import copy import csv import functools import glob import os import random from collections import namedtuple import SimpleITK as sitk import numpy as np import torch import torch.cuda from torch.utils.data import Dataset from util.disk import getCache from util.util import XyzTuple, xyz2irc from util.logconf import logging log = logging.getLogger(__name__) # log.setLevel(logging.WARN) # log.setLevel(logging.INFO) log.setLevel(logging.DEBUG) raw_cache = getCache('part2ch09_raw') NoduleInfoTuple = namedtuple('NoduleInfoTuple', 'isMalignant_bool, diameter_mm, series_uid, center_xyz') @functools.lru_cache(1) def getNoduleInfoList(requireDataOnDisk_bool=True): # We construct a set with all series_uids that are present on disk. # This will let us use the data, even if we haven't downloaded all of # the subsets yet. mhd_list = glob.glob('data-unversioned/part2/luna/subset*/*.mhd') dataPresentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list} diameter_dict = {} with open('data/part2/luna/annotations.csv', "r") as f: for row in list(csv.reader(f))[1:]: series_uid = row[0] annotationCenter_xyz = tuple([float(x) for x in row[1:4]]) annotationDiameter_mm = float(row[4]) diameter_dict.setdefault(series_uid, []).append((annotationCenter_xyz, annotationDiameter_mm)) noduleInfo_list = [] with open('data/part2/luna/candidates.csv', "r") as f: for row in list(csv.reader(f))[1:]: series_uid = row[0] if series_uid not in dataPresentOnDisk_set and requireDataOnDisk_bool: continue isMalignant_bool = bool(int(row[4])) candidateCenter_xyz = tuple([float(x) for x in row[1:4]]) candidateDiameter_mm = 0.0 for annotationCenter_xyz, annotationDiameter_mm in diameter_dict.get(series_uid, []): for i in range(3): delta_mm = abs(candidateCenter_xyz[i] - annotationCenter_xyz[i]) if delta_mm > annotationDiameter_mm / 4: break else: candidateDiameter_mm = annotationDiameter_mm break noduleInfo_list.append(NoduleInfoTuple(isMalignant_bool, candidateDiameter_mm, series_uid, candidateCenter_xyz)) noduleInfo_list.sort(reverse=True) return noduleInfo_list class Ct(object): def __init__(self, series_uid): mhd_path = glob.glob('data-unversioned/part2/luna/subset*/{}.mhd'.format(series_uid))[0] ct_mhd = sitk.ReadImage(mhd_path) ct_ary = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32) # CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale # HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0. # This gets rid of negative density stuff used to indicate out-of-FOV ct_ary[ct_ary < -1000] = -1000 # This nukes any weird hotspots and clamps bone down ct_ary[ct_ary > 1000] = 1000 self.series_uid = series_uid self.ary = ct_ary self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin()) self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing()) self.direction_tup = tuple(int(round(x)) for x in ct_mhd.GetDirection()) def getRawNodule(self, center_xyz, width_irc): center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz, self.direction_tup) slice_list = [] for axis, center_val in enumerate(center_irc): start_ndx = int(round(center_val - width_irc[axis]/2)) end_ndx = int(start_ndx + width_irc[axis]) assert center_val >= 0 and center_val < self.ary.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis]) if start_ndx < 0: # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format( # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc)) start_ndx = 0 end_ndx = int(width_irc[axis]) if end_ndx > self.ary.shape[axis]: # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format( # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc)) end_ndx = self.ary.shape[axis] start_ndx = int(self.ary.shape[axis] - width_irc[axis]) slice_list.append(slice(start_ndx, end_ndx)) ct_chunk = self.ary[tuple(slice_list)] return ct_chunk, center_irc @functools.lru_cache(1, typed=True) def getCt(series_uid): return Ct(series_uid) @raw_cache.memoize(typed=True) def getCtRawNodule(series_uid, center_xyz, width_irc): ct = getCt(series_uid) ct_chunk, center_irc = ct.getRawNodule(center_xyz, width_irc) return ct_chunk, center_irc class LunaDataset(Dataset): def __init__(self, test_stride=0, isTestSet_bool=None, series_uid=None, ): self.noduleInfo_list = copy.copy(getNoduleInfoList()) if series_uid: self.noduleInfo_list = [x for x in self.noduleInfo_list if x[2] == series_uid] if test_stride > 1: if isTestSet_bool: self.noduleInfo_list = self.noduleInfo_list[::test_stride] else: del self.noduleInfo_list[::test_stride] log.info("{!r}: {} {} samples".format( self, len(self.noduleInfo_list), "testing" if isTestSet_bool else "training", )) def __len__(self): return len(self.noduleInfo_list) def __getitem__(self, ndx): nodule_tup = self.noduleInfo_list[ndx] width_irc = (24, 48, 48) nodule_ary, center_irc = getCtRawNodule( nodule_tup.series_uid, nodule_tup.center_xyz, width_irc, ) nodule_tensor = torch.from_numpy(nodule_ary).to(torch.float32) nodule_tensor = nodule_tensor.unsqueeze(0) cls_tensor = torch.tensor([ not nodule_tup.isMalignant_bool, nodule_tup.isMalignant_bool ], dtype=torch.long, ) return nodule_tensor, cls_tensor, nodule_tup.series_uid, center_irc