import csv import functools import glob import math import time import SimpleITK as sitk import numpy as np import torch import torch.cuda from torch.utils.data import Dataset from util.disk import getCache from util.util import XyzTuple, xyz2irc from util.logconf import logging log = logging.getLogger(__name__) # log.setLevel(logging.WARN) log.setLevel(logging.INFO) log.setLevel(logging.DEBUG) cache = getCache('p2ch1') class Ct(object): def __init__(self, series_uid): mhd_path = glob.glob('data/luna/subset*/{}.mhd'.format(series_uid))[0] ct_mhd = sitk.ReadImage(mhd_path) ct_ary = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32) # CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale # HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0. # This converts HU to g/cc. ct_ary += 1000 ct_ary /= 1000 # This gets rid of negative density stuff used to indicate out-of-FOV ct_ary[ct_ary < 0] = 0 # This nukes any weird hotspots and clamps bone down ct_ary[ct_ary > 2] = 2 self.series_uid = series_uid self.ary = ct_ary self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin()) self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing()) self.direction_tup = tuple(int(round(x)) for x in ct_mhd.GetDirection()) def getInputChunk(self, center_xyz, width_irc): center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz, self.direction_tup) slice_list = [] for axis, center_val in enumerate(center_irc): start_ndx = int(round(center_val - width_irc[axis]/2)) end_ndx = int(start_ndx + width_irc[axis]) assert center_val >= 0 and center_val < self.ary.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis]) if start_ndx < 0: # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format( # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc)) start_ndx = 0 end_ndx = int(width_irc[axis]) if end_ndx > self.ary.shape[axis]: # log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format( # self.series_uid, center_xyz, center_irc, self.ary.shape, width_irc)) end_ndx = self.ary.shape[axis] start_ndx = int(self.ary.shape[axis] - width_irc[axis]) slice_list.append(slice(start_ndx, end_ndx)) ct_chunk = self.ary[slice_list] return ct_chunk, center_irc @functools.lru_cache(1, typed=True) def getCt(series_uid): return Ct(series_uid) @cache.memoize(typed=True) def getCtInputChunk(series_uid, center_xyz, width_irc): ct = getCt(series_uid) ct_chunk, center_irc = ct.getInputChunk(center_xyz, width_irc) return ct_chunk, center_irc class LunaDataset(Dataset): def __init__(self, test_stride=0, isTestSet_bool=None, series_uid=None): # We construct a set with all series_uids that are present on disk. # This will let us use the data, even if we haven't downloaded all of # the subsets yet. mhd_list = glob.glob('data/luna/subset*/*.mhd') present_set = {p.rsplit('/', 1)[-1][:-4] for p in mhd_list} sample_list = [] with open('data/luna/candidates.csv', "r") as f: csv_list = list(csv.reader(f)) for row in csv_list[1:]: row_uid = row[0] if series_uid and series_uid != row_uid: continue # If a row_uid isn't present, that means it's in a subset that we # don't have on disk, so we should skip it. if row_uid not in present_set: continue center_xyz = tuple([float(x) for x in row[1:4]]) isMalignant_bool = bool(int(row[4])) sample_list.append((row_uid, center_xyz, isMalignant_bool)) sample_list.sort() if test_stride > 1: if isTestSet_bool: sample_list = sample_list[::test_stride] else: del sample_list[::test_stride] log.info("{!r}: {} {} samples".format(self, len(sample_list), "testing" if isTestSet_bool else "training")) self.sample_list = sample_list def __len__(self): return len(self.sample_list) def __getitem__(self, ndx): series_uid, center_xyz, isMalignant_bool = self.sample_list[ndx] ct_chunk, center_irc = getCtInputChunk(series_uid, center_xyz, (16, 16, 16)) # dim=3, Index x Row x Col ct_tensor = torch.from_numpy(np.array(ct_chunk, dtype=np.float32)) # dim=1 malignant_tensor = torch.from_numpy(np.array([isMalignant_bool], dtype=np.float32)) # dim=4, Channel x Index x Row x Col ct_tensor = ct_tensor.unsqueeze(0) malignant_tensor = malignant_tensor.unsqueeze(0) # Unpacked as: input_tensor, answer_int, series_uid, center_irc return ct_tensor, malignant_tensor, series_uid, center_irc