvz3cHBqudkdUdHXt3dnSu6u3P+kiVVz6GFndXdGt9/P90i7xMAAAAAAAAAaC2iEGhNb8uxf/7vSvLrUw1CxpVlebAoilcm+XqS5Ue5rD3Jf0nyqumcAQAwGftGRnLvwEA2NRr53N5JPfxsVnUWRX5t1apc0d2dX16xIh21WtWTIM9Yu6zqCU3xjDWt8T4BAAAAAAAAgNYiCoEWUxTF+iQvn+Cy3y3LcvPxnFOW5ZNFUbwtybuPcdmlRVH8TlmWTxzPWQAAP2y0LPPXu3dnU6ORT+zYkcGxsaon5blLl+aKej2v7OrKKR0dVc+BH3FG1+Is6GjL4PBo1VNmzcLOtqzvWlz1DAAAAAAAAACAGScKgdbzpiRtx3j9u0numKGz3pfkt5KsP8rrbUnemOSmGToPAGhhDx88mE2NRv6kvz99Q0NVz8lp8+bl8no9V3R352kLF1Y9B46qrVbk3N6l+fKTu6ueMmvO7V2atlpR9QwAAAAAAAAAgBknCoEWUhRFW5JXTXDZ75dlOSP/iuCyLEeKonh3jv20kMuKovhPZVlW/6/wBgBOOANDQ/no9u3Z1GjkqwcOVD0ni9vacmlXV67o7s4vLV+eWuFD6JwYzlu7/KSOQs5bu7zqCQAAAAAAAAAAs0IUAq3l3yTpOcbrh5N8eIbP3JTkHUnmHeX13iQvSPI3M3wuAHCSOjI2lr/YuTObGo3cv2tXRsqy0j1Fkhedcko21Ou5eNWqLGo71kPZYG666JzufOALT1Q9Y9ZcdE531RMAAAAAAAAAAGaFKARay8smeP0vy7LcP5MHlmW5tyiKTyf5tWNc9rKIQgCAYyjLMl/aty+b+vvzse3bs3tkpOpJOXvhwlzR3Z3XdHdn7fz5Vc+B43LB+hVZ37Uojw8crHrKjDuja1F+/vQVVc8AAAAAAAAAAJgVohBoLS+a4PW/nKVz/zLHjkIumqVzAYAT3JOHD+fuRiN39ffnu4ODVc/Jyvb2XNbdnSu6u/OcJUtSFEXVk2BGFEWRyy84LTd/6pGqp8y4yy84zc9VAAAAAAAAAOCkJQqBFlEURU+Ssye47DOzdPwDE7x+blEU9bIsG7N0PgBwAtk/MpJ7Bwayqb8/f7tnT9Vz0lEUednKlbmiXs9LVqxIZ61W9SSYFZc8e23e8envZHB4tOopM2ZBR1suec7aqmcAAAAAAAAAAMwaUQi0jp+b4PXNZVluno2Dy7L8p6IotiXpOcZl/yrJp2bjfABg7hsty3x29+5s6u/PxwcGcmhsrOpJ+fklS3JFvZ5fX706Kzs6qp4Ds27Zgo5c/KzefPQfZ+WXBZW4+Fm9WTrfz18AAAAAAAAA4OQlCoHW8ewJXv/qLJ//5SQvO8brz4ooBABazncOHcqmRiN39/dny5EjVc/Junnzcnl3dy7v7s7TFy2qeg403bUXnpF7v7o1QyPVh1nHq7O9lmsvPKPqGQAAAAAAAAAAs0oUAq3j/Alef2iWz38wE0chAEAL2DU8nD/dvj2bGo384/79Vc/Jolotr+jqyhX1el6wfHlqRVH1JKjMaSsX5YaLzsrv3f/tqqcctxsuOiunrRR3AQAAAAAAAAAnN1EItI6zJnj9u7N8/mMTvP60WT4fAKjQ8NhYPr1rVzY1GvnUzp0ZKstK9xRJXnjKKbmiuzv/ftWqLG73SyMY9/rnnZ77v9nIg5v3VD1l2s5ftzxXPX991TMAAAAAAAAAAGadTz5B6zhtgte/N8vnT3T/02f5fACgycqyzNcPHMimRiMf2b49A8PDVU/K0xcuzIbu7ry6uzvr5s+veg7MSe1ttbzr0vPy0j/8fIZGxqqeM2Wd7bW889Lz0lbz1B8AAAAAAAAA4OQnCoEWUBRFPcmCCS7rm+UZWyd4fWFRFKvLstw+yzsAgFm27ciRfGT79mxqNPKNgwernpOV7e15VXd3rujuzs8uWZKi8EFxmMiZq5fkxovOytvv/3bVU6bsLS8+K2euXlL1DAAAAAAAAACAphCFQGvoncQ1jVneMJn79yYRhQDACejw6Gg+uXNnNjUa+atdu1L1swU6iiK/snJlrujuzktXrkxnrVbxIjjxXPX89fnWtn257+uz3Y/PnIvP783rn7e+6hkAAAAAAAAAAE0jCoHWsHKC1/eVZXlkNgeUZTlYFMWBJIuPcdlEOwGAOaQsy/zDvn3Z1GjkY9u3Z+/oaNWT8nNLluSKej2/3tWVVZ2dVc+BE1qtVuSWS5+ZA0dG8plvzf12+2k87SIAACAASURBVEVnd+eWS5+ZWs3TgAAAAAAAAACA1iEKgdawYoLX9zVlxf8951hRyEQ7AYA54MnDh3NXo5G7+vvzvcHBqudk7bx5uby7O5d3d+fsRYuqngMnlY62Wt5z2bNz3Ue+OqfDkBed3Z33XPasdLR5KhAAAAAAAAAA0FpEIdAaTpng9WZGIb3HeH3ORCFFUbwpyRubcNQZTTgDAI7b/pGR3DswkE39/fnbPXuqnpNFtVpe3tWVK+r1vGD58rQVngwAs2V+R1v+6DXPyU33PJj7vt5X9Zwfc/H5vbnl0mcKQgAAAAAAAACAliQKgdYwf4LXDzVlRXJwgtcn2tlMXUnOqXoEAFRptCzz2d27c1d/f+4dGMihsbFK9xRJ/vXy5dlQr+eSVauyuN0vZ6BZOtpqufWV5+fsnqV51wOPZmik2r8eJElney1vefFZef3z1qdWE4YBAAAAAAAAAK3Jp6igNXRO8PpIU1ZMfM5EOwGAJvjOoUPZ1Gjk7v7+bDlypOo5OWvBgmyo1/Oa7u6cOn8uNaTQWmq1ItdceEZeePbq3HjPQ3lwc3VPDTp/3fK889LzcubqJZVtAAAAAAAAAACYC0Qh0BpEIQDAMe0aHs6fbt+eTY1G/nH//qrn5JT29vyH1auzoV7Pzy1ZkqLwFACYK85cvST3XvsL+ePPP5Fbm/zUkM72Wm686Ky8/vnr0+bpIAAAAAAAAAAAohBoEbUJXh9tyoqJz2lrygoAIEkyMjaWv9q9Ox9qNPLnO3ZkqCwr3dOW5CUrV2ZDd3detmpV5tUm+r8wQFXa22q59sIz8pKfqee2zz2W+77Wl8Hh2ftlxYKOtlz8rN5ce+EZOW3lolk7BwAAAAAAAADgRCMKgdYw0RM6mvXXgonOGW7KCgBocd88cCCb+vtzd6OR/uHq/+f3/MWLc0V3dy7r7k53pweHwYnktJWL8vZLzstbX3r2/8/enUZXehd2nv89Ukm1SbWr7pVKLg82NhkczOKGOMN0Zw7BgTCHJQwkwbFdXojLECAJNElOus/E9DSn2dospzG2Md7A0B2D4xAmMBimm8HJ0AxeMGEzNj52qaQrqfaSa9H2zAsQAcpVUlXp6tHy+ZzDC9e9ev6/+wbL59xv/XP3/X355DeeyGPDT83a88/uWp1LLzwzr72gN2tWtM3acwEAAAAAAAAAFgtRCCwNo9O8Plf/XzDdt7im2zmXhpN8bw7OOTvJ8jk4B4AlbvfYWD4zOJjbGo3cPzJS9ZzU2tryB7VattXrOb+jo+o5wGlas6Itl7/4Gdn2P/0P+e+P78m93xvMw3378k87D5zUDSKr2ltzXs+anN+7Lhc9u5Zfe8aGFEXRxOUAAAAAAAAAAAubKASWhun+CvC5+iu5F0wUUpblR5N8tNnnFEXx3STPbvY5ACxNY5OT+b/27MltjUY+v3t3xsqy0j3LiyKv3rQp2+r1/Nb69VnW0lLpHmD2FUWRC8/amAvP2pgkmZgs8+PhkXxn5/78cPBgDhwey9GxyRydmMzy1pYsb2vJmpVteVatM8/ZsjZndXWktUUEAgAAAAAAAAAwU6IQWBqm++vAO+dkRbJmmter/2vLAWAR+M7ISG5rNHLn4GAGx6ZrQ5vv19esybZ6Pb/b1ZX1bdM1osBi0tpS5JxaZ86pzdV/cgAAAAAAAAAALC2iEFga9kzz+lx9Q2u6c6bbCQAcx67R0XxmaCi3NRp5YKT6znLr8uW5rF7PpbVazl21quo5AAAAAAAAAAAAi5IoBJaG3dO8vm5OViRrp3l9up0AwM8Zm5zMl/bsyW2NRv5u9+6MlWWle1a3tOR1XV3ZVq/nN9atS0tRVLoHAAAAAAAAAABgsROFwNKwa5rXlxdFsa4sy33NGlAUxcYk7dO8TRQCADPw8MhIbms0cufgYIbGxirdUiR5ybp1uaxez2s3bUrHMv+JAQAAAAAAAAAAMFd8YwuWhidn8J5akqZFIT99/nRmshMAlqRdo6P59NBQbms08uDISNVzcu7KldlWr+eSWi1bV6yoeg4AAAAAAAAAAMCSJAqBJaAsy5GiKHYn2XiCt52Z5IdNnHHmNK8PlWX5VBPPB4AFZ2xyMl/csye3NRr5wu7dGSvLSvesX7Ysv795cy6r1fJra9akKIpK9wAAAAAAAAAAACx1ohBYOh7PiaOQc5J8uYnnnzPN64838WwAWFC+PTKS2xqN3Dk4mOGxsUq3tCb57Y0bs61Wyys3bcrylpZK9wAAAAAAAAAAAPDPRCGwdHw3yb84wevPavL5507z+nebfD4AzGvDo6P59NBQbms08tDISNVz8tzVq7OtXs/FtVpq7e1VzwEAAAAAAAAAAOBpiEJg6XggybYTvP78Jp//gmlef7DJ5wPAvDM6OZm/3707tzUa+T/37Ml4WVa6Z1NbWy6p1bKtVsvzOjsr3QIAAAAAAAAAAMD0RCGwdDwwzevPK4qitSzLidk+uCiKZUmeO83bRCEALBkPHTyY2xqN3Dk0lF1jY5VuWVYUeeXGjdlWr+e3N2xIe0tLpXsAAAAAAAAAAACYOVEILB3fSnIkyYrjvN6R5IIk32zC2S9KsuoErx9Jcn8TzgWAeWP32Fg+PTiYWxqNPDQyUvWcPL+jI5fX63nD5s3pam+veg4AAAAAAAAAAACnQBQCS0RZlkeKoviHJL95grddlOZEIS+d5vWvl2V5pAnnAkClJsoyX96zJ7c2GvnbXbsyWpaV7ulqa8sltVq21et5bkdHpVsAAAAAAAAAAAA4faIQWFruzYmjkNcmeXcTzn3dNK9/uQlnAkBlfnToUG5tNHJHo5Gdo6OVbmkrirxy48ZcXq/n5Rs2pK2lpdI9AAAAAAAAAAAAzB5RCCwtn03ynhO8/oKiKJ5VluUPZ+vAoijOS/Kcad72udk6DwCqMjI+nruGh3NLo5H79u+vek5e0NGRy+v1vGHz5mxqb696DgAAAAAAAAAAAE0gCoElpCzLx4qi+EaSC0/wtrcmecssHvu2aV7/h7IsH5/F8wBgzpRlmfv278+tjUb+emgoT01OVrpnc1tbLqnVsq1ez/kdHZVuAQAAAAAAAAAAoPlEIbD03JITRyFXFEXx7rIsB073oKIoepNcNs3bbjvdcwBgrvUdOZI7Bgdza6ORRw8frnRLW1HkVRs35vJ6PS/bsCFtLS2V7gEAAAAAAAAAAGDuiEJg6flkkn+fZPNxXl+V5D1Jts3CWe9NsuIErw/+dA8AzHtHJyfz+V27ckujkS/v2ZNq7wRJLujoyOX1et5Qq2VjW1vFawAAAAAAAAAAAKiCKASWmLIsjxRF8eEk7z7B2y4riuKesiz/5lTPKYri9UkunuZtHyrL8uipngEAc+HBgwdza6OROwcHs2d8vNIttba2XFqvZ1utll/t6Kh0CwAAAAAAAAAAANUThcDS9KEk25NsPcF7bi+KYmdZlt882YcXRXFhklumeduTST58ss8GgLmwe2wsdw4O5tZGIw+NjFS6pb0o8qpNm3J5vZ6XrV+fZS0tle4BAAAAAAAAAABg/hCFwBJUluWhoijekeSuE7ytM8mXi6K4pCzLL8z02UVRvDrJHUmm++vL316W5eGZPhcAmm2iLPPlPXtyS6ORv921K2NlWemeF3Z2Zlu9nt/fvDkb29oq3QIAAAAAAAAAAMD8JAqBJaosy88WRfHpJBef4G1rk3y+KIrPJPk/yrL8wfHeWBTFs5P870l+bwbH31mW5edOajAANMkjhw7ltkYjtzca6R8drXRLvb09l9Zq2Vav57zVqyvdAgAAAAAAAAAAwPwnCoGlbXuSFyT5lRO8p8hPwpGLi6J4MMk/Jnk8yUh+cpvIM5K8OMlzZ3jmD5Jcc6qDAWA2HBwfz13Dw7m10ch9+/dXuqWtKPLqTZtyRb2e31q/PstaWirdAwAAAAAAAAAAwMIhCoElrCzLkaIoXpbk60m2zuBHnv/T/52qJ5O8rCzLkdN4BgCckrIsc9/+/bml0chdQ0N5anKy0j3P6+jIlfV6Lq7VsrGtrdItAAAAAAAAAAAALEyiEFjiyrJ8siiK30zypSRnN/GoR5O8vCzLJ5t4BgAco+/IkdwxOJhbG408evhwpVs2LFuWP6jVckW9nud3dla6BQAAAAAAAAAAgIVPFAKkLMtHi6J4YZLPJHlZE474UpKLy7Lc24RnA8AxxiYn84Xdu3PzwEC+tGdPqrwTpCXJb23YkCvr9bxq06Ysb2mpcA0AAAAAAAAAAACLiSgESJL8NNh4eVEU25K8L8nmWXjsUJJ3lmV5xyw8CwCm9cihQ/nEwEBuazQyNDZW6ZZnrlyZK+r1XFarpXfFikq3AAAAAAAAAAAAsDiJQoBfUJbl7UVRfDbJtiRvSfI/nsJjvpfko0luK8vy0GzuA4BfdmhiIp8dHs7NAwP5+v79lW5Z3dKS3928OVfW63nx2rUpiqLSPQAAAAAAAAAAACxuohDgGGVZPpXk+iTXF0VxbpKXJ3lBkvOSbEnSmWRVkkNJDibpy09CkAeSfLEsyx9VsRuApeWBgwdz88BA7hwczIGJiUq3/Mu1a3NFvZ7Xd3WlY5lfsQEAAAAAAAAAAJgbvrEGnFBZlo8keaTqHQCQJHvHxvLpoaHcPDCQh0ZGKt3S096ey+v1XF6v55xVqyrdAgAAAAAAAAAAwNIkCgEAYF4ryzJf27cvn2g08tnh4RyZnKxsS3tR5NWbNuWKej2/tWFDWouisi0AAAAAAAAAAAAgCgEAYF4aOHo0tzca+USjkUcPH650y/M6OnJlvZ6La7VsbGurdAsAAAAAAAAAAABMEYUAADBvjE9O5ot79uQTAwP5wu7dmahwy4Zly3JJrZYr6vU8r7OzwiUAAAAAAAAAAADw9EQhAABU7rHDh3PLwEBubTQyMDpa2Y6WJC/bsCFX1ut55aZNWd7SUtkWAAAAAAAAAAAAmI4oBACAShyZmMjdu3bl5oGB/Nd9+yrdcs7KlbmiXs9l9Xq2LF9e6RYAAAAAAAAAAACYKVEIAABz6tsjI/nEwEA+NTiYvePjle1Y3dKS39u8OVfU63nx2rUpiqKyLQAAAAAAAAAAAHAqRCEAADTdgfHxfGZoKDcPDORbBw9WuuV/Xrs2V9breX1XVzqW+XUYAAAAAAAAAACAhcu34AAAaIqyLPOPBw7k5oGB/PXQUA5NTla2pautLdvq9VxVr+dXVq+ubAcAAAAAAAAAAADMJlEIAACzamh0NHc0Grl5YCA/PHy4sh1Fkpdv2JCrurvzyo0b097SUtkWAAAAAAAAAAAAaAZRCAAAp22yLPPVvXtz08BA7tm1K+NlWdmWM5cvz5Xd3bm8Xs/WFSsq2wEAAAAAAAAAAADNJgoBAOCUDY6O5taBgXx8YCA/PnKksh1tRZHf2bQpb+zuzm+uX5+WoqhsCwAAAAAAAAAAAMwVUQgAACdlsizzf//crSBjFd4K8uxVq/LG7u5cWqtlU3t7ZTsAAAAAAAAAAACgCqIQAABmZGh0NLc1Grmpvz+PVXgryOqWlvz+5s25qrs7F65Zk8KtIAAAAAAAAAAAACxRohAAAI5rsizz3/bty439/fmbim8F+bXOzryxuzu/t3lzOpf5NRYAAAAAAAAAAAB8mw4AgGMMjY7m9kYjNw0M5NHDhyvbsWHZslxWr+eqej2/2tFR2Q4AAAAAAAAAAACYj0QhAAAkScqfuxXk7opvBblo/fpc1d2d12zalOUtLZXtAAAAAAAAAAAAgPlMFAIAsMQN/9ytID+q8FaQLe3tubK7O1fU63nGypWV7QAAAAAAAAAAAICFQhQCALAElWWZr+3blxsHBnL38HBGK7oVZFlR5FUbN+aq7u68bMOGtBZFJTsAAAAAAAAAAABgIRKFAAAsIbtGR3P74GBu6u/PIxXeCnLuypV5Y3d3LqvXU2tvr2wHAAAAAAAAAAAALGSiEACARa4sy/w/+/fnxv7+fK7CW0FWtrTkd7u68sbu7rx47doUbgUBAAAAAAAAAACA0yIKAQBYpHaPjeX2RiM39ffnhxXeCvKCjo78YXd33lCrZe0yv34CAAAAAAAAAADAbPGtPACARaQsy3z9p7eCfLbCW0E6Wltz8ebNubqnJxd0dlayAQAAAAAAAAAAABY7UQgAwCKwZ+pWkIGB/ODQocp2vKCjI9t7evKGzZvT6VYQAAAAAAAAAAAAaCrf1AMAWKDKssx9+/fnpoGB3DU0lKMV3QqyuqUlF9dq2e5WEAAAAAAAAAAAAJhTohAAgAXmwPh4PjU4mOt37sx3K7wV5Pk/dyvIGreCAAAAAAAAAAAAwJzz7T0AgAXin0ZGcn1/fz45OJiRiYlKNqxuackbarVc3d2df9HZmaIoKtkBAAAAAAAAAAAAiEIAAOa10cnJ3D08nOv7+/P1/fsr2/G8jo5s7+7OxbWaW0EAAAAAAAAAAABgnvCNPgCAeWjHkSO5aWAgH+/vz+DYWCUbVrW05A2bN+fqnp680K0gAAAAAAAAAAAAMO+IQgAA5onJssxX9+7N9f39+fyuXZmsaMf5q1dne09P/qBWy1q3ggAAAAAAAAAAAMC85Vt+AAAV2zs2ltsajXysvz8/Ony4kg2rWlry+z+9FeRFbgUBAAAAAAAAAACABUEUAgBQkfsPHsz1O3fmM0NDOTxZzb0gz/nprSCXuBUEAAAAAAAAAAAAFhzf/AMAmEOHJyby18PDuX7nznzz4MFKNqycuhWkuzu/tmaNW0EAAAAAAAAAAABggRKFAADMgccOH84N/f25ZWAge8bHK9nwq6tXZ3t3dy6p1bKura2SDQAAAAAAAAAAAMDsEYUAADTJRFnm73fvzvX9/fnSnj2VbFjR0pLf6+rK9p6eXOhWEAAAAAAAAAAAAFhURCEAALNsaHQ0nxgYyI39/Xni6NFKNpy3alW29/Tkklot690KAgAAAAAAAAAAAIuSKAQAYBaUZZn/98CBXL9zZ+4aHs5oWc75huVFkd/dvDnX9PTk190KAgAAAAAAAAAAAIueKAQAmLFrr702PT09ufrqq6ueMiM33XRT+vv7c+211zbtjJHx8Xx6aCjX79yZbz/1VNPOOZFnrFiRa3p6cmW9nk3t7ZVsAAAAAAAAAAAAAOaeKAQAmJFrr70273rXu372z/M9DLnpppuyffv2n/3zbIch33/qqXysvz+3Nxo5MDExq8+eiSLJKzZsyJu3bMnLNmxIq1tBAAAAAAAAAAAAYMkRhQAA0/rlIGQqtpivYcgvByFT2083DBmbnMzf7tqV6/v781/37TutZ52qTW1tuapez/aenjxj5cpKNgAAAAAAAAAAAADzgygEADihXw5CpszXMOSXg5AppxOGDI6O5qb+/tzQ35/+0dHTnXhKfn3Nmry5pyev6+rKitbWSjYAAAAAAAAAAAAA84soBAA4ruMFIVPmWxhyvCBkysmGIfcfPJiP9PXlPw8NZbQsZ2PiSVnV0pI/qNXypp6ePL+zc87PBwAAAAAAAAAAAOY3UQgA8LSmC0KmzJcwZLogZMp0YcjY5GTu3rUrH+nryz8eODCbE2fs3JUr8+YtW7KtVsu6trZKNgAAAAAAAAAAAADznygEAHhaPT09M35v1WHITIOQKU/32YZHR3PTwECu37kz/aOjszlvRlqTvHrTprx5y5a8ZN26FEUx5xsAAAAAAAAAAACAhUUUAgA8ranAY6axRVVhyMkGITfeeOMvbHzw4MF8ZOfOfGZwMEfLshkTT6je3p6ru7vzh93d6V2xYs7PBwAAAAAAAAAAABYuUQgAcFzzPQw51SBkfHIy9+zalQ/v3Jn79u9v4sLj+1/Wrcube3rymk2b0tbSUskGAAAAAAAAAAAAYGEThQAAJzRfw5BTCUJee/nlec8TT+Sj/f3pO3q0ieueXmdra7bV67mmpyfnrV495+cDAAAAAAAAAAAAi4soBACY1nwLQ042CPm3H/5wvvmv/lX++BvfyJHJyaZsOpHnrF6dP9qyJRdv3pzOZX79AgAAAAAAAAAAAGaHbyUCADMyX8KQkw1Czvk3/yb//vzzk0ZjVndMp60o8rqurry5pycvXrs2RVHM6fkAAAAAAAAAAADA4icKAQBmrOow5GSDkLz97fnRS186K2fP1BnLl+eanp5c1d2dWnv7nJ4NAAAAAAAAAAAALC2iEADgpFQVhpxKEJJXvvK0zjwZL1u/Pm/esiWv2LAhy1pa5uxcAAAAAAAAAAAAYOkShQAAJ22uw5D5GoSsW7YsV9bruaanJ+esWtX08wAAAAAAAAAAAAB+nigEADglcxWGzMcg5NmrVuVtvb25pFbL6tbWpp4FAAAAAAAAAAAAcDyiEADglDU7DJlPQUiR5JUbN+Ztvb15ybp1KYqiKecAAAAAAAAAAAAAzJQoBAA4Lc0KQ+ZLELK2tTVXdXfnj7ZsyVkrV8768wEAAAAAAAAAAABOlSgEADhtsx2GzIcg5FdWrcrbtmzJpbVaOpb5lQkAAAAAAAAAAACYf3zDEQCYFbMVhrz7P/2n/Nu3vnXmB89iEFIk+V83bszbtmzJS9evT1EUs/JcAAAAAAAAAAAAgGYQhQAAs+Z0wpB/3L8/b7nuujz47/7dzA+cpSBkTWtrruzuzh/19OSZq1ad9vMAAAAAAAAAAAAA5oIoBACYVacShrznySfz+OHDyXXXzfygWQhCzl25Mm/r7c1ltVo6l/m1CAAAAAAAAAAAAFhYfPsRAJh1JxuGPP7ud5/cAacZhLxiw4a8rbc3F61fn5aiOOXnAAAAAAAAAAAAAFRJFAIANMXJhiEzdopBSGdra66o1/NHW7bk3FWrZncTAAAAAAAAAAAAQAVEIQBA08x6GHIKQcg5K1fmrVu2ZFu9njXL/OoDAAAAAAAAAAAALB4tVQ8AABanybLM53ftyp0vfOFPYo7TdZJByMs3bMjfP+c5+cGLXpS39vYKQgAAAAAAAAAAAIBFx7cjAYBZdWhiIrc3GvlgX19+dPjwT/5wKua47rpTe+gMg5DVLS25vF7PW3t786xVq07tLAAAAAAAAAAAAIAFQhQCAMyKgaNH89GdO/Ox/v7sGR8/9g2nGobMIAg5a8WKvHXLllzR3Z21bgQBAAAAAAAAAAAAlgjfmgQATsvDIyP5YF9fPj04mNGynNOzL1q/Pm/bsiW/vXFjWotiTs8GAAAAAAAAAAAAqJooBAA4aWVZ5st79+Y/7tiRe/fundkP/d3fnfwtIck//8xPbwtZ1dKSbfV63rJlS569evXJPw8AAAAAAAAAAABgkRCFAAAzdmRiIncODeWDO3bku4cOzfwHTzUImXLdddmwbFn+8i1vyVX1eta1tZ36swAAAAAAAAAAAAAWCVEIADCt4dHRfKy/Px/duTNDY2Mn98OnG4T81J73vS+dZ5+ddVdffdrPAgAAAAAAAAAAAFgMRCEAwHH94Kmn8sG+vtwxOJgjk5Mn/4BZCkKmbN++PUlytTAEAAAAAAAAAAAAQBQCAPyisizz3/bty3V9ffnC7t2n/qBZDkKmCEMAAAAAAAAAAAAAfkIUAgAkScYmJ/NfhoZyXV9fHhwZOb2HnWQQsvbP/iwvWbcuf/OXfzmj9wtDAAAAAAAAAAAAAEQhALDk7R8fz439/flIX192jo6e/gNPMgi54n3vyw3veEfaW1py08aNPws+piMMAQAAAAAAAAAAAJY6UQgALFGNo0fzob6+fKy/PwcmJmbnoScZhNxwww2/EIFMBR7CEAAAAAAAAAAAAIDpiUIAYIl59NChvH/HjtzeaORoWc7eg08yCLnxxhufNuYQhgAAAAAAAAAAAADMjCgEAJaI+w8ezHuffDKfGx7O5Gw/fJaCkCnCEAAAAAAAAAAAAIDpiUIAYBEryzJf3bs3792xI1/Zu7c5h8xyEDJFGAIAAAAAAAAAAABwYqIQAFiEJsoydw8P571PPpn7R0aad1CTgpApwhAAAAAAAAAAAACA4xOFAMAicmRiIncMDub9O3bk0cOHm3tYk4OQKcIQAAAAAAAAAAAAgKcnCgGARWD/+Hhu6O/Ph/r60hgdbf6BcxSETBGGAAAAAAAAAAAAABxLFAIAC9jA0aP5cF9fPtbfnwMTE3Nz6BwHIVOEIQAAAAAAAAAAAAC/SBQCAAvQjw4dygd27MhtjUZGy3LOzn3mV76SRysIQqYIQwAAAAAAAAAAAAD+mSgEABaQbx04kPfu2JHPDQ9nrlKQ1iSv37w5z7j33vyHd797xj8320HIFGEIAAAAAAAAAAAAwE+IQgBgnivLMl/duzfvefLJfHXfvjk7t7O1NVd3d+dtvb350h13ZPuf/MmMf7ZZQcgUYQgAAAAAAAAAAACAKAQA5q2Jsszdw8N575NP5v6RkTk7t97enj/p7c01PT1Zu2xZbrrpphnHF0nzg5ApwhAAAAAAAAAAAABgqROFAMA8c2RiIncMDub9O3bk0cOH5+zcZ65cmXeecUYuq9WyorU1SeZtEDJFGAIAAAAAAAAAAAAsZaIQAJgn9o+P54b+/nxwx44Mjo3N2bkXdHTkz7duzWu7utJaFD/78/kehEwRhgAAAAAAAAAAAABLlSgEACo2cPRoPtTXlxv6+3NgYmLOzn3p+vX5i61b85J161L8XAwypb+/f8bPqioImXKyYcjJfDYAAAAAAAAAAACA+UoUAgAV+dGhQ3n/jh25vdHIaFnOyZlFktd1deXPt27NBZ2dJ3zvtddemyR517vedcL3VR2ETJlpGPJXf/VXP/tsAAAAAAAAAAAAAAuZKAQA5ti3DhzIe3fsyOeGhzM3KUjSXhS5vF7Pvz7jjJyzatWMf266MGS+BCFTpgtDBCEAAAAAAAAAAADAYiIKAYA5UJZlvrp3b97z5JP56r59c3bumtbWvKmnJ3/c25vu5ctP6RnHC0PmWxAy5XhhiCAE+nXjIwAAIABJREFUAAAAAAAAAAAAWGxEIQDQRBNlmc8ND+e9Tz6ZB0ZG5uzcent7/rS3N9t7erJ22en/6/6Xw5D5GoRM+eUwRBACAAAAAAAAAAAALEaiEABoolc8/HC+vHfvnJ33zJUr82dnnJFLa7WsaG2d1WdPRRU9PT3zOgiZMrWxv79fEAIAAAAAAAAAAAAsSqIQAGii12zaNCdRyAUdHfmLrVvzO11daS2Kpp2z0OKKhRCvAAAAAAAAAAAAAJyqlqoHAMBidnm9ns1tbU17/kvXr89Xnvvc/H8XXJDXbd7c1CAEAAAAAAAAAAAAgPlFFAIATbSytTV/3Ns7q89sSfL6rq5864ILcu9zn5vfXL8+hRgEAAAAAAAAAAAAYMkRhQBAk725pyedra2n/Zz2osj27u788EUvyl+fd14u6OychXUAAAAAAAAAAAAALFTLqh4AAIvdura2bO/pyQd27Diln1/T2po39fTkj3t70718+SyvAwAAAAAAAAAAAGChEoUAwBz4097efKSvL6NlOeOfqbe35097e7O9pydrl/lXNgAAAAAAAAAAAAC/yDdMAWAO9CxfnktrtXyi0Zj2vc9cuTJ/dsYZubRWy4rW1jlYBwAAAAAAAAAAAMBCJAoBgDnyzq1bc0ujkePdFXJBR0f+YuvW/E5XV1qLYk63AQAAAAAAAAAAALDwiEIAYI48a9Wq/M6mTbl7165f+POXrl+fv9i6NS9Zty6FGAQAAAAAAAAAAACAGRKFAMAc+vOtW3P3rl1pSfK/dXXlz7duzQWdnVXPAgAAAAAAAAAAAGABEoUAwBx60Zo1+cDZZ+dVGzfmnFWrqp4DAAAAAAAAAAAAwAImCgGAOfaOM86oegIAAAAAAAAAAAAAi0BL1QMAAAAAAAAAAAAAAAA4eaIQAAAAAAAAAAAAAACABUgUAgAAAAAAAAAAAAAAsACJQgAAAAAAAAAAAAAAABYgUQgAAAAAAAAAAAAAAMACJAoBAAAAAAAAAAAAAABYgEQhAAAAAAAAAAAAAAAAC5AoBAAAAAAAAAAAAAAAYAEShQAAAAAAAAAAAAAAACxAohAAAAAAAAAAAAAAAIAFSBQCAAAAAAAAAAAAAACwAIlCAAAAAAAAAAAAAAAAFiBRCAAAAAAAAAAAAAAAwAIkCgEAAAAAAAAAAAAAAFiARCEAAAAAAAAAAAAAAAALkCgEAAAAAAAAAAAAAABgARKFAAAAAAAAAAAAAAAALECiEAAAAAAAAAAAAAAAgAVIFAIAAAAAAAAAAAAAALAAiUIAAAAAAAAAAAAAAAAWIFEIAAAAAAAAAAAAAADAAiQKAQAAAAAAAAAAAAAAWIBEIQAAAAAAAAAAAAAAAAuQKAQAAAAAAAAAAAAAAGABEoUAAAAAAAAAAAAAAAAsQKIQAAAAAAAAAAAAAACABUgUAgAAAAAAAAAAAAAAsACJQgAAAAAAAAAAAAAAABYgUQgAAAAAAAAAAAAAAMACJAoBAAAAAAAAAAAAAABYgJZVPQAAWFomJss8NjyS7/TtzyODB7P/8FiOjk9mdGIy7a0tWb6sJWtXtuXcWmfO712bs7o60tpSVD0bAAAAAAAAAAAAYN4RhQAATVWWZb7x4z2593uDebhvX77bfyCHxyZm/POr2lvz7O41Ob93XS56di0XnrUhRSESAQAAAAAAAAAAABCFAABNsf/wWO5+oC+f+sYTeWz4qVN+zqHRiXzrib351hN7c8s/PJ6zu1bnkgvPzGtf0Ju1K9tmcTEAAAAAAAAAAADAwiIKAQBm1RO7n8oNX3ss9zzYf1I3gszUY8NP5V1/972870s/zGue35NrfuPsnLlx9ayfAwAAAAAAAAAAADDfiUIAgFkxPjGZj3/98XzwK49kdHyy6ecdHpvIZ765I597YGfeftG5+cN/eVZaW4qmnwsAAAAAAAAAAAAwX4hCAIDT9ujQwbzjrofz7R375vzs0fHJvOeLP8iX/qmRD7z+/Dxzc+ecbwAAAAAAAAAAAACoQkvVAwCAhWtyssyNX3ssr/jIfZUEIT/voR378oqP3Jcbv/ZYJifLSrcAAAAAAAAAAAAAzAU3hQAAp2RsYjLvvOvbueeh/qqn/Mzo+GT+wxd/kO8PHMj7X//ctLXqXwEAAAAAAAAAAIDFyzclAYCTdmRsIm/61P3zKgj5efc81J83fer+HBmbqHoKAAAAAAAAAAAAQNOIQgCAkzI2MZm3fPqBfOX7Q1VPOaGvfH8ob/n0gxmbmKx6CgAAAAAAAAAAAEBTiEIAgBmbnCzzzru+Pe+DkClf+f5g3nnXtzM5WVY9BQAAAAAAAAAAAGDWiUIAgBn7+Nd/nHse6q96xkm556H+3Hzfj6ueAQAAAAAAAAAAADDrRCEAwIw8OnQw//HeR6qecUo+8OVH8ujQwapnAAAAAAAAAAAAAMwqUQgAMK3xicm8466HMzo+WfWUUzI6Ppl/fdfDmZgsq54CAAAAAAAAAAAAMGtEIQDAtG6+7/F8e8e+qmeclod27MvHv/7jqmcAAAAAAAAAAAAAzBpRCABwQk/sfirX3ftI1TNmxXX3PpIndj9V9QwAAAAAAAAAAACAWSEKAQBO6IavPZbR8cmqZ8yK0fHJ3PC1x6qeAQAAAAAAAAAAADArRCEAwHHtPzyWex7sr3rGrLrnwf4cODJW9QwAAAAAAAAAAACA0yYKAQCO6+4H+nJ4bKLqGbPq8NhE7r6/r+oZAAAAAAAAAAAAAKdNFAIAPK2yLPPJbzxR9Yym+OQ3nkhZllXPAAAAAAAAAAAAADgtohAA4Gl948d78uPhp6qe0RSPDT+V//74nqpnAAAAAAAAAAAAAJwWUQgA8LTu/d5g1ROaarF/PgAAAAAAAAAAAGDxE4UAAE/r4b59VU9oqsX++QAAAAAAAAAAAIDFTxQCABxjYrLMd/sPVD2jqb7bfyATk2XVMwAAAAAAAAAAAABOmSgEADjGY8MjOTw2UfWMpjo0OpEfD49UPQMAAAAAAAAAAADglIlCAIBjfKdvf9UT5sR3di6NzwkAAAAAAAAAAAAsTqIQAOAYjwwerHrCnPjhEvmcAAAAAAAAAAAAwOIkCgEAjrH/8FjVE+bEgSXyOQEAAAAAAAAAAIDFSRQCABzj6Phk1RPmxNGxpfE5AQAAAAAAAAAAgMVJFAIAHGN0YmnEEkeXyOcEAAAAAAAAAAAAFidRCABwjPbWpfErwvIl8jkBAAAAAAAAAACAxck3IQGAYyxftjR+RVjetjQ+JwAAAAAAAAAAALA4+SYkAHCMtSvbqp4wJ9Yskc8JAAAAAAAAAAAALE6iEADgGOfWOqueMCeetUQ+JwAAAAAAAAAAALA4iUIAgGM8p3dt1RPmxHO2LI3PCQAAAAAAAAAAACxOohAA4Bhnd3VkZVtr1TOaalV7a87q6qh6BgAAAAAAAAAAAMApE4UAAMdobSlyXs+aqmc01Xk9a9LaUlQ9AwAAAAAAAAAAAOCUiUIAgKd1fu+6qic01WL/fAAAAAAAAAAAAMDiJwoBAJ7WRc+uVT2hqRb75wMAAAAAAAAAAAAWP1EIAPC0LjxrQ87qWl31jKY4u2t1fu0ZG6qeAQAAAAAAAAAAAHBaRCEAwNMqiiKXXnhm1TOa4tILz0xRFFXPAAAAAAAAAAAAADgtohAA4Lhe+4LerGxrrXrGrFrZ1prXXtBb9QwAAAAAAAAAAACA0yYKAQCOa+3Ktrzm+T1Vz5hVr3l+T9asaKt6BgAAAAAAAAAAAMBpE4UAACd0zW+cnfZli+NXhvZlLbnmN86uegYAAAAAAAAAAADArFgc3/AEAJrmzI2r8/aLzq16xqx4+0Xn5syNq6ueAQAAAAAAAAAAADArRCEA8P+zd+fR1p/z3fjfn/u+c0eQCKmIVIgkpgSJaCuIeSiqhDbaeqi5pgcdFW0pOmiV6lM1teZ62mr5VUkoWlo1t6ghpkYQxFASQebk8/tjnzw13Od899nTyT779VrrrNs613Wu65N2rffZZ+/v57oY9NDjr52jD9l/q8uYyjGH7J+H3eqwrS4DAAAAAAAAAAAAYGY0hQAAg3bt3JFnnXjj7N61nC8ddu/akT868cbZuaO2uhQAAAAAAAAAAACAmVnOJzsBgIU74sB98yt3uu5WlzGRX73zdXPEgftudRkAAAAAAAAAAAAAM6UpBAAY28NudVhOOObgrS5jU0445uA89PjDtroMAAAAAAAAAAAAgJnTFAIAjG3HjsozTzw6d7zBgVtdyljueIOr5ZknHp0dO2qrSwEAAAAAAAAAAACYOU0hsEKq6tCq6i3+OmKr/+8ATGevnTvy3Psee5lvDLnjDa6W5973Jtlrp5c7AAAAAAAAAAAAwPbkKUkAYNMut9fOPP9+N80Jxxy81aXs0QnHHJzn3+/YXG6vnVtdCgAAAAAAAAAAAMDc7NrqAgCA5bTXzh159n2OyQ2uvl+e9ZZP5YKLLtnqkrJ714786p2vm4cef1h27KitLgcAAAAAAAAAAABgrtwUAgBMbMeOysNvc3hOfuzxOfqQ/be0lmMO2T8nP/b4/MKtD9cQAgAAAAAAAAAAAKwETSEAwNSOOHDfvOYRN88T7nr97N612JcXu3ftyBPvev285pG3yBEH7rvQvQEAAAAAAAAAAAC20q6tLgAA2B527dyRR9zm8Nz1hgflBf9yav7+g1/KuRdePLf99tlrZ064ycF5xG0Oz7UOuMLc9gEAAAAAAAAAAAC4rNIUAny3lyZ515z3+Oqc1we22LUOuEJ+/943zhPvdoO89j++kFe+53M59Wvfmdn6h1/1Crn/cdfKvW96jex3ub1mti4AAAAAAAAAAADAstEUAny3f+3ul211EcD2sN/l9soDb3ntPOAWh+a9p30jbznlK/nwF87KR7949qZuELn87p056uD9cuNr7J87HXm13OzaV0lVzbFyAAAAAAAAAAAAgOWgKQQAmKuqynGHHZDjDjsgSXLxJZ3PfO3b+cgXv5lPfuVbOfvcC3P+hZfk/Isvyd47d2TvvXZkv332yvWutm9u9MNXymFXvWJ27tAEAgAAAAAAAAAAAPD9NIUAAAu1c0flOlfbN9e52r5bXQoAAAAAAAAAAADAUtux1QUAAAAAAAAAAAAAAACweZpCAAAAAAAAAAAAAAAAlpCmEAAAAAAAAAAAAAAAgCWkKQQAAAAAAAAAAAAAAGAJaQoBAAAAAAAAAAAAAABYQppCAAAAAAAAAAAAAAAAlpCmEAAAAAAAAAAAAAAAgCWkKQQAAAAAAAAAAAAAAGAJaQoBAAAAAAAAAAAAAABYQppCAAAAAAAAAAAAAAAAltCurS4AuGyqqn2SHJ7kkCT7J7lckvOTnJvkG0lOT/KF7r5gy4oEAAAAAAAAAAAAAFhhmkKA73azqjo2yW2T3CDDGXFRVX0syb8neXOSN3f3WfMtEQAAAAAAAAAAAACARFMI8L0escn5u5Icvfb1kCQXVNX/l+T53f0vsy4OAAAAAAAAAAAAAID/sWOrCwC2ld1JfibJ26vqn6vqR7a6IAAAAAAAAAAAAACA7UpTCDAvt0vynqp6RlXt3upiAAAAAAAAAAAAAAC2m11bXQCwre1M8utJjq+qe3X317a6oHFV1aOTPGoBWx2+gD0AAAAAAAAAAAAAgG1IUwiwCLdM8u6qunV3f2mrixnTVZMcudVFAAAAAAAAAAAAAACsR1MIkCSXJPlAkg8m+cja1xlJvrn2dUmSA5JcJcnVk9wiyW2SHJdknzH3ODzJP1XVLbv7GzOtHgAAAAAAAAAAAABgBWkKgdV1XpLXJ3lDkjd299cG5n9p7eujSd6SJFV1pSSPSPK4jJpFhlw/ySur6u7d3ZMWDgAAAAAAAAAAAABAsmOrCwAW7tQkj09yje6+T3e/YoyGkD3q7m929x8kuXaSZyQZp9HjbkkeM8l+AAAAAAAAAAAAAAD8D00hsFpOT3Kd7n5md399Vot29/nd/cQkP5HkG2P8yNOr6qBZ7Q8AAAAAAAAAAAAAsIp2bXUBMC9VdUSS92x1HbPU3T805c9fPKta1ln/jVV1hyRvS7L/BlP3S/LrSX5pnvVM6WtJTlnAPocn2XsB+wAAAAAAAAAAAAAA24ymELazXUkO2OoiVk13f6iq7pfk9Ulqg6kPraqndvdZCyptU7r7z5L82bz3qaqPJTly3vsAAAAAAAAAAAAAANvPjq0uANh+uvukJC8dmHbFJPdaQDkAAAAAAAAAAAAAANuSphBgXn4jyfkDc356EYUAAAAAAAAAAAAAAGxHmkKAuejuLyf564Fpt6qqnYuoBwAAAAAAAAAAAABgu9EUAszTqwfG901yw0UUAgAAAAAAAAAAAACw3WgKAebpX5NcPDDn+osoBAAAAAAAAAAAAABgu9m11QXAvHT3J5LUVtexyrr721X1X0mut8G0QxdUDgAAAAAAAAAAAADAtuKmEGDePjswfuAiigAAAAAAAAAAAAAA2G40hQDz9s2B8csvpAoAAAAAAAAAAAAAgG1GUwgwbxcMjO+1kCoAAAAAAAAAAAAAALYZTSHAvO0zMH7uQqoAAAAAAAAAAAAAANhmNIUA83bQwPi3F1IFAAAAAAAAAAAAAMA2oykEmLfDB8a/uJAqAAAAAAAAAAAAAAC2GU0hwNxU1bUyfFPIaYuoBQAAAAAAAAAAAABgu9EUAszTT4wx58NzrwIAAAAAAAAAAAAAYBvSFALM088PjH+hu09fSCUAAAAAAAAAAAAAANuMphBgLqrq9kluNjDtHxdRCwAAAAAAAAAAAADAdqQpBJi5qtqd5DljTH31vGsBAAAAAAAAAAAAANiuNIUA8/DsJDcamHNqkn9aQC0AAAAAAAAAAAAAANuSphBYAVV1XFXtWtBev5Xk0WNMfWZ3XzzvegAAAAAAAAAAAAAAtitNIbAanpDklKp6QFXtnscGVbVvVf11kqeNMf2jSV48jzoAAAAAAAAAAAAAAFaFphBYHddJ8rIkn62qp1fVdWaxaI3cI8l/JPmZMX7k4iQP7+6LZrE/AAAAAAAAAAAAAMCq0hQCq+fqSX4zyaeq6kNV9TtVdYeq2nczi1TVoVX18CQfS/K6jJpOxvH47n7X5koGAAAAAAAAAAAAAOD77drqAoAtdfTa128kuaSqTkvyiSSfT/LlJN9Mcn6SnUmusvZ1UJJbJLnmBPs9t7ufPYO6AQAAAAAAAAAAAABWnqYQ4FI7khy+9jUPz+7uX5nT2gAAAAAAAAAAAAAAK0dTCDBv5yZ5ZHe/fKsLAQAAAAAAAAAAAADYTjSFAPP05owaQj6z1YVchh2yp2+eeuqpOeqooxZdCwAAAAAAAAAAAAAspVNPPXW9oT0+r7tdaAqB1fDuJD+a5OAF7ff2JL/T3f+0oP2W2e49ffP888/PKaecsuhaAAAAAAAAAAAAAGC72ePzuttFdfdW1wAsSFVdN8ntktw6ybFJrptkx4yW/0iSf0jyiu7+1IzW3Paq6rwke291HQAAAAAAAAAAAACwTZ3f3Zfb6iLmRVMIrLCqunySGye5UZJDM7oa6ZAkV0+yb5LLJ9knyV5JLkhyXpIzk5yR5PQkp2TUDPKu7v7KgsvfFjSFAAAAAAAAAAAAAMBcaQoBYD40hQAAAAAAAAAAAADAXG3rppAdW10AAAAAAAAAAAAAAAAAm7drqwsAWHFnJdl/D9+/IMnpC66FxTk8e74h5vwkpy64FgDGJ78BlpP8Blg+shtgOclvgOUjuwGWk/wGWD6ye3EOSbJ7D98/a9GFLJKmEIAt1N0HbXUNLF5VfSzJkXsYOrW7j1p0PQCMR34DLCf5DbB8ZDfAcpLfAMtHdgMsJ/kNsHxkN/O2Y6sLAAAAAAAAAAAAAAAAYPM0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtIUAgAAAAAAAAAAAAAAsIQ0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtIUAgAAAAAAAAAAAAAAsIQ0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtIUAgAAAAAAAAAAAAAAsIQ0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtIUAgAAAAAAAAAAAAAAsIQ0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtIUAgAAAAAAAAAAAAAAsIQ0hQAAAAAAAAAAAAAAACwhTSEAAAAAAAAAAAAAAABLSFMIAAAAAAAAAAAAAADAEtq11QUAwAp6XpKr7uH7X1t0IQBsivwGWE7yG2D5yG6A5SS/AZaP7AZYTvIbYPnIbuaqunurawAAAAAAAAAAAAAAAGCTdmx1AQAAAAAAAAAAAAAAAGyephAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJaQphAAAAAAAAAAAAAAAIAlpCkEAAAAAAAAAAAAAABgCWkKAQAAAAAAAAAAAAAAWEKaQgAAAAAAAAAAAAAAAJbQrq0uAACYraraO8l1k1wjyb5JLp/knCTfSvKFJJ/s7gu2rkIA9kR+Aywn+Q2wnOQ3wHKS3wDLR3YDq6CqdiU5NMnVk1w1yT5Jdie5IMm5Sf47yRlJPtvdF25RmZsiv4HtrqoOyCi7fzjJFZLsnVFmfyvJlzPKue9sWYETkN2rrbp7q2sAgLmrqr2SXD/JDZMctfbvNZLsv/Z1pSQXZ/TC7swkX0pyWpIPJ3l/knddll8QVdVxSU5IcteM/vt2bjD94iQfS3Jyktd193vmXyHA5lVVZfQH+I2THJHkmkkOWfv3Khn9UX75ta+LkpyX5KyM/jj/XJJTknwgyTu6+8wFlz8W+Q2wnOQ3wHKS38CqWnuP5egkt0tyZJLrZfT+yr5Jrpikknx77etrST6z9vXxJO9N8onewg+V5TfA8pHdwHZXVZdPcrckd0hyy4yeR9lrjB+9MMknkrwzyT8lObm7z5lXnZslv4HtrKqukuSeGWXczTN6dnAjndHzg2/JKOveeFls7JPdXEpTCADbUlXtSHKTJLfP6I/w4zN6eHhS5yR5c5KXJ3lDd180dZEzUFU/k+TxSY6dYpn/SPLM7v6b2VQFMJmqOjSjN01vmVGG3zCjBxOm1Unek+TVSV7R3d+YwZpTkd8AP6iqrpzRQ2dXG2P6y7v7gfOt6AfJb2C7qKqt/mDgTt391kVtJr+BVVVVN0nysCQ/ndFpxZM6K8m7k7wxyUnd/ZkZlDdIfgPLqqqumORnt7qO9XT3X8xrbdkNbHdVdYMkv5rkPpnN55jfzugzzD/q7o/PYL2JyG9gO6uqozPK7p/JeA186zkjyQuSPKe7z55FbdOQ3Xw/TSEAbBtr13HeIaM/vk/I6BT5eTgtyTOSvLi7L57THhuqqutn9CLzNjNc9u1JHtHdn5zhmgCDquqZSX4uoys55+3cJC9J8rTu/uoC9vse8htgfVX1kiQPGnP6QptC5Dew3axKU4j8BlZVVR2f0XvYt5zTFid1993ntLb8Bpbe2gFIp21xGevq7pr1mrIb2O6q6sCMXmM/MKOb9matM/oM8wnd/d9zWH+P5DewnVXVVTPK7gdlttn95SSP7+5XznDNsclu1rNjqwsAgGlV1VFV9ecZveB6U5IHZ34NIUly7SQvTPK+tZPWFqqq7p3k/ZntC7skuW2Sf6+qe814XYAht8tiGkKSZJ8kj07yX1X18AXtmUR+A2ykqm6f8RtCFkp+Aywn+Q2soqo6sKpek+QdmV9DSJJcY14Ly2+A5SO7ge2uqn48yUcy+4eKv2ebJA9J8pGqusOc9vjeDeU3sI2tffb44YyeI5x1dh+U5BVV9Yqq2mfGa29IdrMRTSEAbAc/meShSQ5Y8L7HJnn3Ih8qrqpHJ/m7zOYa0j25YpLXVNWj5rQ+wGXFvkleUFWvWcQf6fIbYH1rOfyira5jT+Q3wHKS38Aqqqq7ZvSww723upZJyW+AhZjprYGyG9juquphSU5KcuCCtjwoyZuq6ufnuYn8BrazqnpwkjdnlKnzdP8kb6+qK815nySym2GaQgBgOntn9FDx0+a9UVU9IMmfZn4nT/y/rZI8d95vMgBcRtw7yT9V1bz+aJbfAMOemuTwrS7i+8lvgOUkv4FVtPZh/RuSXG2ra5mU/AZYmLfPaiHZDWx3VXX/jA402rngrXcleVlVnTiPxeU3sJ1V1SOSvDiLy+4fy6iZb27PnCSym/FU90wPAQCAhauqJyT5/U38yMVJPpbk40lOS/LfSb6T5HIZ3TZy9STHJ7neJkt5Ync/Y5M/M5aq+tEk70yy1xjT35Xk/679+9kk38roRPzDktwiyX2THDfGOhckOb673z9ByQBjq6pQsZyDAAAgAElEQVR/T3LTgWmXJPl8kk8lOTXJWUnOXvvakeRKSfZLcp0kxyQ5NJv7Y/gtSe7S3ZdspvYh8htgY1V1kyTvy+hDrs14eXc/cPYVjchvYLurqq3+YOBO3f3WWS8qv4FVVFVPzqjRelznZfQa/JNJPpdR/l2QZP8kV05y1YzeWzkqye511vjP7j5m0pq/n/wGtpuqOjSjzyAvi+7X3a+adhHZDWx3VXVskvdkvJxLkg8kOTmjbPx0km9klHf7ZfQ6+/pJbpnk7kluNOaa5yX5ke7+2PiVb0x+A9tZVf1EktdlvIaQbyX5x7X5H03y5Yyy+yoZ3TBywyT3THKXjHczx99197ya+WQ3Y9EUAsDSG7Mp5BNJXp/kjUne293njLHu1ZP8QpLHZNQsMqST3L27Tx5j7tiqar8kH0py7YGpn07yyO7+pzHWvHOS52X4RObTkhzT3WePUyvAJNZpCjkjyb8lecfav6d09/mbWPPAjP6YfXDGf2P1yd399HH3GKMG+Q2wgaramdHDaMdO8ONzawqR38AqGGgKeX2Sf5hzCSd395dmuaD8BlbR2g0hfzbG1IuSvCbJy5K8bZz3WKpqd5IbJ7lbkhOS3OS7hmfWFCK/ge3oMtwUclaSg7v73GkWkd3Adrf23vWHMnogeMg7kzypu/91E+vfKaNnXIYOzUuS9ye5Wc/gIU/5DWxnVXWNJB/OqBFvIxcneX5Gz4ecOca6V07ytCSPzHCzyS9193PGKHdsspvN0BQCwNLboCnkrIw+5Hpld39givWvkOQ5SR46xvQzkhzZ3WdNut8e9n9OkscNTHtrkp/u7m9uYt39k7w2ye0Gpv5xd//yuOsCbNZaU8hNMjpt53VJXtfdn5zR2pVRfj8joxMdNnJ+kut392dntLf8BthAVT0+yR+sM/yZjE6sWc88m0LkN7DtDTSFPLW7f3tRtcyK/AZWTVXdPaP3UXYMTH1dkl/r7k9Pud+1kjwso4OUvjTDphD5DTADaw/BfS4b/154Xnc/egZ7yW5gW6uqByZ56RhTfz/Jb3X3xRPssTvJH2Y4T5PkZ7v7bza7xx72lN/AtlVVJye568C0M5PcrbvfM8H6N09yUjZuOjk3o+cGP7vZ9TfYV3YzNk0hACy9PTSF/FeSZyb5y3FuBNnEPj+f5CUZ7vp9Rnc/cUZ7HpnkP5Ps2mDau5PccZL/1rWGl39O8mMbTLsoyY27++ObXR9gHFV11yQf6O6vzHGPw5O8LckhA1Nf3N3jNAEO7Se/ATawlssfSbLPHobfldGbl0/eYIm5NIXIb2BVbLemEPkNrJqq+uGMTr/c6ACMCzI6IfIlM9577yS36u63zmAt+Q0wI1X1m0mGbsK+6TQH6a3tI7uBba+qPpTk6IFpz+zux89gr+cmGWrYe09333zKfeQ3sG1V1V2SvHFg2tcyyrgPT7HP0UnekuSqG0z7h+6+56R7fN9+sptNGTo5BgCWyaeS3C+jU95fNMuGkCTp7lckecwYUx+zdnXbLDwlG7+w+0aSn5n0v7W7v5PkPhndqrKeXdn4gTyAqXT3G+fZELK2x6lJbpPkWwNTf7aq9p3BlvIbYGMvzJ4bQi5M8vAkW3WKifwGWE7yG1gZa7eiviIbN4Sck+Sus24ISZLuPn8WDSFr5DfADKz9bnjQwLQPTdsQskZ2A9taVR2V4YaQdyX59Rlt+dgk7x+Yc9zaQUvTkN/AdvaUMeY8cJqGkCTp7v/M8Ovue1TVcdPs811kN5uiKQSA7eArSR6V5KjuftUkV3OOq7ufn9EHbhu5QkYvmKZSVYcl+amBab/Z3adPs093fy7DL45PrKprT7MPwFbr7tMynHdXSHKHafaR3wAbq6oHZ/2sfVZ3f3SR9VxKfgMsJ/kNrKD7Jbn9BuOXJPm57v7nBdUzEfkNMFO3TXLYwJwXT7uJ7AZWxB3HmPPE7p7JwUbdfUmSJ4wxdeLPL+U3sJ1V1U2TDDVhvKS7T57Fft19UpKXDkx70rT7yG4moSkEgKXX3S/t7ud390UL2vKJGZ20tpETZrDPo5Ps3GD800leNIN9kuR5ST6zwfjOjBpvAJbdc5OcOTDn1lPuIb8B1lFVByb5o3WGP5PkaQss5/vJb4DlJL+BlVFVV0jy+wPT/qC7/2ER9UxJfgPMzkMGxs9P8qoZ7CO7gVVw7MD4p7r7X2e54VpD96kD0350ii3kN7Cd3X9g/KIkvzXjPX9rbd313L2qrjPlHrKbTdMUAgCb1N1fSvJXA9NuVVUT/56tqp1Jfm5g2h/P6laUtYaaPxmYdt9p/psALgu6+8IkQydAXH/S9eU3wKA/TXLldcYe1d3nLrKYS8lvgOUkv4EV9LgkP7zB+MeT/PZiSpmc/AaYnaq6UpJ7D0x7bXcPHZY0tI/sBlbF4QPjb57Tvv84MH7EJIvKb2AF3GNg/O/XnvWbme7+YpKNDuSoJD8/6fqym0n5fxAATOYNA+P7JbnWFOvfPsnVNxg/L8lfTrH+nrw8o5OC1nNwRtdPAyy7dw+MHzzF2vIbYB1Vdfck91ln+G+6e+hDr3mS3wDLSX4DK6Oq9k7ymIFpT+juCxZRz5TkN8Ds3DfJPgNzXjyDfWQ3sCrWO9ToUv85p32H1v2hCdeV38C2VVXXTHLtgWkvm9P2Lx0Yv19V1YRry24moikEACYzznWgh02x/k8OjJ/U3d+aYv0f0N3fTPKmgWlDdQEsg68MjF9hirXlN8AeVNW+SZ6/zvBZSX5xgeXsifwGWE7yG1gl/yvJQRuMf7C7Nzql8rJEfgPMzoMHxj+b5J9nsI/sBlbF3gPj/z2nfb82MD7UALge+Q1sZz86MN5J3jWnvd+1tv56Dk1y4wnXlt1MRFMIAEygu7+RZOjEtf2n2OKOA+MnTbH2NOveaU77AizS2QPj50yxtvwG2LNnJLnGOmNP7O4vL7KYPZDfAMtJfgOr5EED43+6kCpmQ34DzEBV3SjJjwxMe2l3b/Sw2rhkN7Aqvjkw/p057Tu07tDnm+uR38B2dv2B8U9195nz2Hjt2cFPD0z78QmXl91MRFMIAExu6ASIiU5qqKqrJ7nBwLS3TrL2GN4yMH5UVW10Gh3AMjhwYHyiE37kN8CeVdUtkjxyneF3J3nhAsv5AfIbYDnJb2CVVNUhSW65wZRzkrx6QeVMRX4DzNRDBsYvSfKyaTeR3cCK+frA+AFz2ndo3aG6foD8BlbANQfGPzbn/U8ZGL/zZheU3UxDUwgATO7yA+PnTbjujw2Mn97dp0+49oa6+7NJzhiYNnT1HsBl3Xon1V/qMxOuK78Bvk9V7U7y50lqD8MXJXn4jE6rnIb8BlhO8htYJSdmz6+pL3Vyd8/rxOJZk98AM7D2nsv9Bqa9pbs/P4PtZDewSj4+MD6vh2GvPjA+yeeX8hvY7q46MH7WnPcfuoXkx6pqo/dz9vgzA+Oym3VpCgGACVTVvkmuNDBt0uvnjh0Y/8CE647r3wfGbzLn/QHm7S4D4++YcF35DfCDfiPJkeuMPbu7P7LIYtYhvwGWk/wGVsmdBsZPXkgVsyG/AWbjnhk+Vf7FM9pLdgOrZOhzwlvNad9bD4y/c4I15Tew3Q0d6Dzps3vjGlp/3yTX2eSaspuJaQoBgMkck41PZkuSU6dYeyMfnnDdcf3nwLgXd8DSqqpDkhy/wZSLMvlVm/Ib4LtU1ZFJnrDO8GeTPHVx1WxIfgMsJ/kNrISq2pXklgPT3raIWmZEfgPMxkMGxr+e5HUz2kt2A6vkn5Oct8H47atq71luWFX7JLn9BlMuyWSv+eU3sN3tNTC+UZ7PwrljzLnpJteU3Uxs11YXAABL6icGxs9OMul1zNcdGP/0hOuOa6iZZbMdzACXJc9JsnOD8dd095cmXFt+A6ypqh1J/iLJ7nWmPKq7z1lgSRuR3wDrqKq9khye5JpJrpLkckkuzOjDrrOSfCGj6+rH+fBr1uQ3sCpuktHJkuv5Und/dmiRqrpCkqOSXD3JfhkdenRORqdafi7J57v7gqmrHSa/AaZUVdfI8C1Sr5xhrstuYGV09zeq6lVZv/lu/ySPSvLHM9z2sdn4Nf9J3X36BOvKb2C7O39g/Epz3n//MeZcb5Nrym4mpikEADZp7QG3+wxM+7fuvmTCLa41MP5fE647rqH1rz3n/QHmoqp+Mcm9N5hyUZJnTLGF/Ab4H49OcvN1xl7d3W9cZDED5DfA9zqyqv4wye2S3CjJ0OmXl1TVpzK6Vv6tSd7Y3V+dc42J/AZWx9ED4x9ab6CqbpTkvknunlFDyEa3X19QVR9M8i9JXpvkfd3dm6x1HPIbYHoPSrJjYM6LZ7if7AZWzR8luX/WP/ToSVX16u7+4rQbVdW1kvz6wLRnTbi8/Aa2u+8MjI/TtDGNK48x57BNrim7mdjQH4kAwA+6Z4Zf4PzDJAtX1UFJ9hmYNukJ9uMaeuPi8lV14JxrAJiZqtqrqp6a4RN7fr+7132QYmAP+Q2wpqoOSfK76wx/M8kvLrCcDclvgD06McmvJfmRDDeEJKPPGa6f5H5JXpbkjKo6qap+sqo2evh4YvIbWDE3HBj/yPd/o6qOq6q3JvlwkiesrTGUybuT3CzJ45O8J8nHq+oX1m6Nmgn5DTC9tdfYDxyY9r7u/uiM9pPdwMrp7k8kedoGU34oyUlVtdHtHoOq6ipJ3piNHyp+eXf/ywRry29gFXxlYHzeGXPVMeaM3RQiu5mWphAA2ISq2pmN//hPkguS/O2EWxw8xpwvT7j2uMZZf5w6AbbUWjPIPTM6MfPJA9P/McnTp9hOfgP8j+dl/avun9TdZyyymAHyG2D2diS5W0YHZvx7Vd1xDnvIb2CVHDkwfuql/6OqrlhVL07yriR3mHLf6yV5YZKPVtWdp1zrUvIbYHq3y/CDZbO8JUR2A6vqGUnevMH40UneX1VDN/vtUVXdLKNbV2+wwbTTMvkhS/IbWAWnD4zfdM77j7P+ZnJOdjMVTSEAsDkPz/DJbC/v7m9MuP4BA+Nnd/f5E649lu4+N8m3B6YN1QmwMFW1s6r2r6prVtXNq+qRVfUXGZ2Q8PcZfnjizUlO6O4LpyhDfgMkqaqfTXL3dYbfm+QFCyxnHPIbYL6OTfKWqnpJVe03w3XlN7BKDhkYPy1Jquo6Gb3mfnCGbwXZjOsmeVNV/WFV7ZpyLfkNML0HD4yfk+SvZ7if7AZWUndfnOSEJBvd0nG9JO9be99jrOaQqvrRqnpVkn9Lcu0Npn4xyR26+6xxa/4+8htYBacMjB+w9n7JzFXVdZNcZYypm8k52c1Upn3jDgBWRlVdK6PTIDZyYZI/mGKboReLZ0+x9macneSKG4yP86IWYCaq6ogkn57D0hcl+d0kT197Y3ca8htYeWtX3f/JOsMXJfmF7r5kgSWNQ34DLMaDkhxXVT/Z3acOzh4mv4FVcvWB8S9W1fWSvG2MuZOqJL+W5LpV9TNTPIAgvwGmUFVXSnLvgWl/292zzFPZDays7j63qu6S5FlJHrXOtN0Zve/xoKr6UpJ3ZvS55pkZPVS7b5IrZ9RAcsskVxtj6w8mObG7T5uifPkNrIL/GGPOnTOf503uNOa8/apqrzEPKZXdTEVTCACMoap2JHlZRn+wb+Q5Uz7ccOWB8UW+uNvoqjcv7oBl1klen+Qp3f2hGa0pvwGSZyc5cJ2xP+7uDy+ymDHJb4DFuUGS91TVbbv7Y1OuJb+BlVBVl0typYFpOzK6BXVeDSHf7Z5J/q6qTpjwgA35DTCd+ybZZ2DOi2e8p+wGVlp3n5fk0VV1UkaHiN5og+kHJzlxiu0uSPKnSX5jBifBy29g2+vuL1XVp5NsdBvIw5P82Ry2f8Qm5l45yVfHnLcR2c2Gdmx1AQCwJJ6a5LYDc05P8vQp97ncwPg5U64/ru8MjA/VCXBZ9MmsvVnb3fecYUNIIr+BFVdVd0zygHWGP5fktxdXzabIb4Dv9dEkL0/yq0l+PMmRSX44o1PBdic5KMlRSW6X5IlJ3pjNfRD1Q0neWlWHTVmn/AZWxf5jzHl+kmtsMP6tJH+b5P5JbpJR88jea//eZO37f7s2bxx3T/JHY879fvIbYDoPGRj/dHe/Y8Z7ym6AJN19cpKjk/xUkpOSTNu08d3OTvKCJEd096/OoCEkkd/A6nj9wPiNquo2s9ywqm6X5Iab+JFxs052MxU3hQDAgKq6W5InDUzrJA/p7nE/OFvP7oHxi6Zcf1xD+wzVCXBZc1GSU5N8IcN/wE5CfgMrq6oun+SFG0x5dHcv6k3KzZLfwKq7OMmbkrwhyUndffrA/K+sfZ2S5O1JnrF2iv0DM2okOXyMPQ9K8pqquvnaaZuTkN/Aqhg6DT5JbrXO9y9K8ryMbko9aw/jX177+lCSv6yq/ZM8LckjM/wZ8i9W1T9295vGqO+7yW+ACVXVjZPcdGDarG8JSWQ3wP/T3Z3ktVX18ST/K6P3QvaeYskLk/xhkt+Z4j2S9chvYFX8ZZJfHpjzvKo6dhZNd1W1dzZ/88i4WSe7mYqbQgBgA1V1ZJK/yvDvzOd291tmsKUXdwDzsSvJ3ZI8N8mpVfXaqjpuhuvLb2CVPS3Jeie+/113n7TIYjZJfgOr6oyMbju9VnffvbtfMEZDyB5193nd/YIk103ySxk90DDkmCS/N8l+a+Q3sComPXnx60lu2d2PW6ch5Ad091nd/dgkxyf5xhg/8qK1xsDNkN8Akxu6JeSiJK+Yw76yGyBJVe2qqgdU1ccyOizjNzJdQ0iS7LW2zmlV9byqOmLaOr+L/AZWQnd/MMl7B6Ydmenej/5uv5fkBpv8GU0hLISmEABYR1VdNaMr5vYbmPr+jE6AmIWh380Xz2ifIUP77FxIFQDzsSPJvZK8u6r+b1VdeUZrbkR+A9tSVd00yS+uM3x2ksctsJxJyG9gVV2zu5/c3V+c1YLdfUl3Pyejh4k/N8aPPKaqbjThdvIbWBV7TfAzX01y2+5+3yQbdvd7k9x2bZ2NHJLkf29yefkNMIGq2p3RifQbObm7z5jD9rIbWHlVdfckn07ysoweLJ61gzK6se8Ta59dXnMGa8pvYJX89hhzfrmqfmuaTdZ+fuhWkj0ZN+tkN1MZuvoXAFZSVV0ho4aQ9U48vtTXk5zY3RfMaOuhTttF/e4e2mecUz8BZuWrSR62wfg+SfZf+zokyY8ludaYa/9ckltX1Ynd/e4papTfwMqpql1J/iLrv/H3pO7+0gJLmoT8BlZSd8/tRLHufl9V3TrJO5Js9BDDroxum7rXBNvIb2BVTPJh/wO6+6PTbNrdH6mqByR548DUX6qq52zi94r8BpjMCUkOGJjz4jntLbuBlVVV+yR5VkYNG4uwM6PPLu9WVY/o7r+eYi35DayM7n5TVb05yZ0Hpj6tqg5K8oTu/ta461fVvkn+IJP/Pjh/zHmym6loCgGA77N22s5rktxsYOq5Se7R3eOcfjmuoeaSRf3uHjqBblZNMACDuvvsjB46HtvabU/3SvLwJMcOTP/hJP9YVXft7ndOVqX8BlbSryY5Zp2x9yV5/gJrmZT8BpiD7v58Vd0ryTuTXG6Dqfeoqut096c3uYX8BlbFZnPkRd39pllsvPZAxV8keegG0w5Oco8krx1zWfkNMJkHD4x/OcnJc9pbdgMraa0h5A1Jbj/G9IuTvDXJv2b0XsgXMzpg9FsZHWp3lSSHJrlVRrfyHT+w3pWS/FVV3bi7nzRB+Yn8BlbPQ5N8JKMM3cijkty7qp6S5G+7+8z1JlbVlZOcmOSpGd3qtCcXZThTzxsYv5TsZipDV80AwEqpqh1JXpnkxwemXpjkp7v7XTMuYaiTdveM91uPF3fAUuvur3X3i7r7phm9WXvqwI/sm+RNVTXplc/yG1gpVXVEkievM3xRkod39yULLGlS8htgTrr7A0l+b2DajiT3m2B5+Q2sis3kyIVJnjLj/Z+c4VMqf2oT68lvgE2qqkOS3Glg2svneBug7AZWztpBov+Q4YaQC5P8aZIjuvsu3f173f0v3f1f3X1md1/U3f/d3Z/q7jd39291962S3DjJq5L0wPpPrKqnTvifIb+BldLdp2f0XvM4n08elOSFSb5aVW+rqv9TVU+qqkeu/ft/quptSb66Nm+9hpBk+D3wZPymENnNVDSFAMCaqqokL0pyn4GplyT5+e6ex4k73x4Y33cOe+7JfgPjQ3UCXGZ099syenP1JQNTr5jkL6tq6A/cPZHfwKp5UZJ91hn7k+7+0CKLmYL8BpivZyb5ysCcn55gXfkNrIrvbGLu33f3l2e5eXefkeTvB6bdZe2wpXHIb4DNe1CGn+0Zeu97GrIbWEVPTXLHgTmfS3Kr7n5sd392M4t390e6+35J7plk3RPq1zy5qjbTiH0p+Q2snO5+Q0Y3gQw13V1qV0Y3OD0mye8med7av49Z+/7QzRwvSfLXQ2VlOOsvJbuZiqYQAPgfz07ykDHmPaK7h17QTeobA+OLenE3tM9QnQCXKd19TkbXhQ59OHaTJL8+wRbyG1gZVfWQJLdbZ/hzmf3pxPMkvwHmqLvPS/KCgWlHVtWBm1xafgOr4syM/yDDy+ZUw0sHxq+S5HpjriW/ATZh7UC7Bw5Me0d3f2qOZchuYKVU1S2SPH5g2qeT/Eh3v3eavbr79UmOS/L1ganP994JwHi6+4VJHpDhWzem9aokD0vyQwPzvt7d49Yiu5mKphAASFJVv5PkF8eY+ivd/edzLGXoj/3957j3d7vSwPhQnQCXOd3dGf1R/vaBqY+rqvVOv1+P/AZWQlVdLaNT39fzv7t7M6cZbzX5DTB/rx5jzs03uab8BlZCd1+c5JvjTE3yrjmV8e4MN6bcdMy15DfA5tw+ybUH5rx4zjXIbmDVPCMbP1N5ZpKf6O7/nsVma41990pywQbTrprkyZtcWn4DK6u7X5nk+CSnzWH5SzI6IO/+3X1JkmsNzD9jE2vLbqaiKQSAlVdVv57kN8aY+pTufvacyxl642DvqprrC7yqOiDJ7oFpXtwBS2ntj/LHJLl4g2k/lOTnN7m0/AZWxXOTXHmdsdesXcu8TOQ3wJx19ylJvjow7fqbXFZ+A6tknIfNPtndZ81j8+4+M6OTkDdy+JjLyW+AzXnwwPi3kvztnGuQ3cDKqKofSXKrgWlP6e6h18eb0t3vyPBNqw/cZN7Kb2Cldff7ktwwye8kOWdGy344yW27+2lrh5ImyaEDP/O5Tawvu5mKphAAVlpVPTajkx6GPLO7nzbvepJ8fow5V5tzDeOsP06dAJdJ3f3RJH8zMO0em1xWfgPbXlXdI8lPrzN8dpLHLrCcWZHfAIvxwYHxQze5nvwGVsk4WXLKnGsYWv+QMdeR3wBjWnvY694D0/66u2f1gNt6ZDewSh4yMH56khfNae/fTbLRLdxXSHL/Tawnv4GV193ndP//7N15mGxnVS/g38rEEBIIQ5gDQUKQ4YJhHoQwyCAiKOAMJIIKiDgrKiKK9wJeB1BAFBllVBRQvIxCUGYkYRBBEBPDDAkBEqaQZN0/dqMhnK5d1V27+lT3+z5P/3O+r9da1Wef9fSp2mt//ZsZ3rf4jSQf3GKodyb50STHbQzyXdi1R773/Qvk0bvZFkMhAOxZVfUTSZ44x9andPevTF1PknT3ORmfph07dm67xuJ/prtnvRkBsA5eNrJ+26qa+/9L+jewR8w6Ne9R3f2JlVWyJPo3wMqcNrJ+5CLB9G9gjzl1jj2TnBJyIWeNrF92niD6N8BCfiTJxUf2PGPqIvRuYI+5w8j6i7v7a1Mk7u7PJHn1yLY7LhBP/wbY0N2f6+7/093fnuR6SR6a5JlJ3pRhwOHsJOclOTdD73xfkhcl+fkkx3T3zbv7Bd19/j7C32gk/dxDIXo323XQThcAADuhqu6f4fjNGtn6zCQ/M31F3+TUJJebsX5MktdMmP+YkfV5PoQE2N+9KskF2XxQ/vAkxyb5wAIx9W9gt7v8Jn/+xSRfq6oHLzHXcSPrx8yR743d/eE5cunfANP7wsj6JbcQU/8G9or/nGPP1EMhY/EX6eP6N8B8xp5W//7ufvtKKtG7gT2gqo7M8NngLFP2um/En3VK1G2rqrq754ynfwNcRHd/IMN9IE/bbqyqOjjJt49se/eCYfVutsxQCAB7TlXdL8mzMn5i1guT/MQC/6FelvcnuemM9bE3IrbrOiPrixxrB7Bf6u6zq+qMzH4i8ZFZbChE/wb2qsOT/NmKc95642uWE5PMMxSifwNM79yR9YO3EFP/BvaKf51jz1cmrmEs/iKfOevfACOq6kYZf2DG5KeEXIjeDewFR8+x5x0T1zAW//IZbhQ+Y854+jfAtG6e5GIz1s/MfO/rXJjezZaN3QwLALtKVX1vkucnOXBk68uSPKC7L5i+qm9x8sj6d0ycf+xN5lMmzg+wKp8eWZ/19IV90b8B1pP+DTC9S4ysb+VmZv0b2CveNceeS09cw1j8Rfq4/g0wbuyUkHOT/OUqCtmgdwN7wdjngud299hJqNv1mTn2LPL5pf4NMK3bj6z/0xYeRq13s2WGQgDYM6rqrkn+KuNPn3xlkh/s7vOmr2qfxn65u3FVjQ21bElVHZTkRiPb/HIH7BZfHFkfu3HtovRvgPWkfwNM70oj6+dsIab+DewJ3f3xjD/Y4jITl3HEyPoifVz/Bpihqi6W5EdGtv1dd8/7lPhl0LuBvWDsd94zV1DDPL39sgvE078BpnXPkfXXbiGm3s2WGQoBYE+oquOTvDSzj2xLktcn+f7uPnfyojb3L0m+OmP9UkluMlHumye55Iz1r2a+J9MBrINDR9a/tGA8/RtgPenfANO79sj6x7cQU/8G9pI3jawfOXH+sfiL9HH9G2C2e2f8KfDPWEUhF6J3A3vB+SPrY/eaLMM8ORZ54rz+DTCRqrpqklvM2AVAM+EAACAASURBVHJ+kpdsIbTezZYZCgFg16uqWyX5+4w/8f1NSb63u2f9YjW5jfxvHtn2XROlv/PI+j/v9M8HYImuPrJ+1iLB9G+A9aR/A0xr40nHNx7ZduqicfVvYI959cj6TadKXFWV5LiRbf81bzz9G2DUj4+sfyzJa1ZRyDfo3cAeMfawuCOmejL7hVxhjj1fnjeY/g0wqROT1Iz1f+zuzy4aVO9mOwyFALCrVdVxSV6ZYUp2lncmuUd3L/pU+KmMHR/3/RPlve/I+krfZAaYysZTG8aetvafWwitfwOsJ/0bYDp3yviTLt+7xdj6N7BXjA2FXLaqrjNR7uskuezInvcsGFP/BtiHqrp6xm/EelZ3X7CKei5C7wZ2u0+NrFeSq05cw9gD7ZLk0wvG1L8BlqyqDkryUyPbtnO6n97NlhgKAWDXqqobZPhl5NIjW9+T5K7d/cXpq5rb2PFxx1XVsctMWFXXT3LDkW1/s8ycADvoLiPrZ2d44tqi9G9g1+ruy3R3reIryW+PlPOcOeI8e4GXp38DTOcBI+tfz/Cwjq3Qv4E9obtPT/K2kW1j73Vs1Vjc85O8a8GY+jfAvp2Y2ffxdJJnraiWi9K7gd1unofF3WHiGu40sv6V7l50KET/Bli+Bye52oz107K9Pqd3syWGQgDYlTaeiva6jD8F/t+SfFd3nzV9VfPr7o9k/EO+n1ly2keMrL+5u09dck6AnXLCyPqbursXDap/A6wn/RtgGlV1TMafLvZPWz1yXv8G9pjnjqw/ZKK8Y3HftOgJ3Po3wLeqqsowFDLL63eqV+ndwG7X3Wcm+fjItrtNXMbdR9YXPmlV/wZYrqq6dJJHj2x7Ynefv9UcejdbZSgEgF2nqq6Z5B+TXHFk64eT3Lm7Pzt1TVv0zJH1E6vqystIVFVXy/iTO5+9jFwAO62q7pDkdiPbXr2NFPo3wHrSvwGW70+SHDiy56+2mUP/BvaKFyWZNXxx/aq64zITVtWdklxvZNvLthhe/wb4ZndMcs2RPc9YQR2z6N3AbveWkfX7bNyPsnQbn1/eZGTbWH2b0b8BlueJSWb1zFOTPG0JefRuFmYoBIBdpaqukmEgZNYRbclwTNuduvuTkxe1dX+Z5DMz1i+Z5PFLyvWEJBefsf7pjXoA1lpVHZbk6SPbzkvywm2k0b8B1pP+DbBEVfVLSe46su2LSV68zVT6N7AnbJx2/ecj255SVbP61Nw24jxlZNtXs/W+p38DfLMHjayfleSlqyhkBr0b2O3+bmT94CS/s+ykVXVAksfNsfUVW0yhfwMsQVU9OMkJI9t+ubu/toR0ejcLMxQCwK5RVVdI8rok1xrZ+rEkd+zuj05f1dZ191eTPGlk2wOq6vu2k6eq7pfkR0a2PXFJv7AC/LeqOn7jaM1V5btkhg/Nvm1k64u6e9Z/rmfSvwHWk/4N7HZVdVxVXWJFuR6Y4YOkMU/t7i9sJ5f+Dewxv59kVp+5bpZ3Q8Djkxw7sucvu/vMrQTXvwH+R1VdJslYv3v+Ru/cMXo3sAe8PMk5I3vuv3FT8DL9QZJbjOz5ZJI3biW4/g2wfVV1nyR/OrLtFd39N8vIp3ezFYZCANgVNt4sfU2Sbx/Z+qkMJ4ScOn1VS/HEJKeP7HlOVd18K8Gr6pYZP27u9Iz/kgmwFSckObWqHrVxgsdkquo6Sd6Q5E4jW7+e5DFLSKl/A6wn/RvYzR6Q5CNV9YiqOnSKBFV1SFU9McNR8mOfP3w68w2OzEP/BvaE7v5Exnvnz1bVb20nT1U9JsnPjmz7cpLf3k6e6N8A3/Cjmf1k3mS8n62K3g3sWt19dpJnzLH1qVV132XkrKrfSPJzc2x9Unefv41U+jew61XV9208LHSZMauqfj7JXyU5aMbWTyf58WXmjt7NggyFALD2qupSSf5fkhuPbD0jyZ27+0PTV7Uc3f3lJL84su2wJK+pqu9ZJHZV3SvJq5NcamTrL3T3VxaJDbCAI5I8NslpVfWkqrpNVdWyglfVparqsUnel2Se/wj/Tnd/ZLt59W+A9aR/A3vAlTN8gPPRqvqjqrrRsgJX1fFJ3pTxm4i/4RHd/fll5Na/gT3mcUnG3rt4TFU9ddGHcFTV4VX1p0nmGSr53e7++CLxL0r/BvhvYzePndzdp6ykkhF6N7AHPCHJF0f2HJzkrzc+29zSqaxVdfmqenmS351j+yeSPHUreb5B/wb2iMcl+VhVPaGqjt5usKq6QYaHVP9hZt9vf16SH+vuz24354Xp3SyqununawCAbamqv08yzy82T0ny7onLubBPdvc/LCNQVT0/40e1dZIXJnlsd39wRqzrJXl0kh+cI/Xzu/vH5i4UYAFV9ewkD9zH0seTvCTJa5O8rbvPXDDuYUlum+Hpat+XZN4nQbwhyXdt8yk7F61F/wbYgo0nE8+6Ee053X3ChPn1b2DX2TjBY18DGx9K8ookr0/y1u7+3AIxr5Tkzkl+JvMNYX/Dn3T3IxbYP289+jewJ2w8AfKfkxwysvVTGU5E/avuPmtGvMsmuV+Gkz+uOEcJ/5zk+O6+YK6CR+jfwF62Mag99vnlT3f3tm4GXja9G9jNquphGe4vmcdnkzw5yTPmGZququsmeViSB2X+zzDv291/M+fesfz6N7BrVdUHkxx7oT96d5KXZnj/+33d/fU5Ylw8yZ0y9Ol7Zb7DFx7U3ZOd7Kd3My9DIQCsvao6Lck1drqOfXhjdx+/jEAbp6G8M8l15/yWU5K8JcmpSc7JMBV8dJLbJJn3KaAfTHKz7j5nsWoB5jNjKOSiPpbk35OcluFmhjOTfC3D0xYO2/g6PMlRGXrctyVZ9LSR9yX5zu7+woLfN5P+DbA1+8FQiP4N7DozhkIurJN8NENPOi3D799nZfj9OxlO+rtckiOT3CLJMVso5WVJ7tfd523he2fSv4G9pKoekuRP59x+XobTnN6X/+ntRyS5UpIbZni4xkFzxjo1ya26+9MLFTyD/g3sZVX1xxmGrDfz1SRXXtYpe8uidwO7XVW9KPPdMHthH0ny5gwPwPtchn536SSXTXLNJN+Z4RTXRTypu39uwe/ZlP4N7Gb7GAq5sK8l+dck70nymQzvjXwhwwM3DsvQp6+b4eFHF1sg7SO7+wlbLHkuejfzMhQCwNrbC0MhSVJVR2V4AttRy4o5w+kZbo4+fQW5gD1qgaGQqb05yT1nPTFzO/RvgMXt9FDIRg36N7CrzDkUMrUXJ7n/PE9k2yr9G9hLquo3k/zOClN+LMmduvtDyw6sfwN7UVVdLMknMtwsvJn99um8ejewm1XVJTI82OIuO1jGizK8j7LUB2vo38BuNTIUsmznJ3lodz99Fcn0buYxz7E2AMB+YOMXrTtleLrElP4jyR39YgfsAZ3kjzPczDDJQEiifwOsK/0bYKnOT/Jr3f1DUw6EJPo3sLd092OT/GqSC1aQ7v1JbjPFQEiifwN71r0zeyAkSZ6xikK2Qu8GdrPu/kqSeyV5wQ6V8OQkPzbFSav6N8C2fSrJd69qICTRu5mPoRAAWCPd/R9Jbpbk1ROleFWSm3f31L9AAuy092QYBvnZ7v7a1Mn0b4D1pH8DLMU7k9y0ux+/qoT6N7CXdPfvJbl7kjMmTPPMDH1v0hsC9G9gD3rQyPp/JjlpBXVsmd4N7Gbd/dXu/tEkD0nyhRWl/UySH+run+nu86dKon8DbNnfJPlf3f2aVSfWuxljKAQA1kx3n9Xdd0tyQoY3BJbhM0ke2N13n/Jp+QAX8aQkv5/hSZOr8o4kP5LkuO5+wwrz6t8Aa0r/BnaRUzLcVLYqJye5b5JbdPe7V5g3if4N7C0bNyIcm+QpGU5nWpaTk9y+ux/U3V9eYtxN6d/AXlFVR2V40u8sz+zuXkU926F3A7tdd/9Zkutm+H37KxOl+WKSJyQ5trtfPFGOb6J/A7vQxyeM/eYkt+3u+3b3ZyfMM5PezSy1Bv9/BICZquq0JNfY6Tr24Y3dffyUCarq0CQPTPLwJN++hRD/luGNi2ev6kM9gH3Z+ADsbkluneQWGW5kqCWEviDJ+5L8XZKXdPd7lxBz2/RvgNmq6jFJfmvGlud09wmrqeZ/6N/AblBVV09yhyS3T3LTDP3s4CWF/48kr0jyvO5+15Jibpv+DewlVXXNJA/L0PeO3EKILyd5ZZKndffrllfZ4vRvYDerqt9K8pgZWy5Ico3u/thqKloOvRvY7arqCkl+NMkPZXha+3Yeyn1ekrckeUGSF3X3qk4j+Rb6N7BbVNUxSe6R4f6TWya59DbCnZHhZJA/6+5TllDeUundXJShEADYJarqOhl+oT0uyfWTXDXJYUkumeGDvLOTfCzDL3QnJ3lld394Z6oFmK2qLp3kJhmGQ47e+LpmkssmOTTJpZJcIsPTL7+Woc99Nsmnk5yW5INJ/jXJW7v786utfjH6N8C3qqrjkxw/Y8u7u/tlq6lm3/RvYLeoqkOS3CDJ/8rwe/fVN76umuTwDL93XzLJxZKcm+SrSb6Q5JMZ+twHMwxiv7W7T191/YvSv4G9oqoOyPDeyp2T3DDDk42vnKHnXSJDTz8nQz8/Ncl7k7w1yUn7440A+jfA+tG7gd2uqo5Icrsk35Ghzx2V4Xfuy2R4H+Xg/M97KWdl+N37tCTvz9D33tTdZ6+88BH6N7BbVFUluV6Sm2cYmrjWxtcVMtxzcujG1nMy9LaPJvn3DH36pCSnrMPJfYnezcBQCAAAAAAAAAAAAAAAwBrazvFlAAAAAAAAAAAAAAAA7BBDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAAAAAAAAAGvIUAgAAAAAAAAAAAAAAMAaMhQCAAAAAAAAAAAAAACwhgyFAAAAAAAAAAAAAAAArCFDIQAAAAAAAEtUVY+qqp7xddBO1whTqKrjR67943e6xr1u5O/nMTtdHwAAAACwOEMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBpyPDkAAAAAAOwiVfWDSQ7b6To2PLe7z93pIgAAAAAAAHYrQyEAAAAAALC7PCHJNXa6iA0vSWIoBAAAAAAAYCIH7HQBAAAAAAAAAKy3qjqtqnqTr2fvdH0AAAAAsFsZCgEAAAAAAAAAAAAAAFhDhkIAAAAAAAAAAAAAAADWkKEQAAAAAAAAAAAAAACANWQoBAAAAAAAAAAAAAAAYA0dtNMFAAAAAAAAK3Vidz97p4sAYPW6u3a6BgAAAABguZwUAgAAAAAAAAAAAAAAsIYMhQAAAAAAAAAAAAAAAKwhQyEAAAAAAAAAAAAAAABryFAIAAAAAAAAAAAAAADAGjIUAgAAAAAAAAAAAAAAsIYMhQAAAAAAAAAAAAAAAKyhg3a6AAAAAAAAgDFVdZkkN01y3Qt9XTnJYUkOT3KpJF9P8pUkZyX5WJL/THJKkrcneWd3X7D6yhdXVQcluV2SuyS5YYbXekSG13peknOSfDTJh5O8Lcmru/vfdqba+VTVYUnukOF1HZvkmCSXzfD3dnCSs5N8IslHknzfsv6uqurAJN+R5DZJjktyrSRHZbhmDt3Y9qUkn0tyapJ/T/LmJCd19yeWUcOUquqYJPdMcpMkN0hypQyv7aAMr+szGV7Xu5KclOT13X3ejhQ7p6q6UZJ7ZPh7u16SKyS5dJLK8Jo+meHf9juSvCHJm7q7d6bab1VVF8vQq26T5EYZrrmrZ7jWD01yfpIvJzkjw+v4t/zPNXfmTtQMAAAAAKy32o/eIwUAAAAAALapqk5Lco0ZW07s7mevppqtq6qLJ7ljhkGCO2S4QXw7J6CfkeRlSf60u0/efoWbq6pHJXnsjC0H7+vG/Kq6YpJHJHlIhoGJRbw7ye8lefEUwy9V9RdJHrTJ8se7+2qbfN/tMrym780w/DGPff58FlFVN8lQ730zDBUsqpP8U5JnJHnhFIMUVXXNDAMbm9nnv9WNoaEfSPJLGf5dLOLMJH+e5A+7+4wFv3dUVR2fYVBjM3fo7pP28X0XT3Jikl9Icu0F0348yR8neWp3n7Pg9y5NVd0hyQlJ7p1hMGdR5yV5TZI/S/L3Uw26VNWsuL/d3Y+ZI8YJSZ61rJrmdHR3n7binAAAAACwFrbz4QkAAAAAAMDSVNXBVfXdVfXcDCcc/EOGG99vku1/pnH5JA9O8q6qelVV3XCb8Zamqg6sqp/PcErGr2fxgZAkuXGSFyR5S1V9+zLr24qqunZVvSrJG5PcJ/MPhGw37y2q6rVJ/iXJQ7O1gZBkOJXi9kmem+RDVXWfJZW4LVV1ywwDQM/P4gMhSXK5JL+W4TU9YJm1bVVV3SPJh5I8NYsPhCTJVZM8IckHquruy6xtHlV1t6p6R5LXJ3lAtjYQkgynu3x3kpcnec/GgA0AAAAAwChDIQAAAAAAwP7iPRkGQe6f5LAJ89w1w3DIr1XVjn5WUlWXz3Az+R8mOXQJIW+R5G1VdbclxNqSqrpfkvdm+DmvKudhVfW0JG9Ncuclhz86yUuq6qVVdeklx55bVf1Gkjcnuf4Swh2R5DlV9eSd+jdQVQdV1VOSvCLJ1ZcQ8mpJ/qGqHrmEWKOq6opV9ZIkr0xysyWHv2GSN1TV06rqYkuODQAAAADsMoZCAAAAAACA/cVWn7C/FQcn+T9JXlBVKznF4qKq6ugkb0tyuyWHPjzJy6rqjkuOO2rjxJMXJ7nECnN+e5J3JPmpDCd8TOXeSd5RVVs5zWLLquqAqnpWkt/N8j/b++kkT15yzFFVdYkMA2APW3boJI+rql9ZctxvTlJ16yQnZzgFZ0o/leSNVbXVE28AAAAAgD3AUAgAAAAAALCX/WCS51fVlMME36KqrpTktUm+baIUF0vy11V1tYnif4uq+rEkf5BpBzMumvNWGU4Hue6KUl4nyUkrHgx5apITJoz/0Kr6yQnjf5OqOijJXye5y4RpHl9Vk5xUU1X3TvKGJFeZIv4+3CLJ6w2GAAAAAACbOWinCwAAAAAAAFjAx5K8J8npSb5woa+Dk1w6yRFJrpfkJkkuP2fM+yV5b4aTGFbhkCR/n9kDIR/IMOzwmY2v85JcMclRGW6mv+IceS6b5OlJ7r6dYudRVTdM8oxsPhByXoaTFU5OclqSszf2Hp7kmCQ3T3L9BXPeMsmrkxw257ecm+SdGa6fM5N8Lsn5SY7M8PO8TYZrZ8xVk7yqqm7W3WctUvOiquqXM5wWsZnPZRhQ+GiG6+TzSS6X4fXcNsmN50z1R1X1yu7+6DbKndeTktxjxvonk5yU5BMZXtM5Sa6Q5EpJ7pDk2DlyVJJnVdV1uvucbVV74aDDQMhfZeg38/hShtOAPpDhmjszyYEZrrkrJ7l9kqPniHODJC+vquO7+9xF6wYAAAAAdjdDIQAAAAAAwP7sA0leluHm//cuchN+VV0/yYOS3D/jAyKPrqqXd/f7tlzp/J6Q5Kb7+POzNtZe3N2nbfbNG6ea3D7J/90kzoXdraru1t2v2mKt8zgoyXMyDLtc1H9lqPMFY393G6dv/FKSHktYVVfPcF2MDYR0kldmGET4p+7+6kjco5L8eJJfTHKpGVu/LcnzMnu4YbtumeH6vahO8qIkT07y9u4+f7MAGyfFPCrJTyQ5YEauSyZ5XJIf23K187lPkoft48/PS/JnGQaL3t3dm14DVXVshgGu+47kunKSR2Z4/dtWVTdO8vyMD4Scl+EklKckeUd3f30k7rEZfiYPyb7/DX3DrZI8Mfv++a3amzNcUxf1+AxDSfvyliTP2kbOM7bxvQAAAACwq9WM91QBAAAAAIA1U1WnJbnGjC0ndvezV1PNYqrqYxlOYfh0hhuqX9zdH1pC3MMz3Kz8kGx+kkWS/GN333kJ+R6V5LELfttTkvzmgkMvB2zk+fWRrW/o7jsuWM9Fc/1F9j2gsJlO8ntJfqu7v7ad3Puo5aAMN5jfbGTr25M8uLv/dQs5jkzy1AxDDLNs+d9TVV0zyakLftvJSX6yu9+1YK7bJPmHDKfpbOb8JNfq7tMXrOnCeY7PcHLJIl6X5GHd/eEFc31/khdm9iDF55Ncrbu/tGBNF811eIbThGb11mT4GT981lDXjBxHJ3l2ktuNbL1jdy/6M75wnlkfDv92dz9mG7FPy+Y/o+d09wlbjQ0AAAAAbG7WE4EAAAAAAABW6YNJfjLJNbr7scsYCEmS7v5idz8syfcnmfXU/jtV1a2XkXMBFyT56e5++CIDIUnS3Rd0929kOIljljtU1XW2XOHizkvyQ939yGUPhGz4lYwPhPxBku/cykBIknT3Z5LcL+M/29+vqrHTSpblVUluv+hASJJ095uT3DXJrJNSDkzy4C3WtlXPTnL3RQdCkqS7/zbJD2T2yTKXSfKDWyvtm/x+Zg+EnJfkl5PccysDIUnS3acm+a4Mp5HM8tSNgTAAAAAAgCSGQgAAAAAAgP1Ed9+5u58+0SBBuvtlSX50ZNtPTZF7hp/o7qduM8ZvZBiomeV+28yxiId0919NEbiqrp7k0SPbfre7f6m7Zw0AjerBryT58xnbLpfkEdvJM6fXZhg4OGerAbr77UmeMLJtldfJs7r7xO4+b6sBuvvlSZ47sm1br6mqbp7kJ0a2PaS7f7+7Zw2ojOruc5PcP8MA0Gaum+SHt5MHAAAAANhdDtrpAgAAAAAAgJW6XVVN+fnAW7v7/RPG35bu/uuqenE2Pz3gPlX10O7+8grKeWF3P3O7Qbr761X1S0leMWPbXZP87+3mmsMruvsZE8b/zSQXm7H+vO7+zSXn/NkkN09y483Wq+r3tjuEMsNnkzxgO8MTF/L4DINPV9pk/bpVdVR3n76EXLN8MMnDlxTrV5P8UDa/Lo6vqkM2Bi624nfH1pd5zXd3V9X9k5yS5GqbbPuljJ8oAgAAAADsEYZCAAAAAABgbzlx42sqP59kvx0K2fDLGU4P2NeJ6ocmuW2S10xcwxlJHrrEeK9K8qlsfrP/zbZ5Y/w8zknysKmCV9WVkpwwY8sZWd6gwX/r7q9W1S8kef0mW66Q5J5J/nbZuTc8vLs/tYxAG6/lRUl+bsa22yZ5wTLyzfDAZQ1edfenq+qVSe69yZaLJ7lpkrcsGruqbpLku2Zs+UCS31407pjuPqOqHp1ks6GxG1fVcd198rJzAwAAAADrZ18fdgAAAAAAAOxa3f3RJG+bseWOKyjjad39hWUF6+7zk/z1jC0XT3LssvJt4lkbP9upnJjk4Bnrj17mz/TCuvsNSd4xY8sPTJE3yUeSvGTJMV84sn6jJee7qJO6e9bPciumek0/ObL+i0s6wWVfnpfkYzPWp7rmAAAAAIA1YygEAAAAAADYi145Y+07Js59bpKnThB31qBLklx3gpwX9qyJ4z9wxtrnkvzFxPmfPmPtzlU1xeduf9zdFyw55skZrsHNTH2d/NEEMZd+7VfVIUl+aMaW93X3rD6yLd399STPmbHlLlPlBgAAAADWi6EQAAAAAABgL/qvGWs3mDj3W7v7kxPEfe/I+tUmyPkN7+vuU6YKXlXfltknnfztxk30Uzppxtrlklx/gpwvXXbAjZMtPjBjy5TXyVczeyBrS7r79CSfn7FlK6/pO5McPmP9xVuIuaiTZqzduKouvYIaAAAAAID9nKEQAAAAAABgL/rUjLWrbJwSMJU3TxT330fWj5wob5L804Sxk+RuI+t/M3H+dPd/JJk1zLPsE2ZO7+6PLjnmN8y6Vqa8Tt4x4fDOh2asbeU17fg1l+QtSc7fZK2S3GgFNQAAAAAA+7mDdroAAAAAAACARVXVQUmOynCz9xWSHJrkkCQHZ7hZesy1R9avlOT07dQ4w1unCNrdX6+qryS5xCZbpjxV4F0Txk6SW+xw/m84PcmVN1lb9gkzk1wnG74wY23K62SdXtOsa+6cjA9hbVt3f7mqzkhyxU223CDTD2QBAAAAAPs5QyEAAAAAALC3nNjdz97pIhZVVcckuXuSWyW5SZKjM+3nHJfLdEMhU8VNkrOz+VDIxSbMe/KEsZPZp3B8trs/O3H+bzhzxtrVlpxr6utkmZwRfwAADlRJREFUM1NeJ2vxmqpq7BSOD3R3LxJzG87M5kMhy77mAAAAAIA1ZCgEAAAAAADYL1XVZZKcmOTBSa634vSbDVYsw1kTxj4nw+kp+3LIhHknu9l/4wb968zYck5VPXiq/Bdx+RlrV11yrqmvk81MeZ2sy2u6SpLDZ21Y4TU3a6Bl2dccAAAAALCGDIUAAAAAAAD7lao6OMkvJHlkksvsUBlTnpbwuQljzzq9oCbM+8UJY18xs2/qPzrJ0yfMP6+ZQwRbsFPXyZTW5dq/+sj6zTa+dtqyrzkAAAAAYA0ZCgEAAAAAAPYbVXVMkhcn+Y4dLuXACWN/bcLYO+FL3X3+hPGvMmHsZVr26TK77TpJ1uc17dVrDgAAAABYQ4ZCAAAAAACA/UJV3SzJ/0ty+Z2uhYVMeUpIkhw2cfxlmfJ0GVbLNQcAAAAArI0DdroAAAAAAACAjRNCDISspwsmjr8upyHUThfA0rjmAAAAAIC14aQQAAAAAABgR1XVwUlelPkHQr6U5O1JTk7y4SSnJflMkjOTnJPky0nO7+7zZuS8bZJ/3nrVrNDBO10Ae45rDgAAAABYG4ZCAAAAAACAnfawJMeN7Okkf5fkz5L8Y3efu82cnrC/Pr620wWw57jmAAAAAIC1YSgEAAAAAADYMVV1SJJfG9l2ZpIf7u7XLjH1pZcYi2l9eWT9Sd39cyuphL1i7Jr7+e5+4koqAQAAAAAYYSgEAAAAAADYSfdIcsUZ619Icovu/siS8x6x5HhM58yR9aNXUgV7iWsOAAAAAFgbB+x0AQAAAAAAwJ52r5H1R0wwEJIkl50gJtM4fWT9Wiupgr3ENQcAAAAArA1DIQAAAAAAwE76zhlrn0zyvInyuql7TXT3l5J8dsaWa1XVgauqhz3hv5L0jPVjVlUIAAAAAMAYQyEAAAAAAMCOqKqLJzl6xpa/6e4LJkp/m4niMo1TZqxdMsmtV1UIu193n5PkwzO2HFtVV19VPQAAAAAAsxgKAQAAAAAAdsrVk9SM9X+bImlVXTLJjaaIzWTePrL+PSupgr3ENQcAAAAArAVDIQAAAAAAwE45fGT9UxPlvXuSgyaKzTReN7L+vSupgr1k7Jq710qqWC/nz1g7eGVVAAAAAMAeYygEAAAAAADYKYeMrM+6wXg7fnaiuEznTUk+O2P9ulVlMIRl+vsk581Yv0tVOXHom507Y+0SK6sCAAAAAPYYQyEAAAAAAMBO+crI+pHLTlhVN07yncuOy7S6+4IkLxrZ9jtVVauoh92vu89K8soZWyrJY1dUzro4e8ba2MlQAAAAAMAWGQoBAAAAAAB2yqyTH5LkZstMVlUHJnnKMmOyUk9O0jPWb5TkwSuqhb3hT0bW71lVd1lJJethVk+/1sqqAAAAAIA9xlAIAAAAAACwUz6R2aeFfE9VHbzEfI9McuslxmOFuvtDSV46su3JVeXvmKXo7tcmedfIthdV1TGrqGcNfHTG2lFVdejKKgEAAACAPcRQCAAAAAAAsCO6uzP7huurJHnoMnJV1Z2T/NYyYrGjfjXJ12esH5LkpVV17IrqSVXdvqouu6p8rNwvjqwfkeTvq+pKqygmSarqe6tqf/yc94Mz1g5McrdVFQIAAAAAe8n++GYhAAAAAACwd7x6ZP13q+q47SSoqnskeXmSZZ46wg7o7v9I8riRbUcmeWdV/cBUdVTVARs35p+U5KQkhkJ2qe5+Y5Lnjmw7NskpVXX8VHVU1SFV9aNVdUqGfrY/fs779pH1X6mqA1dSCQAAAADsIfvjm4UAAAAAAMDe8cIkPWP9sCSvqqo7LRq4qi5WVY9L8ndJLnmR5fMXjcd+43eSvHVkz2FJXlxVz6qqay8rcVVdu6oek+QjGW7Mv/2yYrNfe3iGv/NZrpTkdVX1B1V1lWUlrqobVdX/TXJ6kuclufGyYk/gX5J8fsb6zZO8vKq+bUX1AAAAAMCecNBOFwAAAAAAAOxd3f2Rqnp5knvP2HaFJK+tqmcl+aPu/tdZMavq8kl+LMkvJrnaJtsen+Q3tlAyO6y7z6+q+yZ5S5JrjGw/IckDquqlSZ6d5E3dPeum9W9SVUckuWWS45N8d5IbbKFk1lx3n11V90rypiSXmbH1wCS/kOThVfX8JC9I8tbu/tK8uarqikluleSOGa65tRmg6O6vb/xbO3HGtnskuUdVvSvJu5P8Z5Jzknx5JPyLuvuc5VQKAAAAALuLoRAAAAAAAGCn/WqGm58PmbGnkvx4kh+vqn/PMBBwapKzkpyX5PAkRyc5LslNMtycvZmnJnlVDIWsre7+RFXdLckbkxw5sv2AJPfZ+Lqgqt6X5JQkZyb5XIZrKEkunuSIDCc+XCPJdZNcPcO1xx7X3e+vqntm6B2Hjmw/JMNgxIlJztsYgPjXDNfbN665AzNcc5fLcM0dneGau/IkL2B1nphhGGvs381NNr7m9boMwyMAAAAAwEUYCgEAAAAAAHZUd3+oqn4lw83E8zh242srXpPk55LcYovfz36iuz9YVbdO8urMf5rCAUlutPEFC+nuN1XVHZL8Q4YTjOZxUIZ+syd6Tne/t6qenuQnd7oWAAAAANgrDtjpAgAAAAAAALr7SUmeNnGaf05yn+7++sR5WJHu/kiSWyZ5xU7Xwt7Q3e9McvMkb93pWvZjPxc/HwAAAABYGUMhAAAAAADA/uJhSR6d5IIJYj8nyZ27+5wJYrODuvuM7r5nkp9KcsaK01+Q4fSZz604Lzuou09Lcrskj0rypRWnPzfJ3yY5f8V559bdX0ly5yTP3elaAAAAAGAvMBQCAAAAAADsF3rw2CR3T/LJJYX9WJLv7+4TuvvcJcVkP9Tdf57kmCSPy/RDGh9I8sgkR3X3XbvbUMge093ndff/znDN/WmmHw55Z5KHJ7lyd9+nu3vifNvS3V/u7gcmuVWSlyT56g6XBAAAAAC71kE7XQAAAAAAAMCFdfdrqupaSX48yS8nueYWwrwnyVOSPG/jqfUXdXaSd834/i9uISc7rLs/n+TXq+qxSX44yf2S3DHJIdsMfVaSk5K8LsnruvtD24zHLtHdn0zysKr69ST3T3LfJLdJcuA2Q386yeszXHOv7e6PbjPejujutyW5X1UdmuT2SW6Z5HpJjk5yZJIjklwsPrcGAAAAgC2r/fwhMgAAAAAAwB5WVQckuXGSO2S4ofioJJfb+Doow9P5v5jktCQfzDDo8eru/q+dqJf9T1UdluQWSW6W5IZJrpHkakkOT3LJDDfvn5NhUOjsJJ9P8p8ZrqcPZjgV5APdfcHKi2ctVdVlMww/3DzDAMQ1klw1yaUyXHOV4Zr7YoZr7qwk/5H/ueb+rbs/vPrKAQAAAIB1ZCgEAAAAAAAAAAAAAABgDR2w0wUAAAAAAAAAAAAAAACwOEMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAAAAAAAAAAAAAALCGDIUAAAAAAAAAAAAAAACsIUMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAAAAAAAAAAAAAALCGDIUAAAAAAAAAAAAAAACsIUMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAAAAAAAAAAAAAALCGDIUAAAAAAAAAAAAAAACsIUMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAAAAAAAAAAAAAALCGDIUAAAAAAAAAAAAAAACsIUMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAAAAAAAAAAAAAALCGDIUAAAAAAAAAAAAAAACsIUMhAAAAAAAAAAAAAAAAa8hQCAAAAAAAAAAAAAAAwBoyFAIAwP9v3w5IAAAAAAT9f92OQH8IAAAAAAAAAAAADEkhAAAAAAAAAAAAAAAAQ1IIAAAAAAAAAAAAAADAkBQCAAAAAAAAAAAAAAAwJIUAAAAAAAAAAAAAAAAMSSEAAAAAAAAAAAAAAABDUggAAAAAAAAAAAAAAMCQFAIAAAAAAAAAAAAAADAkhQAAAAAAAAAAAAAAAAxJIQAAAAAAAAAAAAAAAENSCAAAAAAAAAAAAAAAwJAUAgAAAAAAAAAAAAAAMCSFAAAAAAAAAAAAAAAADEkhAAAAAAAAAAAAAAAAQ1IIAAAAAAAAAAAAAADAkBQCAAAAAAAAAAAAAAAwJIUAAAAAAAAAAAAAAAAMSSEAAAAAAAAAAAAAAABDUggAAAAAAAAAAAAAAMCQFAIAAAAAAAAAAAAAADAkhQAAAAAAAAAAAAAAAAxJIQAAAAAAAAAAAAAAAENSCAAAAAAAAAAAAAAAwJAUAgAAAAAAAAAAAAAAMCSFAAAAAAAAAAAAAAAADEkhAAAAAAAAAAAAAAAAQ1IIAAAAAAAAAAAAAADAkBQCAAAAAAAAAAAAAAAwJIUAAAAAAAAAAAAAAAAMSSEAAAAAAAAAAAAAAABDUggAAAAAAAAAAAAAAMCQFAIAAAAAAAAAAAAAADAkhQAAAAAAAAAAAAAAAAxJIQAAAAAAAAAAAAAAAENSCAAAAAAAAAAAAAAAwJAUAgAAAAAAAAAAAAAAMCSFAAAAAAAAAAAAAAAADEkhAAAAAAAAAAAAAAAAQ1IIAAAAAAAAAAAAAADAkBQCAAAAAAAAAAAAAAAwJIUAAAAAAAAAAAAAAAAMSSEAAAAAAAAAAAAAAABDUggAAAAAAAAAAAAAAMCQFAIAAAAAAAAAAAAAADAkhQAAAAAAAAAAAAAAAAxJIQAAAAAAAAAAAAAAAENSCAAAAAAAAAAAAAAAwJAUAgAAAAAAAAAAAAAAMCSFAAAAAAAAAAAAAAAADEkhAAAAAAAAAAAAAAAAQ1IIAAAAAAAAAAAAAADAUINMNz4dAfCEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from matplotlib import pyplot as plt\n", "\n", "t_range = torch.arange(20., 90.).unsqueeze(1)\n", "\n", "fig = plt.figure(dpi=600)\n", "plt.xlabel(\"Fahrenheit\")\n", "plt.ylabel(\"Celsius\")\n", "plt.plot(t_u.numpy(), t_c.numpy(), 'o')\n", "plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')\n", "plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 202.7462, Validation loss 250.2893\n", "Epoch 1000, Training loss 48.0192, Validation loss 113.9049\n", "Epoch 2000, Training loss 40.0076, Validation loss 93.4053\n", "Epoch 3000, Training loss 32.3877, Validation loss 71.1377\n", "Epoch 4000, Training loss 24.6268, Validation loss 49.4235\n", "Epoch 5000, Training loss 17.9837, Validation loss 31.9612\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIhCAYAAABZmbVHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde3ycZZ3///eVZJpzmkNzaJIJNC2nhJO09IAnAqKLbFeCtYqAYNFl17q2FPjpd3fd0sf6FQ9YSPXruqsiXboi3Wpdq6KCREHoMSiwiUDbFDJJm0OTNOfDzOT6/TGTmiaT88wkmbyej0ce08x9X/f9GfWR+M59XdfHWGsFAAAAAOESNdMFAAAAAJhfCCEAAAAAwooQAgAAACCsCCEAAAAAwooQAgAAACCsCCEAAAAAwooQAgAAACCsCCEAAAAAwooQAgAAACCsCCEAAAAAwooQAgAAACCsCCEAAAAAwipmpguIdMaYekkJklwzXQsAAAAQJE5J3dbanKkMNtbaINeDoYwx7bGxsclLly6d6VIAAACAoDh+/Lj6+vo6rLUpUxnPk5DQcy1durSosrJypusAAAAAgqK4uFhVVVVTnunDmhAAAAAAYUUIAQAAABBWhBAAAAAAYUUIAQAAABBWhBAAAAAAYUUIAQAAABBWhBAAAAAAYUUIAQAAABBWhBAAAAAAYUUIAQAAABBWhBAAAAAAYUUIAQAAABBWMTNdAAAAADARTR19eupwjQ6eaFFnn0dJsTFaXZih9SucykyOnenyMAmEEAAAAMxqvW6vtu2r1J6KWrm99pxjLxw9rUeffVPrlju1dW2R4hzRM1QlJoMQAgAAgFmr1+3VnY8d0sETLaOe4/ZaPXmoRtVNndq5YSVBZA5gTQgAAABmrW37KscMIEMdPNGibfuqQlwRgoEQAgAAgFmpsaNXeypqJzVmT4VLTR19IaoIwUIIAQAAwKy0+7BrxBqQ8bi9VruPuEJUEYKFEAIAAIBZaaLTsIY7UN0c5EoQbIQQAAAAzEqdfZ6wjkP4EEIAAAAwKyXFTm0j16mOQ/gQQgAAADArrVqSPqVxqwszglwJgo0QAgAAgFlp/dVOOaLNpMY4oo3Wr3CGqCIECyEEAAAAs1JWcpzWLc+f1Jh1y53KTI4NUUUIFkIIAAAAZq2ta4snPC1r1ZJ0bV1bFOKKEAyEEAAAAMxacY5o7dywUreuLBh1apYj2ujWlQXauWGl4hzRYa4QU8HWAQAAAJjV4hzReuiWy7Tlhgu1+4hLB6qb1dnnUVJsjFYXZmj9CqZgzTWEEAAAAMwJmcmx2liyTBtLls10KZgmpmMBAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwIoQAAAAACCtCCAAAAICwiogQYoxJMMbcbIz5vjHmVWNMuzGmyxjzijHmX4wxSQHGPGiMsWN8fWUmPgsAAAAQ6WJmuoAg+bik7/r/XSnpV5JSJF0jaZukW40x77XWNgYY+6KkYwHerwhFoQAAAMB8FykhpF/Sv0l6xFp7dPBNY8xiSb+Q9A5Jj8oXVob7nrX28XAUCQAAACBCpmNZa//TWvuZoQHE//4pSRv9395ijFkQ/uoAAAAADBURIWQcr/hfYyVlzGQhAAAAACJnOtZYCv2vbkktAY5fZ4y5UlKcpFpJT1trWQ8CAAAAhMh8CCGb/K+/stb2BTh+x7Dv/9UY82NJd1lrOyd6E2NM5SiHlk70GgAAAMB8ENHTsYwxH5R0t3xPQb447PAxSfdLKpaUJMkp6TZJdZI+LOmJ8FUKAAAAzB8R+yTEGHOJpF2SjKQHrLWvDD1urd01bEiXpB8aY8olvSbpZmPMNdbalyZyP2tt8Sh1VEoqmmz9AAAAQKSKyCchxph8+XqFpEnabq0tm+hY/45aP/B/+4EQlAcAAADMaxEXQowxiyQ9I6lAvjBx/xQuM7jV7+Jg1QUAAADAJ6JCiDEmWdLTki6W9BNJn7bW2ilcKs3/OuGF6QAAAAAmJmJCiDEmVtL/SFoh6deSbrXWeqdwHSOp1P8tW/UCAAAAQRYRIcQYEy3pSUklkl6QdIu1tn+M8xcZYz7hDy5D30+S9G+SVkmql7Q3dFUDAAAA81Ok7I71Wf3l6cVpSd/2PdAY4X5r7Wn5tuTdKembxpg/S6qRlCrpKvm6qp+RtM5a2x3qwgEAAID5JlJCSNqQf5eOepb0oHwhpVnSVyWtlrRM0pWSvJJOSHpc0iPW2rpQFAoAAADMdxERQqy1D8oXMCZ6foekL4SqHgAAAACji4g1IQAAAADmDkIIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIK0IIAAAAgLAihAAAAAAIq5iZLgAAAGCqmjr69NThGh080aLOPo+SYmO0ujBD61c4lZkcO9PlARgFIQQAAMw5vW6vtu2r1J6KWrm99pxjLxw9rUeffVPrlju1dW2R4hzRM1QlgNEQQgAAwJzS6/bqzscO6eCJllHPcXutnjxUo+qmTu3csJIgAswyrAkBAABzyrZ9lWMGkKEOnmjRtn1VIa4IwGQRQgAAwJzR2NGrPRW1kxqzp8Klpo6+EFUEYCoIIQAAYM7Yfdg1Yg3IeNxeq91HXCGqCMBUEEIAAMCcMdFpWMMdqG4OciUApoMQAgAA5ozOPk9YxwEIDUIIAACYM5Jip7ax51THAQgNQggAAJgzVi1Jn9K41YUZQa4EwHQQQgAAwJyx/mqnHNFmUmMc0UbrVzhDVBGAqSCEAACAOSMrOU7rludPasy65U5lJseGqCIAU0EIAQAAc8rWtcUTnpa1akm6tq4tCnFFACYrIkKIMSbBGHOzMeb7xphXjTHtxpguY8wrxph/McYkjTH2E8aYQ8aYTmNMizHml8aYa8JZPwAAmLg4R7R2blipW1cWjDo1yxFtdOvKAu3csFJxjugwVwhgPMbayTX8mY2MMZ+S9F3/t5WSqiSlSLpGUrKk1yW911rbOGzcdkn3SuqR9BtJcZKul2QkfcRauzcItVUWFRUVVVZWTvdSAABgmKaOPu0+4tKB6mZ19nmUFBuj1YUZWr+CKVhAKBUXF6uqqqrKWls8lfGRsl9dv6R/k/SItfbo4JvGmMWSfiHpHZIelfTxIceuky+ANEtaMzjOGLNG0u8k/cAY8ztrbWu4PgQAAJiczORYbSxZpo0ly2a6FACTEBHTsay1/2mt/czQAOJ//5Skjf5vbzHGLBhy+D7/65eGjrPW7pf0HUkLJW0IYdkAAADAvBQRIWQcr/hfYyVlSJIxZnDalSTtCTBm8L21oS0NAAAAmH/mQwgp9L+6JbX4/32xfKGkyVpbG2DMy/7Xy0NcGwAAADDvRMqakLFs8r/+ylrb5/93gf81UACRtbbLGHNGUpoxJtla2zHeTYwxo608XzqpagEAAIAIF9FPQowxH5R0t3xPQb445NDglr3dYwzvGnYuAAAAgCCI2CchxphLJO2Sb7vdB6y1rww97H8da3/iwBuPj2K07cn8T0jokgQAAAD4ReSTEGNMvqRfSUqTtN1aWzbslMHpVYljXCbB/9oZ5PIAAACAeS3iQogxZpGkZ+Rb9/EDSfcHOK3G/5o/yjUSJaVKOjOR9SAAAAAAJi6iQogxJlnS0/LtfvUTSZ+2gVvCvyGpT1Km/6nJcFf5X18NSaEAAADAPBYxIcQYEyvpfyStkPRrSbdaa72BzrXW9kh6zv/tugCnDL7382DXCQAAAMx3ERFCjDHRkp6UVCLpBUm3WGv7xxm23f/6z8aYC4Zca42keyS1S/p+CMoFAAAA5rVI2R3rs5JK/f8+LenbxgTc3Op+a+1pSbLWPmuMKZOvj8ifjDHPSFog6Qb5wtlt1tqWQBcBAAAAMHWREkLShvy7dNSzpAflCymSJGvtZmPMn+QLMTfI10/kt5K+ZK39QwjqBAAAAOa9iAgh1toH5QsYUxn7uKTHg1cNAAAAgLFExJoQAAAAAHMHIQQAAABAWBFCAAAAAIQVIQQAAABAWBFCAAAAAIQVIQQAAABAWEXEFr0AAABAJOv2enW8p0fHenp01P96rKdHVlL5lVfOdHmTRggBAAAAZoEer1fHenr0Zk+PjnZ3nxM4Tvb3BxzjMEaegQHFRM2tCU6EEAAAACBMPAMDeruvT292d+vNnp5zXmv6+iZ9Pbe1cvX1aUl8fAiqDR1CCAAAABBkZ9xuvdHToze6u/W6/+uN7m4d7emR29opXXOBMSqMj9ey+Hhd4H9dFh+vrAULglx96BFCAAAAgCmw1upkf7+qurr05+5uVXV16Y2eHr3e3a36UaZPjcdhzNmQMTRoXJCQoPzYWEUbE+RPMTMIIQAAAJi1ysrKVFpaqoKCgjHPq6mp0d69e7Vp06ag1zBgrU709urPXV2q6u4+Gzj+3N2tDq930tczkgpiY3VhQoIujI8/57UgNnbOre+YCkIIAAAAZqWysjJt3rxZO3bsUHl5+ahBpKamRiUlJaqurpakKQeRAWtV09uryu5uVXZ1qbKrS//rDxs9AwOTvl5SdLQuio/XxQkJujghQRf5X5fFxys+OnpKNUYKQggAAABmpdLSUu3YsUPV1dUqKSkJGESGBpDCwkKVlpZO6NoN/f16rbNTr3V16TV/4Kjq7lbnFJ5sLF6wQJckJKgoMfFs4Lg4IUG5CxbIRMj0qWAjhAAAAGBWKigoUHl5+dmQMTyIDA8ggUJKt9erSn/QeK2rS691durVri41ud2TrmdJXJwuSUg4GzgG/53qcATl884nhBAAAADMWqMFEUnnBJDnnntOJitLPz99Wq90demVzk690tmpo/6GfpO6Z2ysihMTdWlioooTE1WckKBLEhOVOM+nUAUTIQQAAACz2vAgsmzZMllJHrdbC51OZX/rW7rK5VLLiROTum6Ww6HLEhN1WVKSLvWHjqKEBCXH8H+RQ43/hAEAADBrdXo8eqWrS3+MitKK735XJz7wAbkHp1LFxKjt61/X/vh4yeMZ9RrxUVEqTkz0BY7ERF2elKTLEhPnZH+NSEEIAQAAwKxwxu3Wy52dqujo0MudnfpjR4feHDqdqqlp3Gs4Y2N1RVKSrkhM9L0mJWlpfHzE9NeIFIQQAAAAhN3QwFHR0aEjHR063ts7+oCGBmnLFt8Tj8HpUh6Pkh94QPfu3q1rL7pIVyQlKZ1F4nMCIQQAAAAh1eX16uWODh3u6NCh9nZVdHbqWE/PhMcnnD6tgfvuU+/Jk8o87zzt/OUvdUFCgj5w/fWqrq7Wrttu093l5UpPSwvhp0AwEUIAAAAQNO6BAf1vV5cOdXTocHu7DnV0qLKrSxNt9ZcWE6Plycm6KilJVyUnK7u1VXfffbeq6+pGbMM71va9mN0IIQAAAJgSa63e7u3VwY4OHWhv18H2dv2xs1O9E+wunhoTo+VJSVqRnKzl/q8lcXFnG/zV1NSo5IMfHLUPyHh9RDB7EUIAAAAwIR0ej44MCRwH2tvVMMGmf0nR0VqRnKyrk5O1wv81NHAEsnfv3jEbEUojg8jevXu1adOmKX9GhAchBAAAACNYa3Wsp0cvtbdrf1ubXmpvn/C0KocxuiIpSSv9oWNlSoouSkiY9A5Vg2GitLR0zKcbg0GEADJ3GGsn20MSk2GMqSwqKiqqrKyc6VIAAABG1eP1qqKjQy+1t+slf+homuBTjqVxcVqdkqJV/q8rkpIUGxUV4ooxk4qLi1VVVVVlrS2eyniehAAAAMxDjf39erGtTS+0temltja93Nkp9wT+OJ0SHX02bKxOSdHK5GRl0vQPk0QIAQAAiHDWWh3v6dEf/KHjD21tenOCW+RekpCga1JStGbhQq1JSdHFCQmKovEfpokQAgAAEGEGrNWrnZ36vT9w/KGtTfX9/eOOS4iK0qqUFF2TkqJrFi7U6pQUmv8hJAghAAAAc5xnYEB/7OzU78+c0fP+px1nPJ5xx+UuWKB3L1yod/q/Lk9MVAxrORAGhBAAAIA5xj0woCMdHfr9mTP6fVubXmxrU4fXO+64SxIS9K6FC/XuhQv1roULdf44W+QCoUIIAQAAmOUGn3SUnzmj51pb9Ye2NnWN0xAwWtJVycl6z8KFendqqt6ZkqJFLCDHLEEIAQAAmGUG13SUnzmj586c0fNnzqh9nCcdDmN0dXKy3puaqvempuqalBQlx/B/9TA78b9MAACAGTa4e9Wzra16trVV5WfOqGWcNR2xxmh1SsrZ0LE6JUUJ0dFhqhiYHkIIAADADGjo79dz/tDxbGuravr6xjw/xhitSk5WSVqaSlJTtSYlRfGEDsxRhBAAAIAw6PJ69fyZM3rGHzpe6+oa8/xoSSuGhI53LlyoREIHIgQhBAAAIAQGrNUrnZ36TWurftPSoj+0tal/nI7klyYm6vrUVL0vLU3vSU1VCms6EKH4XzYAAECQnOrr0zP+0PFMa6sa3e4xz3fGxup9aWm6Pi1N16WmanFsbJgqBWYWIQQAAGCK3AMDerGtTb9qadHTLS16dZwpVinR0bouLU3v9wePC+Lj6dOBeYkQAgAAMAmu3l493dKiX7W06NnW1jGbBEZJWpmSog+kpen96elamZxMR3JAhBAAAIAx9Q8M6A9tbXq6pUVPNzersrt7zPPPi43VB9LT9f70dF2Xmqo0hyNMlQJzByEEAABgmIb+fj3d3KyfNzfrN+M87Yg1RtempurGjAz9VXq6LmSKFTAuQggAAJhTysrKVFpaqoKCgjHPq6mp0d69e7Vp06Zxrzlgrf7Y2alfNDfrF83NOtTRMeb5y+LjdWN6um5MT9d7U1NpEghMEiEEAADMGWVlZdq8ebN27Nih8vLyUYNITU2NSkpKVF1dLUkBg0i316tnW1u1zx88TvX3j3rfuKgolaSmng0eyxISgvOBgHmKEAIAAOaM0tJS7dixQ9XV1SopKQkYRIYGkMLCQpWWlp49Vt/Xp583N+tnzc16prVVvQMDo97LGRurmzIydFN6uq5LS+NpBxBEhBAAADBnFBQUqLy8/GzIGB5EhgeQ5557Tu3p6fry22/rZ6dP6+AY06yiJK1JSfEFj4wMXZaYyNoOIEQIIQAAYE4ZLYhIOvte7vnn69of/EAlp07pxIkTo14rJTpaN6an668zMnRjRoYy2MkKCIuICSHGmOWSbpC0UtIqSbmS+qy1caOc/6CkrWNc8qvW2i8Eu04AQGRq6ujTU4drdPBEizr7PEqKjdHqwgytX+FUZjJdsINteBBZtmyZrCSP262o3Fyd/MpX9NjAgNTbO2LsebGx+ptFi/Q3GRl6T2qqFtC3Awi7iAkhkr4o6UNTGPeipGMB3q+YXjkAgPmg1+3Vtn2V2lNRK7fXnnPshaOn9eizb2rdcqe2ri1SnIM1BcGUsnixPrd7t+5dvVput9v3ZkyMBrZvl7Kzzzn36uRk/U1Ghv5m0SKmWQGzQCSFkP2SXpF02P9VP8Fx37PWPh6qogAAkavX7dWdjx3SwRMto57j9lo9eahG1U2d2rlhJUFkmhr7+/XT06f146YmPXfmjDz1gX/dO4zRdampKs3M1NqMDOXG8jQKmE0iJoRYa7869Hv+wgEACLVt+yrHDCBDHTzRom37qvTQLZeFuKrIU9fXp580NenHTU16oa1NZ/ezamiQtmyRPB4pxv9/aTweZX3+8/rtc8/p0sLCmSoZwDiYBAkAwBQ0dvRqT0XtpMbsqXCpqaMvRBVFlrd6evQNl0vXvPyy8vfv1+eOHdPvAwWQkyeV7HTqsSNH9Mabb6qwsFCNb7+tD91wg2pqambyIwAYQ8Q8CZmG64wxV0qKk1Qr6WlrLetBAABj2n3YNWINyHjcXqvdR1zaWLIsRFXNbSd6evTfTU3a3diois7OUc/LaW1V9wMPqP3kSRUWFp6zRe9Y2/cCmD0IIdIdw77/V2PMjyXdZa0d/SfgMMaYylEOLZ1yZQCAWWui07CGO1DdTAgZYjB4/HdTk46M0cOjMC5OH87M1Lt6e3Xv3Xer3uUaEUCk8fuIAJgd5nMIOSbpfklPS3pbUpqk90j6mqQPS4qWVDrqaADAvNbZ5wnruEjy1pDgcXiM4HFJQoI+nJmpDy9apCuSkmSMUVlZ2dlGhKOFi+FBZO/evdq0aVMoPxKASZq3IcRau2vYW12SfmiMKZf0mqSbjTHXWGtfmuD1igO9739CUjStYgEAs05S7NR+hU513FxX19en3Y2N+lFjow6NETyKEhK0PitLH8nMVFFi4ojjg2GitLR0zKcbg0GEAALMTvPzJ+EYrLWnjDE/kO8pyQckTSiEAADml1VL0vXC0dOTHre6MCME1cxOTf39+nFTk55sbNQLbW0abQXNJQkJWp+ZqY9kZak4QPAYbqKhoqCggAACzFKEkMCO+l8Xz2gVAIBZa/3VTpX99uikFqc7oo3Wr3CGsKqZ1+bxaG9Tk37U2KhnW1vlHeW8i/3BY/0EgweAyEIICSzN/zrhhekAgPklKzlO65bn68lDrgmPWbfcqczkyGua1+P16ufNzfphY6N+2dysfhs4mBXGxeljWVn6WFaWLqVrOTCvEUKGMb6fiIML0tmqFwAwqq1ri1Xd1DWhnbJWLUnX1rWRs0TQa62ea23VDxsb9eOmJnV4Az/zyF2wQB/NytKtWVlakZxM8AAgKcghxBiTLekiSW9YaxuGvL9E0pclXSbfTlTbrLWHgnnvyTDGLJL0QUlPWWv7hryfJOlhSask1UvaOzMVAgBCqamjT08drtHBEy3q7PMoKTZGqwsztH7F5J5UxDmitXPDSm3bV6U9FYH7hjiijdYtd2rr2iLFOaKD+THCzlqrIx0d+qF/gXl9f3/A8xY5HPpIZqY+lpWldy1cqCiCB4BhjB3lkemULmbMI5I+J6nIWvuG/70kSW9IypE0+FOoS9IV1trqIN77JklfHPLWKklW0tCw86/W2l8YY86XdEJSu6Q/S6qRlCrpKkkZks5I+mtr7YtBqKuyqKioqLJytDYiAIBw6XV7tW1fpfZU1AY9MDR19Gn3EZcOVDdPK9jMRsd7erSroUE/bGjQmz09Ac9Jio5W6aJF+nhWlq5PS5MjKirMVQIIp+LiYlVVVVWNtkPseII9HetaSX8eDCB+d8m3wPuHkrbJ9wTiEfl2n/pMEO+dKV/wGMoMey/T/9os6auSVktaJulKSV75gsnjkh6x1tYFsTYAwAzrdXt152OHxpw65fZaPXmoRtVNndq5YeWkgkhmcqw2liyLmEaELW63nmps1BMNDdrf3h7wnBhjdGN6um7LztbajAwlRM/tJz0AwifYISRP0oFh7/21JI+kTdbaZkllxpg7JZUE88bW2sflCxATObdD0heCeX8AwOy2bV/lhLucHzzRom37qvTQLZeFuKrZpW9gQL9sbtYTDQ36eXOz3KPMlnj3woW6LTtb6zIzleFwhLlKAJEg2CEkWdLZDkT+Rd6rJFX4A8igN+QLJwAAhFxjR6/2VNROasyeCpe23HDhnJ9KNR5rrfa3t+uJhgY91dioVk/gju7FCQm6PTtbt2Zn67y4uDBXCSDSBDuE1ElaMuT7FZIWSvpdgPsGXs0GAECQ7T4ceNH4WNxeq91HXBEzvWq4mt5e/Wd9vXY2NOjYKOs8shwOfTw7W5/IztaVSUnsbAUgaIIdQvZLutUY8yFJ5ZL+Wb7F4fuGnXeJfIEFAICQm+g0rOEOVDdHVAjp8nr1k6Ym7ayv13NnzgTsYB4fFaWbFy3SHdnZuiEtTTEsMAcQAsEOIf9X0i2SfuL/3kgqt9a+NHiCf2eqIknfD/K9AQAIqLMv8BSjUI2bTay1eqGtTTvr67W7qUmdAfp5GEnXpqbqE9nZuiUzUykxtBEDEFpB/SljrX3dGPMuSZvk24mqQtLXh532AUmvSPppMO8NAMBokmKn9utuquNmg5reXu2sr9fj9fWq7u0NeM6y+HjdmZ2tO3JyWOcBIKyC/tPVWvtH+bblHe34v0v692DfFwCA0axakq4Xjp6e9LjVhRkhqGZsZWVlKi0tVUFBwZjn1dTUaO/evdq0adPZ93q9Xv309Gk9Vl+vZ1tbA063SomO1kezsnRnTo6uSUlhnQeAGTF3/8QDAMAErb/aqbLfHp3U4nRHtNH6Fc4QVjVSWVmZNm/erB07dqi8vHzUIFJTU6OSkhJVV1fLWqv33H23Hjt1Sv/V2KgzAXa3MpJuSEvTXTk5unnRIsXTzwPADAtqCDHGjP1nm2GstTXBvD8AAIFkJcdp3fJ8PXnINeEx65aHv9N5aWmpduzYoerqapWUlAQMIkMDSEZBgf5j6VLdW1ER8HrL4uP1yZwcfSI7W/lMtwIwiwT7SchbUsCnv4HYENwfAICAtq4tVnVT14R2ylq1JF1b1xaFoapzFRQUqLy8/GzIGB5E3nr7bV1z7bU69dZbUm6umr/2NTUnJ59zjYSoKK3PytLdOTl658KFTLcCMCsFOwQ8r8AhJEqSU1KB/9/7RZ8QAEAYxTmitXPDSm3bV6U9FYH7hjiijdYtd2rr2iLFOWZmytLwILJ89bu0/L4dOh7v1vEvbZY9dVLKzZW2b5eys8+OuyYlRRsWL9b6zEwls7sVgFnOWDu55k3TupkxF8m3Na+VdIO1NvB2HRHEGFNZVFRUVFlZOdOlAAD8mjr6tPuISweqm9XZ54bULFcAACAASURBVFFSbIxWF2Zo/YrwT8EKpNft1ebHntH3/mmDvM2npMFQ4fGcE0CyHQ7dmZOjT+bk6OLExJktGsC8UlxcrKqqqiprbfFUxoc1hEiSMSZT0huSvmut/XxYbz4DCCEAgMmoau/Uh5/5o44muuVta5Juv90XPiRfGHniCcVHLVJSrUfvTUzRExtWzdhTGwDz13RDSNjboFprmyQdkPSxcN8bAIDZqH9gQHsaG3XDK6+o+OUjej3DK29cgF/RVso+0Kusl/uU0OjV4ROt2ravKvwFA8A0hT2EDJE9/ikAAMxeZWVlqqkZf6PHmpoalZWVjXj/eE+P/k91tZz79+sjVVV6trX1LwcbGqR77/U9BYmOkaJiJK9HzTv/jzztjWdP21PhUlNHX1A+DwCES9hDiDHmHZKulfR2uO8NAECwDPb0KCkpGTOIDG6pu3nzZpWVlZ3z1GPZwYP6Sk2NGt3uc8ZEV59S1GfvlU6dUkxqjvL+9j+Ud89/KCY1R54z9Wp48h/PBhG312r3kYlvPQwAs0Gw+4T8yxiHkyRdKOlG/33pmg4AmLMm29OjYMkSvbl8uZz7948IHZIUa4xy26PU8VK1znznC/KeqVdMao6yb/2yYlKyJEnZt37ZF0D8QWTw2IHqZm0sWRaWzw0AwRDsPfwelG/nq7E2Je+W9JC1dnuQ7w0AQNiM19NjaACJz89XzUMP6dsBuplfkpCge3JzdUd2tm796s/03He+IE+AACJJMSlZAYNIZ19q2D43AARDsEPIJ8c41i/plKTD1tquIN8XAICwGy2INPT16QPve59aa2qk3Fz1PPzwOT09Yo3RR7KydM/ixec0FGypfHHUADJoeBDpfnO/kpaHv7EiAExHUEOItXZnMK8HAMBsNzyInL90qa9r77CeHpJ0YXy8/i43V3fm5Cjd4RhxrTs//fc63tSphAvXBAwggwaDSPeb+5Wy4kNaXZgRok8HAKFBS1UAAKah1e3Wj43RwPbt0rp1skN7emzfrpicHJUuWqS/z83VtampZ596BLL+aqfKVt0csJv7cDEpWUpZ8SE5oo3Wr3AG6+MAQFjM5Ba9AADMmOlur/tyR4c+9frrytu/X1uOH9dbvb0jznnA6ZRr9WrtLi5WSVramAFEkrKS47Ruef7EP4SkdctnR5d3AJiMaYUQY0y1Mea4MWbJkO8n+nU8OB8BAIDxDQ0dY22vOzR0DN9et9fr1RP19Vrz8staXlGh79fXq2dgwNfTY8sWyeORiYlRjMMheTz68R13qL+hYVJ1bl1brFVL0id07qol6dq6lvUgAOae6T4JOV/SEkmOId9P9GvJNO8NAMCEDA8dpaWlKiwsPLuYfDCIDA0dDz744Dnb675+1VXK379fn3j9dR1ob//LxRsaFLVli3TypAqWLNFbx4/r+LFjAa8/EXGOaO3csFK3riyQIzrwkxNHtNGtKwu0c8NKxTmip/WfDQDMBGPt+PNOMXXGmMqioqKiysrKmS4FAOatodvlFhYWqry8XJLOeW/Xrl26/fbbfaFjyDa7Cfn56h62u9Wgd3R1qW7jRjW+/fbZ6wbaonf4sYlq6ujT7iMuHahuVmefR0mxMVpdmKH1K5iCBWBmFRcXq6qqqspaWzyV8YSQECOEAMDsMF4QiYmJkcfjUX5Bgbq8XrXW1Y3Y3UqS4qOidFt2tm72evW5tWvHDBnBCCIAMBtNN4SwMB0AMC8MbqU7dJqUJO3atetsAJGk2rq6gAFkWXy8Hlm6VHVr1ui7F12kY888M264GH7PvXv3hu8DA8AsFtQteo0xF0haI+kFa+2JIe+vlFQm6TJJb0v6R2vt/wTz3gAAjGd4T49ly5bJSmcDiCTJ6z27va7JztZNGRn6bF6ebkhLU9SQ3a02bdokSSotLR3z6cbgPffu3Xt2DADMd0GdjmWM+Y6kT0laYq11+d/LlHRUUookK8lI8ki62lr7StBuPksxHQsAZp9Xjh/X8ksukdft9r0R7V/c7fX6XmNi9LfPPafPr1ihwvj4mSkSAGax2TYd612SXh0MIH4b5Asg35AUL6lUUrSk+4J8bwAAxvRqZ6c+/cYbWvXyy/IO/SOc1yt5vTIxMYr2b6/77F13KaapaeaKBYAIFuwQsli+6VZD3SipT9I2a22/fxrWAUmrg3xvAABG8AwM6CdNTbr2j3/UFUeO6Ht/+pP6Nm+WPJ6/PAGRFB0Toz/8/veqnsb2ugCAiQl2CImTdLZlrDEmWtIKSQestZ1DzntLUl6Q7w0AwFktbre+VlOjpQcP6sOVlfp9W9tfmgqePCmTlaUU/6LzmJgYeT0e3XHHHZI0YgE7QQQAgivYIcQl6eIh379bUoKk8mHnxUvqCvK9AQBQZVeX7nnjDeXv36/PV1erpq/Pd2BIAEnPy1N+XJzaT55UYWGhnn/++RG7ZhFEACB0gh1CfivpcmPMJmPM5ZK+JN9i9OE7YV0mX2ABAGDaBqzVz0+f1g2vvKJLDx/Wf5w6pZ6BgbPHoxsblfjAA5I/dPzDpz4lV03N2e1116xZE3D7XrbXBYDQCOoWvZIekrRe0nb/90bSU0N3wTLGFEtaKulbQb43AGCe6fB49Hh9vb5ZV6ejPT0jji9yOHTP4sVyVFToQZfrnJ4eaWlp52yvO3z73sEtddleFwCCL6ghxFpba4y5UtKnJWVKqpD0+LDT3iHfk5Hdwbw3AGD+qO7p0Tfr6vTYqVNqH9xWd4grEhO1KT9ft2ZlKS46WrrvPqXGxJwTOoaGiqaOPj11uEYHT7Ro2Se/pvTKFxVz+U1q6uhTQUEBAQQAgiyofUIwEn1CACA4rLV6oa1Nj9bW6n9On9bAsONRkj60aJE25efrPQsXygxpLDiaXrdX2/ZVak9Frdzekb8PHdFG65Y7tXVtkeIc0QGuAADz03T7hAR7OhYAAEHVPzCgpxob9WhtrV7u7BxxfGF0tO5evFifzcvTkkk0Fux1e3XnY4d08ETLqOe4vVZPHqpRdVOndm5YSRABgCCZVggxxhRMZ7y1lq1GAAABNfX3699PntT/O3lS9f39I45fEB+vTfn5ujM7W0kxk/91tm1f5ZgBZKiDJ1q0bV+VHrrlsknfBwAw0nSfhLwl3+5XU2GDcH8AQISp7OrSo7W12tXQoN6B4ZOupOtTU3Wv06kb09MVNYEpV4E0dvRqT0XtpMbsqXBpyw0XKjM5dkr3BAD8xXRDwPOaeggBAECSb73Hb1pb9YjLpV+3to44HmuMbsvO1ub8fF2WlDTt++0+7Aq4BmQsbq/V7iMubSxZNu37A8B8N60QYq29Nkh1AADmoV6vV7saGvRoba0qu7tHHM92OPSZvDz9XW6ushYsCNp9JzoNa7gD1c2EEAAIAqZDAQDCrqG/X/9WV6dvnzypJrd7xPErEhN1r9Opj2VlKTYq2H11pc4+T1jHAQDOFdIQYoyJlZQuqc9aO7U/OwEAIsb/dnbqkdpa/VdDg/oCbBH/1xkZujc/XyWpqRPaYneqkmKn9utvquMAAOcKyU9TY8zfS7pH0qXydU3fKWmD/9h6SR+T9Hlr7dFQ3B8AMHtYa/VMa6u2j7LeIz4qSnfm5Ghzfr4uSkgIS02rlqTrhaOnJz1udWFGCKoBgPknqCHEGBMjaa+kD0rql1QlXxAZ6s+Sbpb0sqQvBfP+AIDZo29gQE82NGh7ba1e6+oacXzxggX6bF6e7snNVYbDEdba1l/tVNlvj05qcboj2mj9CmcIqwKA+SPYT0I2SbpJ0j5Jn7bWNhpjztlf0Vr7mjHmhKQbRQgBgIjT7HbrOydP6lt1dQH7e1yRmKgt/vUeC0Kw3mMispLjtG55vp485JrwmHXLnWzPCwBBEuwQ8glJpyR9zFrbM8Z51ZIuCfK9AQAz6Gh3tx6prdXj9fXqCdDf44Pp6brP6Qz5eo+J2rq2WNVNXRPaKWvVknRtXVsUhqoAYH4Idgi5QNKvxgkgknRa0qJg3tgYs1zSDZJWSlolKVe+BfFx44z7hKTPSiqSbwrZAUlfsta+FMz6ACASWWv1YlubHna59LPm5hGNo2KN0R05Obo3P19FiYkzUuNo4hzR2rlhpbbtq9KeisB9QxzRRuuWO7V1bZHiHNEzUCUARKZgh5A+SRPpIlUgqS3I9/6ipA9NZoAxZrukeyX1SPqNpDj5gsz7jTEfsdbuDXKNABARPAMD+snp0/qGy6VDHR0jji9yOLQxN1efycsLan+PYItzROuhWy7Tlhsu1O4jLh2oblZnn0dJsTFaXZih9SuYggUAoRDsEPKapKuNMRnW2uZAJxhjCiRdJem5IN97v6RXJB32f9WPdbIx5jr5AkizpDWDO3UZY9ZI+p2kHxhjfmetHbmVCwDMUx0ejx6rr9ejtbV6q7d3xPGLExK0JT9ft2dnKz567jw5yEyO1caSZTQiBIAwCfaKwO9LWihplzEmbfhBY0ySpO9JWuB/DRpr7VettVuttT+31jZMYMh9/tcvDd0q2Fq7X9J35PscG4JZIwDMpLKyMtXU1Ix7Xk1NjcrKys55r66vT184flwFBw5o87FjIwLItamp2nfppaq8+mp9Ojd3TgUQAED4BfVJiLV2pzHmJknrJJ0wxvzBf+gaY8weSSWS0iT9cCanOhlj4iRd7/92T4BT9kj6nKS1kr4RrroAIFTKysq0efNm7dixQ+Xl5SooKAh4Xk1NjUpKSlRdXS1Juu7uu/UNl0s/bGyUe1hzwWhJ67OydJ/TqeXJyaH+CACACBKKvRE/KukL8i3y/qD/vQsl3eK/3xcl3RGC+07GxZJiJTVZa2sDHH/Z/3p5+EoCgOAZ/tSjtLRUhYWFqq6uVklJydljQ596DA0gi88/Xz+56CJdfuSIdjY0nBNAkqOjdV9+vqpXr9YPi4oIIACASQt6x3RrrZX0NWPMNyS9Q9L58v3BrFbSYWvtyE3jw2/wT4CBAoistV3GmDOS0owxydbakasuhzHGVI5yaOkUawSAKQn01KOgoEDl5eVnQ0ZJSYl27dql22+/XdXV1WptbdUTTzyh6upqLcjL06mvfEWn4s7dXDA/Nlab8/P1qcWLtTAm6L8+AADziLF24t1iA17At8A7X9IRa23VOOcWSVohyWWtLZ/Wjcevy2qULXqNMR+X9F+SXrTWvmuU8bWS8iTlWmtPTeB+o4aQoqKi2MrK0Q4DQHANfaJRWFh4zvSrocdiYmLk8XiUX1CgTo9HZ06elHJzpe3bpezss9e7MilJDzid+khmphwz1FwQADC7FBcXq6qqqspaWzyV8dP6U5YxxinpF5JckpZPYIhL0l5J+caYC6y1J6dz/2kY7JI1VgKbVCet0f4L8IcTOlwBCJtATz2GPhHZtWuX3vOe98jj8UiSauvqJK93RAD5q/R03e906rpZ0lwQABA5pvsnrU/Jt9PV/zeRKUv+cx6QFC/p7mneezoGax2rc1aC/7UzxLUAQNANBpHh60Bqamq0/rbbzgYQSb4AEhMjbd8uR06O7srJ0asrVujpyy/X9WlpBBAAQNBNd1LvDfIt7v7pRAdYa39mjGmQdKOkf53m/adqcLVmfqCDxphESamSzkwkXAHAbDT8icjSZcvktVbW45GysqTmZl8A8fv73Fz908qVyoulOR8AILSm+yTkYvkaA07WEUkXTfPe0/GGfN3dM40xgYLIVf7XV8NXEgAE3+L8fH1u926ZmBh53G5fABns4eF/AhLtcEgej359113yNkykzRIAANMz3RCSKKltCuPaJCVN895TZq3t0V86tq8LcMrgez8PT0UAEFwdHo8ecbm09OBBbT527NwFcF6v1NiorPPO07GjR1V97FjA7XsBAAiV6YaQVknZ4541UrZ/7Eza7n/9Z2PMBYNvGmPWSLpHUrt8HeABYM446e9s7ty/X1uOH5erpkbaskUa+gREUkxMjH765JNaev75o64fAQAgVKYbQqokrTbGxE90gDEmQdIa/9igMcbcZIw5MPjlf3vB0Pf83dwlSdbaZyWVScqQ9CdjzE+NMb+U9Lwkh6QN1tqWYNYIAKFS2dWlT77+us4/cEBfdbnU5vVKDQ2+AHLypBIXL1ZObq4knd2a9/bbbz8bNggiAIBwmm4I2SfflKx/nsSYf5Zvd6x907z3cJmSVg35knzb7A59L3PoAGvtZkmflPRn+RbZXyPpt5Lea639cZDrA4Cgstbqd62tuunVV3Xp4cN6vL7+L53NGxpk/AGkYMkS3f+3f6t6l0uFhYV6/vnnA4aN4UFk7969M/jpAACRbFrNCv1PNY7JN71qq6QvW2sHRjk3StI/SdomqV7SMmtt95RvPkcYYyqLioqKaFYIIFg8AwP68enTetjl0pGOkRv45bS2yr15s5pras5pVlhWVqbS0lIVFBSM29Bw79692rRpU7g/GgBgjphus8JgdExfLd/TgzhJtZL+W9LLkpr8p2TKt9vUR+TbErdP0vXW2v3TuvEcQQgBECxdXq8eO3VKj9TW6kRv74jjlyUm6gGnU40/+pHuv/feEeFiuKFB5NFHHyV0AAAmbEY7pkuStfaAfzH3LkmXSro3wGmDna4qJd1urX1luvcFgPmisb9f36yr07fr6tQytMmg3/vS0nS/06n3DzYW3LxZMcacfeoxmsHpVzz1AACE27SfhJxzMWM+IOkmSe+Qb8G3kXRa0p8k/cJa+6ug3WyO4EkIgKl6s7tb33C5tLO+Xn3DflZHS/poVpbudzr1juTkmSkQADBvzfiTkKGstb+W9OtgXhMA5pv9bW36msul/zl9WsP/TJQYFaVP5+Zqc36+zouLm5H6AACYrqCGEADA1AxYq5+dPq2vu1x6qb19xPGcBQv0ubw8/V1urtIcjhmoEACA4CGEAMAM6vF69Z8NDfqGy6WjPT0jjl+ckKD7nU7dnp2t2Kjp7qoOAMDsQAgBgBnQ7Hbr23V1+mZdnZrc7hHH371woR5wOnVTRoaijAlwBQAA5i5CCACE0YmeHm2vrdVjp06pe+DctkpRkm7JzNT9TqdWpaTMTIEAAIQBIQQAwuBwe7sedrm0p6lJwzu6xkdF6ZM5OdridGppfPyM1AcAQDgRQgAgRAas1S+bm/Wwy6Xft7WNOL7I4dBn8/K0MTdXixYsCGttTR19eupwjQ6eaFFnn0dJsTFaXZih9SucykyODWstAID5hxACAEHWNzCg/2po0MMul/7c3T3i+NK4ON3ndOrOnBwlREeHtbZet1fb9lVqT0Wt3N5zNwB+4ehpPfrsm1q33Kmta4sU5whvbQCA+YMQAgBB0up26zsnT2pHXZ3q+/tHHF+dkqIHnE59aNEiRc/AYvNet1d3PnZIB0+0jHqO22v15KEaVTd1aueGlQQRAEBIEEIAYJre6ulRWV2dvnfqlDq93nOOGUl/k5GhBwoK9M6FC2emQL9t+yrHDCBDHTzRom37qvTQLZeFuCoAwHxECAGAKaro6NDDLpf+u7FR3mHHYo3Rnf7F5hclJMxIfUM1dvRqT0XtpMbsqXBpyw0XskYEABB0hBAAmIQBa/WrlhY97HKp/MyZEcfTY2K0MS9PG/PylB3mxeZj2X3YNWINyHjcXqvdR1zaWLIsRFUBAOYrQggATMDgYvNvuFyqCrDYvDAuTlucTt2Vk6PEMC82n4iJTsMa7kB1MyEEABB0hBAAGEOLf7H5N0dZbL4qOVkPFBTo5hlabD5RnX2esI4DAGAshBAACKC6p0eP1tbq+wE6mw8uNr/f6dQ7Fy6UmcXhY1BS7NR+3E91HAAAY+G3CwAMcdDf2fwnATqbxxqju3JydO8sWWw+GauWpOuFo6cnPW51YUYIqgEAzHeEEADzntda7Tt9Wg+7XHqxvX3E8UUOhzbm5uozeXnKmkWLzSdj/dVOlf326KQWpzuijdavcIawKgDAfEUIATBvdXu92llfr0dqa3W0p2fE8Qvi47UlP1+fmIHO5sGWlRyndcvz9eQh14THrFvuZHteAEBIEEIAzDsN/f36Vl2d/q2uTs2ekQuv37Vwoe53OrU2I0NRc2C9x0RtXVus6qauCe2UtWpJurauLQpDVQCA+YgQAmDeqOzq0naXS7saGtRvz52WFCXplsxM3Zefr9Uz3Nk8VOIc0dq5YaW27avSnorAfUMc0Ubrlju1dW2R4hxz++kPAGD2IoQAiGjWWj135owedrn0q5aRTwASo6K0YfFibc7PV2F8/AxUGF5xjmg9dMtl2nLDhdp9xKUD1c3q7PMoKTZGqwsztH4FU7AAAKFHCAEQkfoHBvRUY6O+4XLpla6uEcdzFyzQP+Tl6Z7cXKU5HDNQ4czKTI7VxpJlNCIEAMwIQgiAiNLiduvf/c0FTwVoLnh5YqLuczr1sawsLYiKmoEKAQAAIQRARDja3a2y2lr9oL5+RHNBSfqr9HTdl5+v69PS5kRzQQAAIhkhBMCcZa3VC21t2u5y6WfNzRq+zHqBMbotO1tb8vN1aVLSjNQIAABGIoQAmHPcAwPa09Sk7bW1OtLRMeL4IodDn/E3F8yeo80FAQCIZIQQAHNGq9ut/zh1St+qq1NtX9+I4xcnJOje/HzdkZ2t+DneXBAAgEhGCAEw64233uP61FRtcTr1V+npEdVcEACASEUIATArWWv1+zNntL22Vj8PsN7DYYxuzcrSvfn5ujI5eUZqBAAAU0MIATCrDPb32F5bqz91do44nhETo7/Py9NncnO1OJamegAAzEWEEACzQlN/v/795En9v5MnVR+gv8clCQnanJ+v27OzlcB6DwAA5jRCCIAZ9b+dnXq0tla7GhrUZ4dPupJuSEvTlvx8vZ/1HgAARAxCCICwG7BWT7e06NHaWj3b2jrieKy/v8fm/HxdRn+PaWvq6NNTh2t08ESLOvs8SoqN0erCDK1f4VRmMlPaAADhRwgBEDadHo/+s6FBZbW1erOnZ8TxbIdDG/PydE9urrLo7zFtvW6vtu2r1J6KWrm95z5leuHoaT367Jtat9yprWuLFOdgihsAIHwIIQBC7q2eHn2rrk7fO3VKbV7viONXJiXp3vx8fTQrS7FRUTNQYeTpdXt152OHdPBEy6jnuL1WTx6qUXVTp3ZuWEkQAQCEDSEEQEhYa/VCW5vKamv109OnNby7h5H0oUWLdG9+vt69cKEM6z2Catu+yjEDyFAHT7Ro274qPXTLZSGuCgAAH0IIgKDq9Xr1o8ZGldXVBdxiNzk6WhtycvS5/HwVxsfPQIWRr7GjV3sqaic1Zk+FS1tuuJA1IgCAsGDeAwBJUllZmWpqasY9r6amRmVlZSPer+/r09YTJ3TegQP65BtvjAggS+PiVLZsmWrXrNGjF1xAAAmh3YddI9aAjMfttdp9xBWiigAAOBdPQgCorKxMmzdv1o4dO1ReXq6CgoKA59XU1KikpETV1dWSpE2bNulQe7t21NZqd1OT3AG22H1fWpo25eXpgxkZbLEbJhOdhjXcgepmbSxZFuRqAAAYiRACQKWlpdqxY4eqq6tVUlISMIgMDSBLCgtl3vUura6o0MGOjhHXi4uK0h3Z2fpcXp4uZYvdsOvs84R1HAAAk0UIAaCCggKVl5efDRnDg8jQAJJWUKDOr39dmwKEj/zYWG3MzdWnc3OV4XCE+2PALyl2aj/apzoOAIDJ4jcOAEmjBxFJuua971XdW29Jublq/drXpPT0c8a+e+FCfS4vTzcvWqQYttidcauWpOuFo6cnPW51YUYIqgEAYCRCCICzhgeRwmXLNGCtrMcj5eZK27dL2dmSfF3NP56drX/Iy9M7kpNnuHIMtf5qp8p+e3RSi9Md0UbrVzhDWBUAAH/BnywBnCMmO1t/vXOnFBMjr9vtCyAxMWcDSN6CBfq/S5bItWaNHrv4YgLILJSVHKd1y/MnNWbdcifb8wIAwoYQAkSA6W6va63VH86c0UcrK3XegQPaUVc34pwVSUn6UVGRTqxerX887zxlLlgQlNoRGlvXFmvVkvTxT5Rv+tbWtUUhrggAgL+Y1yHEGPM7Y4wd4+uvZrpGYDyD2+uWlJSMGUQGF5dv3rz5bBDp8Xr12KlTuqqiQu/+05+0u6lJnvp6acsWyf8EJMrx/7d37/F1lWWix39P05DQNtALbZNKawkVpR0UBUvxgtTbOCpH0VoFBSmo4DCKAzrjHD1yGOcMc1FGmfl4F6h3KlgVHdFRi8Ao5aKCtAgcUk4LTdq0hd5oQ5K+54+1UkO6d5rmsnLZv+/nsz+Lvdb7rjx5kob17PW+76qGjg62ffCDnLp3L9XO+RgVaqurWH7+Qs5aOIfqqtJLI1dXBWctnMPy8xdSW11VcISSpEoWqcS6/pUiIm4BXgHcCBz4aGf4dErpDwP8Gmvmz58/f82aNQM5jVRW95WrGhsbD7q8bmNjI8t/8hN+UFXFV5ubeaKj27KsmzZlBcjGjUydM4df/OIXTD3ssIOeXyNb6842Vty9gTuatrKrrYNJNeNZ1DiNpSc7BEuS1D8LFixg7dq1a1NKC/rT3yIkK0KOSSk9OkRfwyJEQ663QqT7sfq5c5n/hS+wqqaGA/7lb9pE7Yc/zN7HHuv1HBYikiRpoEWI4yqkMaBrVavGxsb9y+uuX7+e9evX84q8eBj/rGfR8k//xC97FCATx43jncDRf/d3JQuQ3s4vSZLUHxYh0hjRs1A4dt48jpk3j0ebmmDWLDo+/en9y+sCPPfww7l63jwef8lLePG99/LYunW93uXoef6VK1cW+e1JkqQxxOeEZC6IiGnAPuAh4PspJT/m1agz41nP4gPXX8+lp55KR3t7trPb8rrjgDOmTeOvnvUsXjVlChHZhOVLLrkEgDPPPLPXYVZdhcjKlSv395EkSTpUFiGZj/d4/6mI+GRK6ZN9PUFElJv0cWz/w5L6Zt2ePXxx40a+2tLClsceO+D4lPHjuWjOHC6cogxoywAAIABJREFUNYtn19aWPEdfi4o5c+ZYgEiSpAGp9CLkVuArwK+BZmA2sISsKPn7iNiRUjrwoQrSCLAvJX66bRuf27iRH2/dms3z6FrdKl9eN4DU0cHkv/kbLlq1ijllChBJkqQiVfTqWOVExGuBnwLbgYaU0p4BnMvVsTSoWp9+mmtbWvjixo007d37pwPdltetmz2bb998MydMmuSqVpIkadC5OtYQSCn9DLgbOBJYNMzhSPufaP7OtWs5+je/4W+bmg4oQKovuww2bmRuYyP33347b5g/31WtJEnSiGQRUt7D+bZhWKNQRdvR0cHnHn+c5999Ny///e/51ubNPN3t7uU44LXt7TR89KO0P/44jY2N/MrldSVJ0ghnEVLelHxb6knq0pC6d9cuLnrwQWb9+tdc/PDD3L979zOO1x92GB9/9rNZt2gRr1+7luZHH3V5XUmSNGpU+sT0kiJiOvDy/O1vhzMWVY49nZ2saG3lCxs3cseOHSXbvHLyZN4/axZvOuooqsdlnyG4vK4kSRptKrYIiYhFwOHALanb7PyImAt8A5gI/DCldOB6p9IgemD3br64cSPLN23iyY6OA45PHj+e8+rruWjWLJ47YULJc7i8riRJGk0qtggBngdcCzRHxENAC3A0cBJQC6wB3jt84Wksa9u3jxtbW/nixo3cun17yTYvrqvj/bNm8fYZM5hQVVVwhJIkSUOnkouQ1cDngVOA+cBLgd3A74HvAp8fyNK8UikPP/UUX25u5tqWFrZ0PdG8m0lVVbxzxgwunDWLF9bVDUOEkiRJQ69ii5CU0gPAXw53HBr72vbt4/tbtvCljRv55ZNPlmxz4qRJXDRrFmfPmEHd+Ir9ZylJkiqEVzvSEDnYXY/Dx43jHTNmcNGsWby4ro6IGIYoJUmSimcRIg2itn37WNnaypeam1lV5q7HggkTeN+sWZw7cyaTq6sLjlCSJGn4WYRIg+DBp57iy/kKV6XuetSOG8fbp0/nfbNmceoRR3jXQ5IkVTSLEKmf9nR2cmNrK19ubi67wtWCCRO4cNYs3jVzJlO86yFJkgRYhEiH7A+7dvHl5ma+Xua5Ht71kCRJ6p1FiNQHuzo6uL61lS9v3MjqnTtLtjlh4kTe29DgXQ9JkqSDsAiRykgpcffOnXyluZlvb97Mzs7OA9pMzFe4ep8rXEmSJPWZRYjUw7b2dr65aRNfaW7mvt27S7Y5ua6O9zY0cJbP9ZAkSTpkXj1JwL6U+NWTT/KV5mZubG2lLaUD2hxRVcW7Zs7kvQ0NnDiCn2beurON6+9az+p129jV1sGkmvEsapzG0pNnM72uZrjDkyRJsghRZdvY1sbylha+2tzMI3v3lmxz2pFH8p6GBt46fToTqqoKjrDv9rZ3csVNa7jhnsdo73xmEXXbw1v4zM8fYslJs7n8jPnUVo/c70OSJI19FiGqOO379vGjrVv5anMzP9m2jX0l2syorua8+nrOb2jguRMmFB7jodrb3sm7r7mT1eu2lW3T3pn49p3raWrdxfLzF1qISJKkYWMRoorxwO7dXNPSwtdaWthc4oGC44DXTZ3KexoaeOO0aVSPG1d8kP10xU1rei1Aulu9bhtX3LSWK99ywhBHJUmSVJpFiMa0nR0drGht5avNzfxmx46SbebW1nJ+fT3n1dczu7a24AgHbvPOvdxwz2OH1OeGezZw6WuOc46IJEkaFhYhGnNSSvx6xw6uaW7m+s2b2b3vwAFXNRG8Zfp0LmhoYPHkyYwbxUvrrrhrwwFzQA6mvTOx4u4NXLx43hBFJUmSVJ5FiMaM5rY2vrZpE9c0N/PQnj0l25w4aRIX1Ndz9syZTB0jDxTs6zCsnu5o2moRIkmShoVFiEa1p/ft48dbt3JNSws/2bqVAx8nCEdWVfHOmTO5oKGBF43gpXX7a1dbR6H9JEmSBsoiRKPS/bt2cW1LC1/ftInWEpPMAV41eTLnNzRw5lFHcfgIXlp3oCbV9O+fcX/7SZIkDZRXIRo1nmhv5zubN3NNSwt379xZss2cmhqW5ZPM5x5+eMERDo9TjpnKbQ9vOeR+ixqnDUE0kiRJB2cRohGtMyV++cQTXNPSwsoyTzLvmmR+fn09r5wyZVRPMu+PpS+ezWd/8fAhTU6vrgqWnjx7CKOSJEkqzyJEI9Ije/ZwXUsLy1ta2NDWVrLNSZMmsayhgbNnzGDKGJlk3h8z6mpZctLRfPvODX3us+Sk2S7PK0mSho1FiEaMXR0d3NDaynUtLfxq+/aSbY6qruacmTNZVl/PCZMmFRzhyHX5GQtoat3dp5WyTjlmKpefMb+AqCRJkkqzCNGwSilx+/btXNvSwooyz/SoAl4/bRrL6ut5w7RpHDaKnmRelNrqKpafv5ArblrLDfeUfm5IdVWw5KTZXH7GfGqrx+5EfUmSNPJZhGhYbNi7l+UtLVzX0sIje/eWbHP8hAksq6/nnJkzqa9x6NDB1FZXceVbTuDS1xzHirs3cEfTVna1dTCpZjyLGqex9GSHYEmSpJHBIkSF2dPZyfe3bOHalhZ+/sQTlJpGfWRVFe+YMYNlDQ0srKsjKmyS+WCYXlfDxYvn+SBCSZI0YlmEaEillFi9YwfXtrTwnc2b2dF54OMEA3j1lCksq6/nzWP8mR6SJEmyCNEQebytja/nw60e3LOnZJt5hx/OefX1nDtzJrNrawuOUJIkScPFIkT7ffazn+XMM89kzpw5vbZbv349K1eu5JJLLnnG/r2dnfxg61aua2nhZ9u2ceAUc5hUVcXS6dNZVl/PS4880uFWkiRJFcgiREBWgHzoQx/i6quvZtWqVWULkfXr17N48WKampoA+OAHP8hdO3dyXUsL3968mSc7Okr2Wzx5MufV1/PW6dOZ6HArSZKkimYRIgDOPPNMrr76apqamli8eHHJQqR7AfLsY45h08KF/Nldd7H2qadKnnNube3+4VbHHH54Ed+GJEmSRgGLEAEwZ84cVq1atb/I6FmIrF+/ntMXL2ZdUxMTjj6a9VdeyZUlnmQ+Ydw43jZ9OufV13Pa5MmMc7iVJEmSerAI0X6lCpFf/vKX3L97N2e/7nXs2LABZs3iqU99CmbOfEbf0448kvPq61kyfTp14/21kiRJUnleLeoZugqR004/naamJo6ZNy97nkdHB8yaBVddtb8AmVNTw7vr63l3fT3HOtxKkiRJfWQRov2e3rePH2/dyrXbt7PhyivhXe8idU00Hz8errqKwxsaeGs+3Gqxw60kSZLUDxYh4vf56lbf3LyZLe3tJdsEcGVjI+9/4Qs5wuFWkiRJGgCvJivUlqef5lubN3NtSwu/37XrmQc3bYJLL4WODsZVV1MFtLe386V3vIOzVq3iiIM8R0SSJEnqjUVIBenYt4+fPvEE1zY388OtW2lP6YA2Na2tVH/kI+zauJHGxkZWrVoFUHbVLEmSJOlQWYRUgAd27+balha+vmkTLU8/XbLNKXV1vGnfPr50wQU8umHD/gKkq9jobfleSZIk6VBYhIxR2zs6+M7mzVzb3MzqnTtLtqk/7DDOnTmT8+rrmbh1K4sXL+bRpqYDChA4+HNEJEmSpL4aN9wBaGh8/vHHueihhw4oQKojeOtRR/GjE05gw6JF/POxx3L8xImsXLmSpjIFSJeuQqSxsZGmpiZWrlxZ1LcjSZKkMcQ7IWPUOfX1fGzdOvbl70+cNIll9fWcPWMGRx122AHtL7nkEgDOPPPMXu9udBUiK1eu3N9HkiRJOhSRSkxO1uCJiDXz58+fv2bNmsK/9jkPPMDU8eNZVl/PiXV1hX99SZIkjU0LFixg7dq1a1NKC/rT3zshY9jXjz9+uEPQKNW6s43r71rP6nXb2NXWwaSa8SxqnMbSk2czva5muMOTJEmjnEWIpP32tndyxU1ruOGex2jvfOZd0tse3sJnfv4QS06azeVnzKe2umqYopQkSaOdRYgkICtA3n3Nnaxet61sm/bOxLfvXE9T6y6Wn7/QQkSSJPWLq2NJAuCKm9b0WoB0t3rdNq64ae0QRyRJksYqixBJbN65lxvueeyQ+txwzwZad7YNUUSSJGksswiRxIq7NhwwB+Rg2jsTK+7eMEQRSZKksazii5CIqI2IKyLioYjYGxEbI+KaiDh6uGOTitLXYVg93dG0dZAjkSRJlaCii5CIqAV+AXwCmAT8ANgALAN+GxHHDmN4UmF2tXUU2k+SJFW2ii5CgP8JvAT4DXBcSuntKaVTgMuA6cA1wxmcVJRJNf1bKK+//SRJUmWr2CIkIqqBD+RvL04p7eo6llK6CrgPOC0iThqO+KQinXLM1H71W9Q4bZAjkSRJlaBiixDgZcBk4JGU0u9KHL8h355RXEjS8Fj64tlUV8Uh9amuCpaePHuIIpIkSWNZJRchL8i3vy1z/Lc92klj1oy6WpacdGhrMSw5aTbT62qGKCJJkjSWVfKA7jn5ttzDER7r0a5XEbGmzCEnt2tUuPyMBTS17u7TSlmnHDOVy8+YX0BUkiRpLKrkOyGT8u1TZY7v7tFOGtNqq6tYfv5Czlo4p+zQrOqq4KyFc1h+/kJqq6sKjlCSJI0VlXwnpOsqq9wT2g5pgHxKaUHJk2R3SPzIWKNCbXUVV77lBC59zXGsuHsDdzRtZVdbB5NqxrOocRpLT3YIliRJGrhKLkJ25tuJZY5PyLe7yhyXxqzpdTVcvHgeFy+eN9yhSJKkMaiSh2Otz7flZuMe3aOdJEmSpEFQyUXIvfn2RWWOd+2/r4BYJEmSpIpRyUXIfwPbgWMj4oUlji/Jtz8qLiRJkiRp7KvYIiSl9DTwH/nb/4iI/XNDIuJS4PnA7Smlu4YjPkmSJGmsquSJ6QD/ALwaeAnwcETcBjwbOAXYCiwbxtgkSZKkMali74QApJT2AouBT5I9L+TNwFxgOfDClNL/Hb7oJEmSpLGp0u+EkFLaA3wif0mSJEkaYhV9J0SSJElS8SxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBXKIkSSJElSoSxCJEmSJBVq/HAHoJGpdWcb19+1ntXrtrGrrYNJNeNZ1DiNpSfPZnpdzXCHJ0mSpFHMIkTPsLe9kytuWsMN9zxGe2d6xrHbHt7CZ37+EEtOms3lZ8yntrpqmKKUJEnSaGYRov32tnfy7mvuZPW6bWXbtHcmvn3neppad7H8/IUWIpIkSTpkzgnRflfctKbXAqS71eu2ccVNa4c4IkmSJI1FFiECYPPOvdxwz2OH1OeGezbQurNtiCKSJEnSWGURIgBW3LXhgDkgB9PemVhx94YhikiSJEljlUWIAPo8DKunO5q2DnIkkiRJGussQgTArraOQvtJkiSpclmECIBJNf1bKK2//SRJklS5LEIEwCnHTO1Xv0WN0wY5EkmSJI11FiECYOmLZ1NdFYfUp7oqWHry7CGKSJIkSWOVRYgAmFFXy5KTjj6kPktOms30upohikiSJEljlUWI9rv8jAV9HpZ1yjFTufyM+UMckSRJksaiii1CIuL0iEi9vO4Y7hiLVltdxfLzF3LWwjllh2ZVVwVnLZzD8vMXUltdVXCEkiRJGgtc2ggeAW4vs7/i1FZXceVbTuDS1xzHirs3cEfTVna1dTCpZjyLGqex9GSHYEmSJGlgLELg9pTSecMdxEgzva6GixfP4+LF84Y7FEmSJI0xFTscS5IkSdLwsAiRJEmSVCiHY8FzIuJKYBqwhWx+yM0ppX3DG5YkSZI0NlmEwEvyV3d/iIi3ppQe7utJImJNmUPH9jsySZIkaQyq5OFY24F/BRaR3QWZBrwKuAM4AfiviDhy+MKTJEmSxqZReyckIm4A/uwQu52bUroTIKX0O+B3PY7/MiJeBqwCXg5cDPxjX06cUlpQJs41gE/1kyRJknKjtggB5gLPPcQ+Ew7WIKXUGRH/TFaE/Dl9LEIkSZIk9c2oLUJSSicP4em75oI0DOHXkCRJkipSJc8J6c2UfLtrWKOQJEmSxiCLkNLemm/vGdYoJEmSpDGoYouQiLgwIqb12BcRcSHw10ACvjAswUmSJEljWKSUhjuGYRERjwKzgLXA/8t3nwAcA+wDPpRS+vdB+Do7ampq6o491seFSJIkaWx45JFHaGtr25lSOqI//Su5CPkA8FpgATADqAaagduAq1NKdw3S12khW5Vrw2Cc7xB1VT6PDMPXrkTmu1jmu1jmu1jmu1jmu1jmu1hDle/ZwFMppfr+dK7YIqQSdD3FvdwzTDS4zHexzHexzHexzHexzHexzHexRmq+K3ZOiCRJkqThYREiSZIkqVAWIZIkSZIKZREiSZIkqVAWIZIkSZIK5epYkiRJkgrlnRBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoi5BRKCImRMSbI+KrEXFfROyIiN0RcW9EfCIiJvXS99yIuDMidkXEtoj4z4h4SZHxj0YRcWlEfC8iHo6I7RHRFhH/LyKWR8SCXvqZ7wGKiKkRsTkiUkT88SBtzfchiohb8tyWe72uTD9zPQARUR8R/xYRD0XEnjyH90TEv5Rpb74PUUScfpDf7a7XJ0r0Nd/9FBGLIuLGiGiJiPY8f7+IiCW99DHf/ZTn+wcRsSUi9uZ/U/4hIib00mdE5Nsnpo9CEfEe4Mv52zXAWuAI4CVAHfBH4BUppc09+l0F/DWwB/gZUAu8CgjgbSmllYV8A6NQRGwBJgL3AY/nuxcAxwFPA29OKf2kRx/zPQgi4jrgXLK8PZhSel6Zdua7HyLiFuAVwI3ArhJNPp1S+kOPPuZ6ACLiVOA/gclkf7/vJ/vbPR84OqU0vkd7890PEfE84KNlDlcB78r/+5UppVXd+pnvfoqItwHfIfuQ+27gEWAW8NJ83z+nlD7ao4/57qeIeCewnOz3+R5gPXAyMBu4F3h5Smlnjz4jJ98pJV+j7EV2QfY54Dk99jcAvwUS8K0ex16Z79/SvR9wKtAGPAlMGe7vbaS+yP6A1pbY//48r48DVeZ70PP+qjyPX8y3fyzTznz3P8e35Lmb28f25npg+Z4FPAE8BZxZ4vhC813Iz+Ev8ryuB8aZ70HJ6Xhgc56/t/c4dirZRe8+4FjzPSj5PjrPaQKWddtfA6zI93++R58Rle9hT6KvQf6BZr9ICdgLHNZt/4/z/R8q0eez+bHLhjv+0fgCHs7zN998D2peD89zuwZ4Dr0XIea7/3k+1CLEXA8s31/Lc/RX5ntYfw7fzHN3pfketJz+WZ6fB8oc/35+fKn5HpR8fzzPz89KHJsO7CYbqTFtpObbOSFjz735tgaYBhARXbfaAG4o0adr3xlDG9qY1ZlvnwbzPYguB44lu9vUXq6R+S6OuR6YiJgCLAW2A1/pQ3vzPQQiYiLwpvztN7rtN98D09bHdtvAfA+Ck/LtLT0PpJRayYZ6VgOvh5GZ7/EHb6JRpjHftpP/QweeR1aUtKaUHivR57f59vlDHNuYExHnAs8FHgKa8t3me4Ai4vnAZcC1KaVbI2JuL83N9+C4ICKmkQ2XeAj4fkppfY825npgXkqWv58D7flE3ZeRXSj8EViRUtrUrb35HhpvIZvj97uU0ppu+833wDTlr+dFxNKU0oquA/k8qD8H1gG35rvN98BMzLdPlDnedQ34AuDrjMB8W4SMPZfk25tTSl2fSszJt6V+6Ugp7Y6IJ4EpEVGXekxi0p9ExEfIJqRPBI7P/3sjcHZKaV/ezHwPQESMI1t44Ungb/rQxXwPjo/3eP+piPhkSumT3faZ64HpWklvE3Ab2fDZ7q6MiGUppe/m78330OiakP71HvvN9wCklDoj4jzgJuD6/P+Xj5DNV30ZcCdwTkrp6byL+R6Y1nz77DLHu/bPzbcjLt8OxxpDIuL1wAVkd0H+V7dDXUv2PtVL99092qq0PwfeDSwhu6DYQFaA3NOtjfkemA8AC4GPpJS29qG9+R6YW4FzyIa+TSC7s/cxoAP4+4i4pFtbcz0wU/LtuWSfNl5ANnb7GOAqsg83vpHfCQTzPegiop5sSEon8O0eh833AKWUbiNbbW8d2SpNbwdOI8vbz8k+tOtivgfmV/n2rIg4rPuBiFhE9rccspX3YATm2yJkjIiI48nGtgbZxdu93Q/n297WY45ejimXUnp1SinILiZOAx4EbomIj3VrZr77KSJmA/8A/CqldF1fu+Vb890PKaVPpJS+kVJqSintSSk9lFL6R+DNeZMrIuLw/L/N9cBU5dvxwKUppWtSSltSSo+mlC4jG5N9GH+6A2i+B9/ZZD+H/0optfQ4Zr4HKCLOAlaTrTp2CtnF7HFkBd/HgZ9HRHVX83xrvvvnm2R5ngP8ICIWRERdZM92+i7ZB0mQDbGFEZhvi5AxICKOBm4muzC+KqX02R5Num6pTaS8rofalHpOgHpIKT2Zf+LzerK1uT8ZES/OD5vv/vsc2UXY+w+hj/keAimln5Gt838ksCjfba4Hpit/+8jW9u/pmnx7eo/25nvwlBuKBeZ7QCLiOWS/163AG1JKd6aUdqeUHk4pXUg2TOtUYFnexXwPQEppN/BGskLkdWTPG9oB/ITsb8xVedOuOSMjLt8WIaNcRBwF/BdZJXwt8OESzbomlx5d5hwTyR6a9aRjLg9NSqkduJ7s04OuFSXMd/+9kexW8ecje5L3LfnD9L6TH5/TbX/X7WLzPXQezrcN+dZcD8yj+bal25y9Usdn5FvzPYjyEQMvJLvA+n6JJuZ7YN5BtsjCzfkFck9dE9VPz7fme4BS9iDZ55ENE/934PPARWTLJXfpWnxhxOXbiemjWETUkVW8zwO+B7w35Ys99/Ag2dJ50yPi6BKrIrwo3943ZMGObVvy7fR8a74HZjLZmOJSDu92rOvvl/keOl1zGLo+FTPXA/O7fDslIqLE3+tp+dZ8D41z8u33UkqlxsWb74HpurjdUeZ41/6p+dZ8D4KU0h6y5w99rfv+iHh1/p+35NsRl2/vhIxSEVED/IBs4tdPgbNSSp2l2ua/oL/M3y4p0aRr348GO84K0XVR/AiY74FIKUWpF9nEXYAHu+1/Mu9jvodAREwHXp6//S2Y64HKP7VcR1ZMn1Kiyen51nwPsogIsvkgUHoolvkeuK45NieXOd41ZPlRMN9DKSJeQVZUrEkp/TeM0HwP1lMPfRX3IptU9z2yyUW3AhP60OfVefstwHO67T+V7Onq24Gpw/29jcQX2YXY24HxPfZXk63k1Ek2hGi2+R6yn8Fcen9iuvnuX14XAYuBKJHv2/Oc/sBcD2rOL8zzdydwVLf9J5GN3U7AEvM96Hk/Lc/j48C4XtqZ7/7n+EV57hLw/h7HFpHd4UvAq833oOX8xBLXJi/Kf8/3AYt7HBtR+R72BPrqxw8texZI1z/07wHXlXkd1aPfZ/I+u8nGw/4n2XK+ncBbh/v7Gqkv4Lw8b61kCwB8k+zu08Z8/x5gaYl+5nvwfgZz6aUIMd/9zmvX7/ZGslv23yErPvbk++8HZpjrQc35OLKx8QnYSjZZdxXZMIkEfMl8D0nev5Tn8F/60NZ89z/P/9rt+uT+/Hf99jx3Cfii+R7UfN8CbAZ+BnwL+HWet3ayIfql+oyYfA97An3144cG/7vbP/LeXnNL9D2PbMWb3WQPg7sZeNlwf08j+UU2FOj/5H9INwJPk32icz9wNTCvl77me3B+BnM5SBFivvuV1+PJViS7J/8fWXuet98AlwKHm+shyfs44C/Jhl3tzv+e/DfZg9zM9+Dnu4bs6dEJeH4f+5jv/uf7TLIP6rbkf1O2kQ0DOtt8D3qu38OfCpGnye6AfBM48SD9RkS+Iw9GkiRJkgrhxHRJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkSRJklQoixBJkiRJhbIIkaQKFBHpIK9bBnj+9+Tn+fgghVyoiLg9j//osfB1JGmkGT/cAUiShtXyMvv/WGgU2i8ixgPtwCMppXnDHY8kDQWLEEmqYCml84Y7hgp3NjABaBnuQCSpSBYhkiQNk5TS+uGOQZKGg3NCJEkHFRFnRMS1EfFAROyMiN0R8fuI+GhEHHaQvnMj4jsRsSUi9kTEnRHxhhLtXp3Pj/hKRMyKiK9GxOMR0RkRf9Wt3biIWBYRt0XE9vyc90bEX+dDmXqe97GI6Mj/+30R8YeI2BsRLRHx+Yg48iDxvzUiVkfEUxGxNSK+FRGzyrQ91NieMSckIt5DNhQL4Nge83R+3luckjSaeCdEktQX1wI1wBrgD8ARwCnAlcArI+J1KaV9Jfo1AncBu4FbgQZgEfDDiHhtSukXJfrMzPsEcDvZcKWnACKiClgBvAXYDtyZHzsFuApYHBFvLhVLRFwFXJz3+QnwUuAi4HkR8cqUUioRyweBy/J4fgIsBM4CXhQRJ6aU9nY7f79j6+Yh4GvAucBO4Hvdjq3ppZ8kjSoWIZKkvngv8NOU0lNdOyLiCOA7wF8A7wC+VaLfMuAzwIdTSp15v8uATwEfA0oVIW8EbgDelVJq63Hsb8ku8m8GzkkpbcnPWZfHckYe6xd79KsClgIvTindl/eZDqwGTgdeTlYk9XQR8KoJLcS+AAADEElEQVSU0i15n4l5zKfk5/vaIMS2X0rp1oj4NVkRstk5O5LGKodjSVIF62WJ3snd26WUVnYvQPJ9O4BL87dvKvMlHgY+0lWA5K4mu1PwklJDlIC9wAd6FiD5sK/L8r7v7LrIz2PZCXQNZbqwTCwf6ypA8j6twBfyt6eV6fPprgIk77Ob7K7GM/oMQmySVFG8EyJJla3cEr1P99wREccBrweOBSaRDZfq+jDrOWXOsyql1NF9R0qpPSIeBV4ATAFae/S5K6VUarWok4CpwE0ppW09D6aUmiPiEeD5EXFYSqnn9/CzEud8KN82lIm/r30GGpskVRSLEEmqYH0Z7hMRAfwb2fyIKNOsrsz+x8rs35Vva0ocK7di1Nx8e0ZElJq/0d0UYFO39/tSSs2HGAeUjr9Un4HEJkkVxyJEknQw7wQuISsO/hq4A2jN72hMIJt0Xq44OdgFeSl7y+yvyrcP5jH0puedhv7EcSj9BhKbJFUcixBJ0sGcmW8vTCnd3ONYY4FxdN2VuG8ETtgeybFJ0ojjxHRJ0sFMybcbShxbWmAcq8mWrX1VREwq8Ov2xaDFls+h2YcfFEoawyxCJEkH0zUR+8J8fggAEXE62YpQhUgp7SFbmWoqcGNEzO7ZJiJeEBFvKyqmIYytGWjIl/eVpDHHT1kkSQfzWeAc4ANkDyb8A3A02cP+Pg18uMBYPgkcT3YH5qGI+B3ZXJWjyFbtmgvcCHy3wJiGIrYfAu8Hfh8RvyGbJ7M2pXRV790kaXTwTogkqVcppQfInhT+I2AG8D/InmL+XuDvCo6lM6X0drIL/V8Bx5E9IHA+2d2Dy4uOaYhi+1vgc8BhwNuBC8iWR5akMSFS6u+CIZIkSZJ06LwTIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQFiGSJEmSCmURIkmSJKlQ/x/wxL/I/28wuAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Exercises here!\n", "\n", "neuron_count = 20\n", "\n", "seq_model = nn.Sequential(OrderedDict([\n", " ('hidden_linear', nn.Linear(1, neuron_count)),\n", " ('hidden_activation', nn.Tanh()),\n", " ('output_linear', nn.Linear(neuron_count, 1))\n", "]))\n", "\n", "optimizer = optim.SGD(seq_model.parameters(), lr=1e-4)\n", "\n", "training_loop(\n", " n_epochs = 5000, \n", " optimizer = optimizer,\n", " model = seq_model,\n", " loss_fn = nn.MSELoss(),\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "from matplotlib import pyplot as plt\n", "\n", "t_range = torch.arange(20., 90.).unsqueeze(1)\n", "\n", "fig = plt.figure(dpi=150)\n", "plt.xlabel(\"Fahrenheit\")\n", "plt.ylabel(\"Celsius\")\n", "plt.plot(t_u.numpy(), t_c.numpy(), 'o')\n", "plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')\n", "plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }