{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import torch\n", "import torch.optim as optim\n", "\n", "torch.set_printoptions(edgeitems=2)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([11, 1])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]\n", "t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]\n", "t_c = torch.tensor(t_c).unsqueeze(1) # <1>\n", "t_u = torch.tensor(t_u).unsqueeze(1) # <1>\n", "\n", "t_u.shape" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([ 3, 6, 2, 5, 8, 0, 10, 9, 4]), tensor([7, 1]))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n_samples = t_u.shape[0]\n", "n_val = int(0.2 * n_samples)\n", "\n", "shuffled_indices = torch.randperm(n_samples)\n", "\n", "train_indices = shuffled_indices[:-n_val]\n", "val_indices = shuffled_indices[-n_val:]\n", "\n", "train_indices, val_indices" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "t_u_train = t_u[train_indices]\n", "t_c_train = t_c[train_indices]\n", "\n", "t_u_val = t_u[val_indices]\n", "t_c_val = t_c[val_indices]\n", "\n", "t_un_train = 0.1 * t_u_train\n", "t_un_val = 0.1 * t_u_val" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[-0.9852],\n", " [-2.6876]], grad_fn=)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch.nn as nn\n", "\n", "linear_model = nn.Linear(1, 1) # <1>\n", "linear_model(t_un_val)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([[-0.4992]], requires_grad=True)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.weight" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([0.1031], requires_grad=True)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.bias" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([-0.3961], grad_fn=)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.ones(1)\n", "linear_model(x)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961],\n", " [-0.3961]], grad_fn=)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.ones(10, 1)\n", "linear_model(x)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "linear_model = nn.Linear(1, 1) # <1>\n", "optimizer = optim.SGD(\n", " linear_model.parameters(), # <2>\n", " lr=1e-2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear_model.parameters()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[0.3791]], requires_grad=True), Parameter containing:\n", " tensor([-0.5349], requires_grad=True)]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(linear_model.parameters())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val, t_c_train, t_c_val):\n", " for epoch in range(1, n_epochs + 1):\n", " t_p_train = model(t_u_train) # <1>\n", " loss_train = loss_fn(t_p_train, t_c_train)\n", "\n", " t_p_val = model(t_u_val) # <1>\n", " loss_val = loss_fn(t_p_val, t_c_val)\n", " \n", " optimizer.zero_grad()\n", " loss_train.backward() # <2>\n", " optimizer.step()\n", "\n", " if epoch == 1 or epoch % 1000 == 0:\n", " print('Epoch {}, Training loss {}, Validation loss {}'.format(\n", " epoch, float(loss_train), float(loss_val)))\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 82.00872802734375, Validation loss 55.06585693359375\n", "Epoch 1000, Training loss 4.997957229614258, Validation loss 1.2232692241668701\n", "Epoch 2000, Training loss 3.021897077560425, Validation loss 2.7614946365356445\n", "Epoch 3000, Training loss 2.8582355976104736, Validation loss 4.448704719543457\n", "\n", "Parameter containing:\n", "tensor([[5.5630]], requires_grad=True)\n", "Parameter containing:\n", "tensor([-18.6652], requires_grad=True)\n" ] } ], "source": [ "def loss_fn(t_p, t_c):\n", " squared_diffs = (t_p - t_c)**2\n", " return squared_diffs.mean()\n", "\n", "linear_model = nn.Linear(1, 1) # <1>\n", "optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)\n", "\n", "training_loop(\n", " n_epochs = 3000, \n", " optimizer = optimizer,\n", " model = linear_model,\n", " loss_fn = loss_fn,\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "print()\n", "print(linear_model.weight)\n", "print(linear_model.bias)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 92.3511962890625, Validation loss 57.714385986328125\n", "Epoch 1000, Training loss 4.910993576049805, Validation loss 1.173926591873169\n", "Epoch 2000, Training loss 3.014694929122925, Validation loss 2.8020541667938232\n", "Epoch 3000, Training loss 2.857640504837036, Validation loss 4.464878559112549\n", "\n", "Parameter containing:\n", "tensor([[5.5647]], requires_grad=True)\n", "Parameter containing:\n", "tensor([-18.6750], requires_grad=True)\n" ] } ], "source": [ "linear_model = nn.Linear(1, 1)\n", "optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)\n", "\n", "training_loop(\n", " n_epochs = 3000, \n", " optimizer = optimizer,\n", " model = linear_model,\n", " loss_fn = nn.MSELoss(), # <1>\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "print()\n", "print(linear_model.weight)\n", "print(linear_model.bias)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): Linear(in_features=1, out_features=13, bias=True)\n", " (1): Tanh()\n", " (2): Linear(in_features=13, out_features=1, bias=True)\n", ")" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seq_model = nn.Sequential(\n", " nn.Linear(1, 13), # <1>\n", " nn.Tanh(),\n", " nn.Linear(13, 1)) # <2>\n", "seq_model" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[torch.Size([13, 1]), torch.Size([13]), torch.Size([1, 13]), torch.Size([1])]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[param.shape for param in seq_model.parameters()]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.weight torch.Size([13, 1])\n", "0.bias torch.Size([13])\n", "2.weight torch.Size([1, 13])\n", "2.bias torch.Size([1])\n" ] } ], "source": [ "for name, param in seq_model.named_parameters():\n", " print(name, param.shape)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (hidden_linear): Linear(in_features=1, out_features=8, bias=True)\n", " (hidden_activation): Tanh()\n", " (output_linear): Linear(in_features=8, out_features=1, bias=True)\n", ")" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from collections import OrderedDict\n", "\n", "seq_model = nn.Sequential(OrderedDict([\n", " ('hidden_linear', nn.Linear(1, 8)),\n", " ('hidden_activation', nn.Tanh()),\n", " ('output_linear', nn.Linear(8, 1))\n", "]))\n", "\n", "seq_model" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hidden_linear.weight torch.Size([8, 1])\n", "hidden_linear.bias torch.Size([8])\n", "output_linear.weight torch.Size([1, 8])\n", "output_linear.bias torch.Size([1])\n" ] } ], "source": [ "for name, param in seq_model.named_parameters():\n", " print(name, param.shape)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([-0.2194], requires_grad=True)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seq_model.output_linear.bias" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 207.2268524169922, Validation loss 106.6062240600586\n", "Epoch 1000, Training loss 6.121204376220703, Validation loss 2.213937759399414\n", "Epoch 2000, Training loss 5.273784637451172, Validation loss 0.0025627268478274345\n", "Epoch 3000, Training loss 2.4436306953430176, Validation loss 1.9463319778442383\n", "Epoch 4000, Training loss 1.6909029483795166, Validation loss 4.027190685272217\n", "Epoch 5000, Training loss 1.4900192022323608, Validation loss 5.368413925170898\n", "output tensor([[-1.8966],\n", " [11.1774]], grad_fn=)\n", "answer tensor([[-4.],\n", " [14.]])\n", "hidden tensor([[-0.0073],\n", " [ 4.0584],\n", " [-4.5080],\n", " [-4.4498],\n", " [ 0.0127],\n", " [-0.0073],\n", " [-4.1530],\n", " [-0.6572]])\n" ] } ], "source": [ "optimizer = optim.SGD(seq_model.parameters(), lr=1e-3) # <1>\n", "\n", "training_loop(\n", " n_epochs = 5000, \n", " optimizer = optimizer,\n", " model = seq_model,\n", " loss_fn = nn.MSELoss(),\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", " \n", "print('output', seq_model(t_un_val))\n", "print('answer', t_c_val)\n", "print('hidden', seq_model.hidden_linear.weight.grad)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADIkAAAiNCAYAAAC6QIV/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmU5mV9Jvzrrup9q+ru6hIRF0BBMXHB6BAFXNCoZBxtM+5JTOZMVpPJzGRM3vfMvJlJfOckbzKTmInJ5MicSOICrpAYAUUk0qLEIKAEUARUQOil9uq1tvv9o4uOmu56av9VP/35nPMcjn3f9f1edTxU/1MXd6m1BgAAAAAAAAAAAAAAgJNbR9MBAAAAAAAAAAAAAAAAWDglEQAAAAAAAAAAAAAAgDagJAIAAAAAAAAAAAAAANAGlEQAAAAAAAAAAAAAAADagJIIAAAAAAAAAAAAAABAG1ASAQAAAAAAAAAAAAAAaANKIgAAAAAAAAAAAAAAAG1ASQQAAAAAAAAAAAAAAKANKIkAAAAAAAAAAAAAAAC0ASURAAAAAAAAAAAAAACANqAkAgAAAAAAAAAAAAAA0AaURAAAAAAAAAAAAAAAANqAkggAAAAAAAAAAAAAAEAbUBIBAAAAAAAAAAAAAABoA0oiAAAAAAAAAAAAAAAAbUBJBAAAAAAAAAAAAAAAoA0oiQAAAAAAAAAAAAAAALQBJREAAAAAAAAAAAAAAIA2oCQCAAAAAAAAAAAAAADQBpREAAAAAAAAAAAAAAAA2oCSCAAAAAAAAAAAAAAAQBtQEgEAAAAAAAAAAAAAAGgDSiIAAAAAAAAAAAAAAABtQEkEAAAAAAAAAAAAAACgDSiJAAAAAAAAAAAAAAAAtAElEQAAAAAAAAAAAAAAgDagJAIAAAAAAAAAAAAAANAGlEQAAAAAAAAAAAAAAADagJIIAAAAAAAAAAAAAABAG1ASAQAAAAAAAAAAAAAAaANKIgAAAAAAAAAAAAAAAG1ASQQAAAAAAAAAAAAAAKANKIkAAAAAAAAAAAAAAAC0ASURAAAAAAAAAAAAAACANqAkAgAAAAAAAAAAAAAA0AaURAAAAAAAAAAAAAAAANqAkggAAAAAAAAAAAAAAEAbUBIBAAAAAAAAAAAAAABoA0oiAAAAAAAAAAAAAAAAbUBJBAAAAAAAAAAAAAAAoA0oiQAAAAAAAAAAAAAAALQBJREAAAAAAAAAAAAAAIA2oCQCAAAAAAAAAAAAAADQBpREAAAAAAAAAAAAAAAA2oCSCAAAAAAAAAAAAAAAQBtQEgEAAAAAAAAAAAAAAGgDSiIAAAAAAAAAAAAAAABtQEkEAAAAAAAAAAAAAACgDSiJAAAAAAAAAAAAAAAAtAElEQAAAAAAAAAAAAAAgDagJAIAAAAAAAAAAAAAANAGlEQAAAAAAAAAAAAAAADagJIIAAAAAAAAAAAAAABAG1ASAQAAAAAAAAAAAAAAaANKIgAAAAAAAAAAAAAAAG1ASQQAAAAAAAAAAAAAAKANKIkAAAAAAAAAAAAAAAC0ASURAAAAAAAAAAAAAACANqAkAgAAAAAAAAAAAAAA0AZWNR0A4FRWStmdpPs4R2NJHlrmOAAAAAAAAAAAAABwsnpikjXH+fOhWutpyx2mKaXW2nQGgFNWKeVwkrVN5wAAAAAAAAAAAACANnWk1rqu6RDLpaPpAAAAAAAAAAAAAAAAACyckggAAAAAAAAAAAAAAEAbUBIBAAAAAAAAAAAAAABoA0oiAAAAAAAAAAAAAAAAbWBV0wEATnFjSdb+4B+uXbs2Z599dgNxAAAAAAAAAAAAAODkc//99+fIkSPHOxpb7ixNUhIBaNZDSc77wT88++yzc9dddzUQBwAAAAAAAAAAAABOPs985jNz9913H+/ooeXO0qSOpgMAAAAAAAAAAAAAAACwcEoiAAAAAAAAAAAAAAAAbUBJBAAAAAAAAAAAAAAAoA0oiQAAAAAAAAAAAAAAALQBJREAAAAAAAAAAAAAAIA2oCQCAAAAAAAAAAAAAADQBpREAAAAAAAAAAAAAAAA2oCSCAAAAAAAAAAAAAAAQBtQEgEAAAAAAAAAAAAAAGgDSiIAAAAAAAAAAAAAAABtQEkEAAAAAAAAAAAAAACgDSiJAAAAAAAAAAAAAAAAtAElEQAAAAAAAAAAAAAAgDagJAIAAAAAAAAAAAAAANAGlEQAAAAAAAAAAAAAAADagJIIAAAAAAAAAAAAAABAG1ASAQAAAAAAAAAAAAAAaANKIgAAAAAAAAAAAAAAAG1ASQQAAAAAAAAAAAAAAKANrGo6ALDylVLWJjknyRlJNifZkORgktEkDyf5Rq11rLmEAAAAAAAAAAAAAAAoicA8lFJKkqckeVaSpyZ5UpInTv9zW5KNOVqk2JBkIsnhJENJdif5TpK7k9yWZFetdXCZ489KKeWCJK9L8uokz0zSOcP1yVLKXUmuSfLXtdZbliEiAAAAAAAAAAAAAADfQ0kEZqGU8pQkL5r+PDfJDyXZNMsvXzP92ZKjJZIXfM9ZLaXckuQjSf6q1jqwSJHnrZTypiS/keT8OXxZZ44WZp6V5P8qpXwlyR/UWj+8BBEBAAAAAAAAAAAAADiOjqYDwEpWSvmDUsrDSb6V5ANJfinJBZl9QaTliiQ/muSPkjxcSnlPKaV3kWbPLUgpTy+l/F2SKzO3gsjxPC/JlaWUG0sp5y44HAAAAAAAAAAAAAAALSmJwMxemuQJy7RrfZJ3JLmvlPILy7QzSVJKeX2Sf0jy4kUe/ZIkt5ZSdi7yXAAAAAAAAAAAAAAAfoCSCKw8m5P8eSnl46WU9Uu9rJTyjiQfy+K9jvKDNiX5eCnll5doPgAAAAAAAAAAAAAAURKBlez1SW4opSxVeSOllLcn+ZMkZal2PLYqyXtKKT+9xHsAAAAAAAAAAAAAAE5Zq5oOAG1gKsmDSe5Ncn+SoSQj05+OJF1JtiR5WpLnJHlKZl/K+NEknyilvKrWOrWYoUspz09y2SyzfDHJh6b/+e0kozn64slZSV6Y5K1JLmi1MsllpZR7aq3/MM/YAAAAAAAAAAAAAACcgJIIzN2jSb6QZNf0P++utR6Z7ReXUnpztFTxb5L88Cy+5BVJ/nOSd8096gkzbEny4SSrW1z9ZpJfqrXecJyzwSRfmf78SSnlx5L8WZKzZ5i3JsmHSynPqbWOzD05AAAAAAAAAAAAAAAn0tF0ADgJTOXoCxq/meTptdbTa61vrLX+Sa319rkURJKk1rq31vruJM9O8vNJBmbxZf+5lPKUOeaeye8kObPFnc8mef4JCiL/TK31M0l+JMmNLa6emeS/zWYmAAAAAAAAAAAAAACzpyQCM/t/kpxea31RrfX3a63fWKzB9ajLkrwgyUMtrq9N8l8WY28p5bwk72hx7UtJXltrHZ7L7FrrUJLXJPlyi6u/Wkp5xlxmAwAAAAAAAAAAAAAwMyURmEGt9dpa654l3nF/khcnGW1x9c2llM2LsPK/Jlk1w/lAkjfVWg/OZ3it9UCSNyYZmuHaqiS/NZ/5AAAAAAAAAAAAAAAcn5IIrAC11m/laHljJhuTXLKQPaWUs5L8RItr/6XW2uplkxnVWr+T1t/PG0opZy5kDwAAAAAAAAAAAAAA/0RJBFaO9yQZbHHn4gXueEeSzhnOv5nkvQvc8Zg/S/LADOedSX55kXYBAAAAAAAAAAAAAJzylERghai1jie5psW1p893fimlM8lbWlz7o1rr5Hx3fK9a60SS/9Xi2ltLKX4OAQAAAAAAAAAAAAAsAr+cDSvLl1qcn76A2S9L8vgZzg8n+cAC5h/PXyYZm+H89CQvWeSdAAAAAAAAAAAAAACnJCURWFn2tDjfuIDZr2lx/qla6+gC5v8ztdahJNe2uNYqFwAAAAAAAAAAAAAAs6AkAivLSIvzgwuY/fIW559awOyFzH3FEu0FAAAAAAAAAAAAADilKInAytLb4rxvPkNLKY9P8owW1z47n9mzcH2L82eWUk5bot0AAAAAAAAAAAAAAKcMJRFYWc5ocf7APOe+oMX5Q7XWh+Y5e0a11m8nebTFtecvxW4AAAAAAAAAAAAAgFOJkgisLK9qcb5rnnPPb3F+2zznztatLc6fu8T7AQAAAAAAAAAAAADanpIIrBCllCcmuXCGKxNJPjvP8c9pcf61ec6dra+2OFcSAQAAAAAAAAAAAABYICURWDnenaRzhvOP11ofmefsc1qcf3Oec2fr/hbnT1vi/QAAAAAAAAAAAAAAbU9JBFaAUsq/T/L6Ga5MJPm9Bax4covz+xYwezZazT9zifcDAAAAAAAAAAAAALQ9JRFoUClldSnlt5P8UYurv1trvWOeO05Lsr7Ftfm+UDJb321xvqGU0rvEGQAAAAAAAAAAAAAA2pqSCDRguhzy2iR3JPmtFtc/neRdC1h3+izu7F7A/NmYzfzZ5AQAAAAAAAAAAAAA4ARWNR0A2lkppTPJ5iRbkjwhyXOSPC/Ja5P0zGLEZ5K8rtY6voAY21ucj9Rajyxgfku11kOllP1JNs1wrVVOAAAAAAAAAAAAAABmoCQCC1BKeWqSby7B6Ikk/z3Ju2qtkwucta3F+cgC58/WSGYuibTKCQAAAAAAAAAAAADADJREYGWpST6Z5L/WWu9YpJlbW5wvZ0nk9BnOV1RJpJTyjiS/vAyrzl6GHQAAAAAAAAAAAADAKUBJBFaGbyS5KskHaq13LfLsdS3ODy7yvhM50OK8Vc7ltiPJeU2HAAAAAAAAAAAAAACYrY6mAwCZSHJ/kofTukgxH2tmsX85tNrTKicAAAAAAAAAAAAAADNQEoHmrUpyaZL3JLm/lPKJUsoFizhfSQQAAAAAAAAAAAAA4BSgJAIrS0eSnUm+VEr5UCll6yLNnMnkIuyYjVZ7OpclBQAAAAAAAAAAAABAm1rVdAA4ye1N8nMznK9P0j39eWKSFyR58ixnvyXJxaWUN9Rav7SAjK1e8FiunwOt9owvSwoAAAAAAAAAAAAAgDalJAILUGsdSfJ/5vI1pZQdOfpayC8kOb/F9Sck+XQp5dW11pvnlzJjLc6X6+fA6hbnrXIut31J7l6GPWcnWbsMewAAAAAAAAAAAACANqckAsus1rovyXuTvLeU8tIkl+VoUeBENie5rpTyL2qt8ykttHqhY808Zs7HSVUSqbX+aZI/Xeo9pZS7kpy31HsAAAAAAAAAAAAAgPbX0XQAOJXVWm9M8qwkf9Hi6qYkHyiltCpaHM/+Fueb5zFzPra0OG+VEwAAAAAAAAAAAACAGSiJQMNqrQeT/Nu0Loo8N8lvzmPFQIvz5SqJtNrTKicAAAAAAAAAAAAAADNQEoEVoNZak/xckr9rcfXXSinr5zi+v8V59xznzVdXi/NWOQEAAAAAAAAAAAAAmIGSCKwQtdapJL+aZHKGaz1JfnqOo/tanK8tpSxpUaSUsj3JmhbXlEQAAAAAAAAAAAAAABZASQRWkFrrPyb5cItr/2qOYx+cxZ3HzXHmXM1m/mxyAgAAAAAAAAAAAABwAkoisPJc3eL8wlLKrP/drbXuT+tXOp4823nz1Gr+3lrrgSXOAAAAAAAAAAAAAADQ1pREYOW5LsnUDOdbkpw7x5nfanH+tDnOm6tW81vlAwAAAAAAAAAAAACgBSURWGFqraNJ+lpc653j2LtanM+1dDJX57Q4b5UPAAAAAAAAAAAAAIAWlERgZdrT4nz7HOfd1uL8uXOcN1fntzi/fYn3AwAAAAAAAAAAAAC0PSURWJlGWpyvn+O8ViWR55RSOuc4c1ZKKauSPLvFNSURAAAAAAAAAAAAAIAFUhKBlWlji/MDc5x3a5LDM5xvSvK8Oc6crRck2TDD+eEkX1mi3QAAAAAAAAAAAAAApwwlEViZntjifHAuw2qth5Pc3OLaK+Yycw5e3uJ813Q+AAAAAAAAAAAAAAAWQEkEVphSyhOSbG9x7YF5jL6+xfnr5zFzNv51i/PPLNFeAAAAAAAAAAAAAIBTipIIrDw/1uJ8NMnD85j7sRbn55dSzp3H3BMqpfxQkh9uce3ji7kTAAAAAAAAAAAAAOBUpSQCK8/PtDj/Qq21znVorfX+JLe0uParc53bwr9rcX5zrfVbi7wTAAAAAAAAAAAAAOCUpCQCK0gp5aVJLm5x7dMLWPEXLc5/tpTy+AXMP6aUckaSn2px7fLF2AUAAAAAAAAAAAAAP6jWmnsOHMh7H3kkP3XPPXn/7t1NR4Ilt6rpAMBRpZTNSS5rcW0iyRULWPP+JP9vkt4TnG9I8ntJ3r6AHY/5/5Ksm+F8z3QeAAAAAAAAAAAAAFiwiamp3LF/f3YNDx/79I2PHzs/PDWVnzrttAYTwtJTEoHjKKW8JMnttdbhZdq3IclVSc5ucfXKWuve+e6ptR4upfxxkv8+w7WfLqVcXWu9ar57SilvSPLWFtfeXWs9Mt8dAAAAAAAAAAAAAJzaDk1O5sujo9k1NJRdw8P54shI9k9OnvD+rqGh1FpTSlnGlLC8lETg+H4mySdKKX+Y5I9rraNLtaiUck6OvqjxghZXx5P8t0VY+e4kv5DkSTPc+ctSyndrrV+e6/BSygVJ/qLFtQeT/PFcZwMAAAAAAAAAAABw6hoaH88XR0aya3g4Nw0N5dbR0YzVOuuv3zM+nvsOHcrTNmxYwpTQLCUROLGtSd6V5D+UUj6Q5CNJvljrHP4mmUEpZVOS30zyG0nWzOJLfqfWev9C99ZaD5ZSfj3JR2e4tjnJZ0opP1lr/dvZzi6lvDbJXyXZ1OLqf6y1HprtXAAAAAAAAAAAAABOPbuPHDlaCBkezq6hoXztwIEs9Bd5dw0PK4nQ1pREoLVtSf7d9Oe7pZSPJbk+yS211v65DCqlbE5yYZK3JdmZZLZ/w9yY5HfnsmsmtdaPlVI+lOStM1zrSvI3pZQrkryr1vr1E10spZyX5LeSvGkW6z9Ya/34nAIDAAAAAAAAAAAA0NZqrXng8OHcNDSUXcPD2TU8nPsOLf5/k3zX8HD+zeMfv+hzYaVQEoG5eUKSX5v+pJTycJJvJPl2kt1J+pMcSTKRo69xbE6yJcmTkjw7ydlJyhx33plkZ611cuHxv88vJDk/ydNnuFNytEjy1lLK7Um+mORbSfbn6Pd2ZpIX5ej3NhtfT/KL8w0MAAAAAAAAAAAAQHuYqjV3HjiQXd9TCnl0bGzJ9940NLTkO6BJSiKwMGdMf5bKzUleU2sdXuzBtdb9pZRXJtmVoyWWVp47/ZmvB5O8sta6fwEzAAAAAAAAAAAAADgJjU1N5dbR0aOFkKGh3DwykqGJiWXP8cDhw3nkyJGcvnbtsu+G5aAkAitTTfInSX6j1npkyZbU+mAp5ZIk1+XoKydL5b4kr6q1PriEOwAAAAAAAAAAAABYIfZPTORLIyPHXgn5+5GRHJqaajpWkmTX8HDe1NvbdAxYEkoisPJ8Ncl/qLXeuBzLaq33lVKen+SKJK9cghXXJXlrrXVwCWYDAAAAAAAAAAAAsAL0jY3lC9OFkF3Dw7ltdDSTTYc6gV1DQ0oitC0lETi+P06yL8mrkzxzmXZ+Ocm7k3y41rqsNcnpAserSilvT/L7SRbjb729Sd5Za/2rRZgFAAAAAAAAAAAAwArSNzaWG4eGcsPgYG4aHs49Bw82HWnWdg0PNx0BloySCBxHrfX2JLcneWcp5UlJXpXkhUn+RZJzk5RFWDOV5M4kf5PkY7XWry3CzAWptf5lKeVjSd6e5FeSPGMeY+5O8qdJLq+1njx/2wMAAAAAAAAAAABwQvsnJrJreDg3DA7mhqGh3LF/f9OR5u3OAwcyOD6eratXNx0FFp2SCLRQa30wyXunPymldCV5Xo6WRc6c/jwlybYkG5NsSrI+yWSSI0kO5uirJHuSfDvJ15P8Y5Iv1VqHlu87mZ1a64Ekf5bkz0op5+RoQeb8HH1R5QlJNifZkKPf12iSh3O0GHJbkmtrrd9sIjcAAAAAAAAAAAAAi2d8aip/PzKSG6ZfC7llZCTjtTYda0HWd3Tkgi1bclFXVyZP8u8FTkRJBOao1jqc5HPTn7ZWa703yb1N5wAAAAAAAAAAAABgaU3VmjsPHDj6UsjgYG4aHs7+ycmmYy1I96pVubCrKxdNf563eXPWdHQ0HQuWlJIIAAAAAAAAAAAAAMAp6IFDh46VQj43NJR94+NNR1qQ09esOVoI6e7OxV1deebGjekopelYsKyURAAAAAAAAAAAAAAATgF7xsbyuelSyA1DQ/n24cNNR1qQp61fn4unSyEXdXXlzHXrUpRCOMUpiQAAAAAAAAAAAAAAtKHRiYl8fmgoNwwN5YbBwdx54EDTkeatI8mzN206+lJIV1cu7OrKaWvXNh0LVhwlEQAAAAAAAAAAAACANnBkaiq3jIwcfSlkcDB/PzKSyaZDzdOaUvKCLVuOlUJe2NWVrlV+/R1a8W8JAAAAAAAAAAAAAMBJaKrW3LF//7FSyE3Dwzk0NdV0rHnZ3NmZF27Zkou6u3NxV1eev3lz1nV2Nh0LTjpKIgAAAAAAAAAAAAAAJ4Faa+47dCg3DA7ms4ODuXFoKAMTE03Hmpcdq1fn4q6uXNTdnYu6uvKsjRuzqqOj6Vhw0lMSAQAAAAAAAAAAAABYofZPTORzQ0O5dmAg1/b35ztHjjQdaV7OXLcuF3V1Hf10d+ec9etTSmk6FrQdJREAAAAAAAAAAAAAgBWi1pp7Dx3Ktf39uWZgIJ8fGspYrU3HmrMf2rjxn0ohXV05Y926piPBKUFJBAAAAAAAAAAAAACgQYcmJ/N3Q0O5ZmAg1/T354HDh5uONCclyXM2bcrLurtzcXd3XtTVle2rVzcdC05JSiIAAAAAAAAAAAAAAMvsgUOHcs30ayE3Dg3l8NRU05Hm5Knr1+eS7u68fOvWvHTrVqUQWCGURAAAAAAAAAAAAAAAltiRqancNP1ayLX9/fnGoUNNR5qTx61enUu2bs3Lt27NJVu35knr1jUdCTgOJREAAAAAAAAAAAAAgCXw4OHDuaa/P9cODOSGwcEcOIleC9nS2ZmXdHfnkulSyHkbNqSU0nQsoAUlEQAAAAAAAAAAAACARTA+NZWbh4dzzcBArunvz10HDzYdadbWlJIXdXUdLYV0d+dHNm/Oqo6OpmMBc6QkAgAAAAAAAAAAAAAwT48cOZJrp0sh1w8OZnRysulIs1KSPG/z5lwy/VrIi7q6sqGzs+lYwAIpiQAAAAAAAAAAAAAAzNLE1FRuGRnJNQMDuXZgIHfs3990pFk7d/36oy+FbN2al3R3Z9vq1U1HAhaZkggAAAAAAAAAAAAAwAz2jI3luoGBXNvfn08PDmZoYqLpSLNy+po1x0ohl3R354x165qOBCwxJREAAAAAAAAAAAAAgO8xVWtuHR3Np/r7c83AQG4dHW060qx0dXbmpdOFkJdv3ZpzN2xIKaXpWMAyUhIBAAAAAAAAAAAAAE5541NT+fzQUK7q68tf9/Xlu2NjTUdqaV1HR160ZUtePv1ayPmbN6dTKQROaUoiAAAAAAAAAAAAAMAp6cDkZD49MJCr+vryt/39GZqYaDpSS+euX59Lt2/Pq7dty0VdXVnX2dl0JGAFURIBAAAAAAAAAAAAAE4Z/ePj+dv+/ly1b18+MziYQ1NTTUea0bqOjrysu/tYMeSs9eubjgSsYEoiAAAAAAAAAAAAAEBbe+jw4Vzd15er+vpy09BQJpsO1MJZ69blx7dvz6XbtuXF3d1Z77UQYJaURAAAAAAAAAAAAACAtlJrzT0HDx4rhtw6Otp0pBmtKSUv+Z7XQp62fn1KKU3HAk5CSiIAAAAAAAAAAAAAwElvqtb8w+hortq3L1f19eXeQ4eajjSjJ61dm0unXwt52dat2ei1EGARKIkAAAAAAAAAAAAAACel8amp/N3QUK7q68tf9/XlkbGxpiOd0KpSclFXVy7dti2Xbt+eZ2zY4LUQYNEpiQAAAAAAAAAAAAAAJ40Dk5P59MBArurry9/292doYqLpSCd0+po1x14LuWTr1mxZ5de3gaXlpwwAAAAAAAAAAAAAsKL1j4/nk319uaqvL58ZHMzhqammIx1XZ5IXfs9rIT+8caPXQoBlpSQCAAAAAAAAAAAAAKw4Dx4+nL+eLobcNDSUyaYDncDjVq/Oq6dfC3nF1q3pXr266UjAKUxJBAAAAAAAAAAAAABoXK019xw8mKv6+nLVvn35yv79TUc6rpLkgi1bcum2bXn19u157qZN6fBaCLBCKIkAAAAAAAAAAAAAAI2otebOAwdy5d69+fi+fbn30KGmIx1X96pV+fFt23Lp9u35sa1b07NmTdORAI5LSQQAAAAAAAAAAAAAWFb3HjyYK/fuzZV79+aegwebjnNcT1izJq/r6cnOHTtycVdXVnd0NB0JoCUlEQAAAAAAAAAAAABgyT14+HA+sndvrti7N7ft3990nOM6d/367NyxIzt7evIjmzeno5SmIwHMiZIIAAAAAAAAAAAAALAk9oyN5WP79uWKPXty88hI03GO6/mbN2dnT09e19OTZ2zc2HQcgAVREgEAAAAAAAAAAAAAFs3g+Hiu6uvLlXv35obBwUw1HegHdCZ5cXd3dvb05LU9PXniunVNRwJYNEoiAAAAAAAAAAAAAMCCHJiczN9MF0OuHRjIeK1NR/o+6zs68spt27Kzpyf/cvv2bFu9uulIAEtCSQQAAAAAAAAAAAAAmLMjU1O5bmAgV+zZk0/29+fg1Mp6M6R71aq8Zvv27OzpySu3bcuGzs6mIwEsOSURAAAAAAAAAAAAAE4qk1M19+/bnzsfHs69e0YzfGg8RyamMjY5lTWdHVm7qiNd61fnnMdtzrPO6MpZOzals6M0HbstTExN5XNDQ7li795ctW9fhicnm470fZ6wZk1e19OTnTt25OKurqzu6Gg6EsCyUhIBAAAAAAAAAAAAYEWrteaWBwZy/d178rWHh3LXIyM5ND77csKGNZ057/Fb8qwzuvOK8x6XC87allKURmZrqtbcPDycK/buzcf27cu+8fGmI32fc9evz84dO7Kzpyc/snlzOvx/C5zClETMu+yqAAAgAElEQVQAAAAAAAAAAAAAWJGGD43nE7c9nA/c8p3cv+/AvOccHJvMrd8ZzK3fGcxf3PytnL1jY37ygifn9eefka71qxcxcfuoteYro6O5cu/efHjfvjx85EjTkb7P8zdvzs6enuzs6cnTN25sOg7AiqEkAgAAAAAAAAAAAMCK8p3+A/nzz9+fq29/ZE4vhszW/fsO5Lc/eXd+/7pv5HXPPT2/+OKz8+TtigZJcteBA7ly795cuXdv7jt0qOk4x3QmeXF3d3b29OR1PT05Y926piMBrEhKIgAAAAAAAAAAAACsCBOTU7ls17fyR5+9N2MTU0u+79D4ZK748kP5+G3fzX98xTn5uYvOSmdHWfK9K80Dhw4dK4bceWD+L7YstvUdHXnltm3Z2dOTf7l9e7at9uoLQCtKIgAAAAAAAAAAAAA07r69o/n1j34tX31oaNl3j01M5feu/Xqu+8fd+R9veFae2rt52TMst+8eOZKPTBdDvjw62nScY9Z1dOQ127fnTb29efW2bdnQ2dl0JICTipIIAAAAAAAAAAAAAI2Zmqq5bNcD+Z/XL8/rITO546GhXPq/vpBfn35VpKPNXhU5MDmZT+zbl8t3786NQ0OpTQeatqqUvGrbtry5tzf/avv2bF7lV5wB5stPUAAAAAAAAAAAAAAaMT45lXd+9Ku5+o5Hmo5yzNjEVH732q/nnkdH8gdveHZWd3Y0HWlBaq354shI3vfoo/nIvn0ZnZxsOlKSpCPJS7u78+be3rx+x45sW7266UgAbUFJBAAAAAAAAAAAAIBld3h8Mr/yodvy2Xv2Nh3luK6+45HsPzKR97z1/Kxb3dl0nDl76PDhvH/Pnly+e3e+eehQ03GO+dEtW/KW3t68YceOnLZ2bdNxANqOkggAAAAAAAAAAAAAy2p8cmpFF0Qe89l79uZXPnR7/vdPnn9SvChyaHIyV/f15fLdu3P94GBq04GmPWfTpryltzdv3LEjT1m/vuk4AG1NSQQAAAAAAAAAAACAZTM1VfPOj351xRdEHvPZe/bknR/9av7wjc9JR0dpOs4/U2vNl0dH875HH82Ve/dmeHKy6UhJknPWr89benvz5t7ePH3jxqbjAJwylEQAAAAAAAAAAAAAWDaX7XogV9/xSNMx5uTqOx7Jeadvyc9ffHbTUY559MiRvH/Pnly+e3fuOXiw6ThJkietXZs39/bmLb29efamTSll5ZVqANqdkggAAAAAAAAAAAAAy+K+vaP5n9ff23SMefkfn7k3L3t6b57au7mxDEempvLJvr68b/fuXDcwkKnGkvyTx61enTdOF0Mu2LJFMQSgYUoiAAAAAAAAAAAAACy5icmp/PpHv5axiZVQbZi7sYmp/KePfi0f/6UXprNj+YoQtdbctn9/Lt+9Ox/asycDExPLtvtEtq5alZ/YsSNv7u3NS7q706kYArBiKIkAAAAAAAAAAAAAsOT+zxe+la8+NNR0jAW546GhXLbrgfzii89e8l17x8bywT178r7du3PngQNLvq+VjR0deV1PT97c25sf27Ytazo6mo4EwHEoiQAAAAAAAAAAAACwpL7TfyB/eP29SZKhL3wwnZu2Z/NzXtVwqtkZveO6TO7vT/eFb0uS/OH19+bVP3Ranrx946LvGp+ayqf6+3P57t351MBAJmpd9B1zsbaU/Pj27Xlzb29+fPv2bOjsbDQPAK0piQAAAAAAAAAAAACwpP788/dnbGIqQ1/4YIZvvuLYn6/0osjoHddl4NPvOfa/uy98W8YmpvLnn78/v/v6Zy3anq/t35/37d6dD+7Zk33j44s2dz46k7xi27a8pbc3r+3pSdcqv24McDLxUxsAAAAAAAAAAACAJTN8aDxX3/7IPyuIPFa+WKlFkR8siDyWvfvCt+Xq2x/J/33pM7Jl3ep5z+8fH8+H9uzJ+3bvzu379y8470K9uKsrb3nc4/ITPT3pWbOm6TgAzJOSCAAAAAAAAAAAAABL5hO3PZxHb/yr7yuIPGalFkV+sCDymGPfw4Vvyye+8nB+5kVnzmnuxNRUPj04mPc9+mj+pr8/47UuRtx5O2vduvzMaaflp087LU9et67RLAAsDiURAAAAAAAAAAAAAJZErTW/89u/fdyCyGNWWlHkRAWRxzz2vbx/x8/n7S98SkopLWfefeBALt+9O+/fsye7x8YWLet8bOzoyBt6e/Ozp52WC7u60jGL/ACcPJREAAAAAAAAAAAAAFgS//bXfjPfvv4vW95bKUWRVgWRxwzffEW+kuTvd/5wLjhr+3HvHJ6czEf37cv/fuSRfGlkZJGTzt3FXV352dNOy7/+/9m78yg/77p8+Nf9nSXrZF8mk2SSTNI2aVnaPrKoqMiuguACog+rlB0EylbWFmgLWJaCIFCBoqAF/KkcKuCK8oDyUxCRJW2appM9abZmaTLJbPfzRxtAoJ2Z9L5nvjN5vc6Z09P5fu7r/U7/aGfOua9+Fi/O7FavEANMVf4NDwAAAAAAAAAAAEAt9g/NHPXZiS6KjLYgclrL7IX5x423/0RJZEtfXz68e3eu37MnBwcHq15zTLqnTcszOzvzzM7OrJ0xY0J3AWB8KIkAAAAAAAAAAAAAUIv2+z0mCx57cNTli4kqioy1ILLgsS9Jx4WPy3d2Hk6SDA4P5wuHDuVDu3bl7++4o641R2VGo5HfWrw4z+rszC/Pm5dGUUzoPgCMLyURAAAAAAAAAAAAACo3NFzm+7uP/qDw0axFkTMtiCTJ/xw4mrf2bs1H9+7JjlOn6lpxVH5uzpw8u7MzT16yJHNbvSIMcLbyXwAAAAAAAAAAAAAAKrdl/53pGxhKkqYtipxJQWT2hY/LyQWNHFvZlhNLW3L5tq31LTiC5e3teUZnZ57Z2ZnzZs6csD0AaB5KIgAAAAAAAAAAAABU7rs7j/yvv2+2oshYCyLzf+UlKZ/w+OxZ2ZaB2Y1adhqNaUWRJy1alGcvW5ZHzZ+flqKYsF0AaD5KIgAAAAAAAAAAAABU7pbbj/3E95qlKDLWgsi0Z78sh3/viSlbJ66Q8eCOjjyrszNPXbIk89vaJmwPAJqbkggAAAAAAAAAAAAAlTvSN/BTvz/RRZGxFkRy6aU59YQnVDJ7rJa2teXpnZ15VmdnLpg1a0J2AGByURIBAAAAAAAAAAAAoHKnBofv8bOJKoqcSUEk41wQaSuK/PrChXlWZ2cet2BBWhuNcZ0PwOSmJAIAAAAAAAAAAABA5fqH7rkkkox/UaTZCyIXzZ6dZ3d25neXLMmi9vZxmwvA1KIkAgAAAAAAAAAAAEDl2ltGvgFjvIoizVoQWdTWlqctXZpndXbmgbNn1z4PgKlPSQQAAAAAAAAAAACAyk1rHbkkktRfFGm2gkgjya8tXJjf7+zMry5cmPbG6P45AcBoKIkAAAAAAAAAAAAAULm5M9pGfbauokgzFUQ629tzybJlee6yZemePr2WGQCgJAIAAAAAAAAAAABA5c5d2jGm81UXRZqlIPLwefPyoq6uPGnRorS5NQSAmimJAAAAAAAAAAAAAFC5+6+YO+ZnqiiKDDeSQ7f9Q45PYEFkbktLntnZmRd0dWXDrFmV5QLASJREAAAAAAAAAAAAAKjc2sWzM6OtJX0DQ2N67kyLIjMe+is5tqo1x/7n71N+5v2jH1hhQeTi2bPzwq6u/O7SpZnV0lJJJgCMhZIIAAAAAAAAAAAAAJVraRS5oGtOvrntjjE/e0ZFkfPbk+8led97Rj+ogoLI9EYjT12yJC/s6sqDOjpSFMV9ygOA+0JJBAAAAAAAAAAAAIBaPGDFvDMqiSRjL4rkvWMohyT3uSDSenw4j2ydk794xAOzoK3tjHMAoEqNiV4AAAAAAAAAAAAAgKnp0ecvvU/Pd1z4uCx47Esq2uZHnGlBZLjMjL2DWfKNvnR9tS9XnLNGQQSApuImEQAAAAAAAAAAAABq8dCeBelZPCu37T9+xhkdFz4uw63J4S+M8kaRkZxBQaTl5HBm7xzM7B2DaT1VJknWLp6Vh6xZUM1OAFARN4kAAAAAAAAAAAAAUIuiKPL0h6464+f7Oxo5cP/2HL70N+8qd9xXYyyITD8wlMX/fTLLv9KXebcO/KAgkiRPf+iqFEVx33cCgAq5SQQAAAAAAAAAAACA2vzmxSvyh3+3KX0DQ6M6XyY5uaglR1e35eSilh9+cLrc8Z73nNkioyyINPrLzNo9mI7tA2k7Uf7UMzPaWvKb/8+KM9sDAGqkJAIAAAAAAAAAAABAbebOaMuTLurKDf+5417PDTeS412tOba6LQOzGz/90JkWRUZREGk/PJSOHYOZuWcwjeF7j3vSRV2ZM71tbDsAwDhQEgEAAAAAAAAAAACgVi/4pbX5q2/tSv/gT7YvhtqTY91tObayLcPTinHdqxi669aQ2TsGM+3oCM2Qu7W3NvKCX1pb82YAcGaURAAAAAAAAAAAAACo1aqFs3Lpo8/NO7508w++1z+ryLHVbbmzqzVpGWU55MYbx36LSPLDZ+6+TaT1zuF07BjIrF2DaRkcW9Sljz43qxbOGvsOADAOlEQAAAAAAAAAAAAAqN0lD1uTL35vT/7jxLEcXd2Wk4vH+BrrmRZETnvPe9J+ZDjzz31Mph0azpncWXLhynl57i/0nPkOAFAzJREAAAAAAAAAAAAAanVqeDif3r8vmy9uy75TM8YecF8LInfr/9i1GXjsYKZf+LgxP9ve2si7nvyAtDTOpF4CAONDSQQAAAAAAAAAAACAWhwcGMiHd+/OB3btyt7+/jMLqaggctqhv/9AkqRjjEWRVz3m3Kxb0lHZHgBQByURAAAAAAAAAAAAACq1+cSJXLtzZ67fuzd9w8NnHlRxQeS0sRZFnnRhVy55WE/lewBA1ZREAAAAAAAAAAAAALjPyrLMV48cybt37MiNBw+mvK+BYyyITHvWyzL90FCOfP4Dozo/2qLIozYszTVPfmAajWLUuwDARFESAQAAAAAAAAAAAOCMDQwP5y/37897duzIf915ZzWhYyyIzPvVl2Tu0kcnS5OWUz8sgIxkpKLIozYszQd+76K0tTRGvQsATCQlEQAAAAAAAAAAAADG7OjgYD6ye3fev2tXdp46VV3wGAsiCx77knTc/4clj9OFj/taFHnShV255skPVBABYFJREgEAAAAAAAAAAABg1A4NDOR9O3fm/bt25fDgYLXhZ1IQ+Sm3gNyXokh7ayOvesy5ueRhPWk0ilHvAgDNQEkEAAAAAAAAAAAAgBHd3t+f9+zYkT/evTt3Dg1VP6CigshpZ1IUWTl/Rv7P+96UdUs6Rr0HADQTJREAAAAAAAAAAAAA7tHOkydzzY4duW7PnpwcHq5nSMUFkdPGWhT5n09fky//8rqse97zRr0LADQTJREAAAAAAAAAAAAAfkJvX1/euX17rt+7N/1lWd+gmgoip421KPL85z8/SfI8RREAJiElEQAAAAAAAAAAAAB+4JYTJ3L1tm351O23Z6juYTUXRE5TFAHgbKEkAgAAAAAAAAAAAEC+e+eduXr79nxm377UeG/ID42xIPLaK9+dWQ98XL6z83C+t+to+gZGX2GZ2d6SBz3pd9O/bmE+/8G3jOoZRREAJiMlEQAAAAAAAAAAAICz2DePHs1V27fncwcOjNvMGV/8YvrGUBD5yEc+8r/KGkPDZW7bf2e+u+tINt1+LEf7BnJqYDinhoYzraWRaW2NzJnRlvOWduT+y+emZ/HstDSKJD+X6x7Q9YMCyEgURQCYbJREAAAAAAAAAAAAAM5C/3bkSK7cti1/d+jQuM1cM316HvyVr+Qz11wz6md+vCCSJC2NIucs7cg5SzvGvMPpLEURAKYiJREAAAAAAAAAAACAs0RZlvmXw4fztm3b8q+HD4/b3J+bMyevXLky+/76r/PCyy4b9XM/rSBSBUURAKYqJREAAAAAAAAAAACAKa4sy3zp0KFcuW1bvn706LjMbCT57cWL84oVK/LQuXNz3XXX5YUveMGon6+rIHKaoggAU5GSCAAAAAAAAAAAAMAUNVyW+dyBA7ly27b89513jsvMjpaWXLJsWf5g+fKsnjEjSXLdddeNuoyR1F8QOU1RBICpRkkEAAAAAAAAAAAAYIoZKst8dt++XLVtW75/4sS4zFzY2ppXrFyZF3d1ZV5b2w++36wFkdMURQCYSpREAAAAAAAAAAAAAKaIgeHhfOr22/P27duzua9vXGYubWvLq7u78/xlyzK79X+/mtrsBZHTFEUAmCqURAAAAAAAAAAAAAAmuZNDQ7l+7968c/v2bDt1alxmrpg2La9duTLPWbYsM1pafuqZ3bt3jzpvogoip421KDKWPxsAjBclEQAAAAAAAAAAAIBJ6sTQUK7bvTvX7NiR3f394zKzZ/r0vK67O8/o7Ex7o3GvZ6+44ookyVve8pZ7PTfRBZHTRlsUufzyy3/wZwOAZqIkAgAAAAAAAAAAADDJHB0czB/v2pX37NyZ/QMD4zJz/cyZeUN3d566ZElaRyiH/KiRiiLNUhA5baSiiIIIAM1MSQQAAAAAAAAAAABgkjg0MJD379yZ9+3alcODg+My84GzZuWNq1blNxYvTktRnFHGPRVFmq0gcto9FUUURABodkoiAAAAAAAAAAAAAE3uQH9/3r1zZz64a1eODQ2Ny8wHd3TkjatW5fELF6Y4w3LIj/rxokizFkRO+/GiiIIIAJOBkggAAAAAAAAAAABAkzo6OJj37tyZd+/YMW7lkF+cOzdvXLUqj5o/v5JyyI86XbLo6upq6oLIaad33L17t4IIAJNCUZblRO8AcNYqiuL7Sc7/8e+ff/75+f73vz8BGwEAAAAAAAAAAM2gb2goH9q9O1dv25aDg4PjMvPR8+fnjatW5RfnzRuXeQBQpQsuuCAbN278aR9tLMvygvHeZ6K4SQQAAAAAAAAAAACgSQwMD+f6vXvz1q1bs6u/f1xmPmHhwrxh1ao8ZM6ccZkHANRHSQQAAAAAAAAAAABggg2XZT6zb1/evHVrbu3rq31ekeS3Fy/O67u7c2FHR+3zAIDxoSQCAAAAAAAAAAAAMEHKsszfHjyYN/b25jvHj9c+ryXJ7y1dmtd1d2fDrFm1zwMAxpeSCAAAAAAAAAAAAMAE+Nc77sjre3vz9aNHa5/VVhR5ZmdnLuvuztoZM2qfBwBMDCURAAAAAAAAAAAAgHH0zaNH8/re3vzjHXfUPmtaUeS5XV159cqV6Z4+vfZ5AMDEUhIBAAAAAAAAAAAAGAcbjx/Pm3p789cHDtQ+a1ajkRcuX55LV6zIsmnTap8HADQHJREAAAAAAAAAAACAGm3t68sVW7fmk7ffnuGaZ81paclLly/Py1esyKL29pqnAQDNRkkEAAAAAAAAAAAAoAZ7T53Kldu25bo9ezJQlrXOWtDamlesWJGXLF+eeW1ttc4CAJqXkggAAAAAAAAAAABAhe4YGMgf7tiR9+3cmb7heu8OWdLWlletXJkXdnVldqvXQgHgbOenAQAAAAAAAAAAAIAK3Dk4mPfv2pU/3L49R4aGap01r7U1r1m5Mn+wYkVmtbTUOgsAmDyURAAAAAAAAAAAAADug1PDw/nI7t25atu27BsYqHXWzEYjL1+xIq9auTLz29pqnQUATD5KIgAAAAAAAAAAAABnYHB4OJ+8/fZcsXVrtp86VeustqLIC7q68vru7nROm1brLABg8lISAQAAAAAAAAAAABiD4bLMX+3fnzf19mZTX1+tsxpJntHZmctXrcrqGTNqnQUATH5KIgAAAAAAAAAAAACjUJZl/v7QobyhtzffuvPO2uf91qJFeduaNdkwa1btswCAqUFJBAAAAAAAAAAAAGAEXzt8OK/v7c1XjxypfdZj58/PlWvW5GfmzKl9FgAwtSiJAAAAAAAAAAAAANyD/z52LG/s7c0XDx2qfdbPzZmTq3t68kvz5tU+CwCYmpREAAAAAAAAAAAAAH7MLSdO5E29vfns/v21z3rgrFm5qqcnv7pgQYqiqH0eADB1KYkAAAAAAAAAAAAA3O1Af38u37o1H9m9O0M1z1o3Y0betnp1nrJkSRrKIQBABZREAAAAAAAAAAAAgLPeqeHhfGDXrrxt69YcGaq3HrJi2rRcvmpVntnZmbZGo9ZZAMDZRUkEAAAAAAAAAAAAOGuVZZm/OXAgr9myJVtOnqx11qK2try+uzsv7OrK9JaWWmcBAGcnJREAAAAAAAAAAADgrPStY8dy6a235itHjtQ6p6OlJa9auTKvWLEiHa1e3QQA6uMnDQAAAAAAAAAAAOCssvvUqbyhtzd/undvyhrnTG808tLly/Pa7u4sbGurcRIAwF2URAAAAAAAAAAAAICzwomhobx7x468c/v2HB8erm1Oa1HkkmXL8qZVq9I1bVptcwAAfpySCAAAAAAAAAAAADClDZdlbti3L5fddlt2njpV25wiyf+7dGmuWL06a2fMqG0OAMA9URIBAAAAAAAAAAAApqx/P3Ikr7j11vznsWO1znniwoV525o1uf/s2bXOAQC4N0oiAAAAAAAAAAAAwJSzta8vr73ttnx2//5a5zxi3rxc3dOTh8yZU+scAIDRUBIBAAAAAAAAAAAApoyjg4N5+/btee+OHTlVlrXNeXBHR67u6ckj58+vbQYAwFgpiQAAAAAAAAAAAACT3lBZ5uN79uSNvb3ZNzBQ25wLZs7MlWvW5ImLFqUoitrmAACcCSURAAAAAAAAAAAAYFL75zvuyKW33prvHD9e24ylbW25qqcnz+rsTItyCADQpJREAAAAAAAAAAAAgEnplhMn8qotW3LjwYO1zZhWFHnlypW5rLs7Ha1euwQAmpufVgAAAAAAAAAAAIBJ5dDAQN66dWs+uHt3BsuytjlPXbIk7+jpyarp02ubAQBQJSURAAAAAAAAAAAAYFIYGB7Oh3bvzhVbt+aOwcHa5jykoyPvXbcuPzt3bm0zAADqoCQCAAAAAAAAAAAANLWyLPOFgwfzqi1bsqmvr7Y5K6dNyzt7evLUJUtSFEVtcwAA6qIkAgAAAAAAAAAAADSt79x5Z165ZUv+6Y47apsxq9HI61atyqUrVmRGS0ttcwAA6qYkAgAAAAAAAAAAADSd2/v786be3nxsz54M1zSjSPLszs5cuWZNlk2bVtMUAIDxoyQCAAAAAAAAAAAANI2TQ0O5dufOXL19e44NDdU25+Hz5uU9a9fmoo6O2mYAAIw3JREAAAAAAAAAAABgwpVlmb/cvz+vve22bD15srY562bMyDU9PXniokUpiqK2OQAAE0FJBAAAAAAAAAAAAJhQ3zh6NK+49db829Gjtc2Y29KSN69enZcsX572RqO2OQAAE0lJBAAAAAAAAAAAAJgQBwcGctltt+Wje/bUNqMlyQu6unLF6tVZ1N5e2xwAgGagJAIAAAAAAAAAAACMq+GyzPV79+a1W7bk4OBgbXN+ZcGCvGvt2pw/a1ZtMwAAmomSCAAAAAAAAAAAADBuvn3sWF60eXO+fvRobTMumDkz7163Lo9dsKC2GQAAzUhJBAAAAAAAAAAAAKjd0cHBvLm3N3+0a1eGa5qxqK0tb1u9OpcsW5bWRqOmKQAAzUtJBAAAAAAAAAAAAKhNWZb5zL59uXTLluzp769lRntR5GUrVuQNq1ZlbqtXIwGAs5efhAAAAAAAAAAAAIBa3Hz8eF68eXO+fPhwbTN+a9GivHPt2qydMaO2GQAAk4WSCAAAAAAAAAAAAFCpE0NDuWrbtlyzY0cGyrKWGRfPnp33rluXX5w3r5Z8AIDJSEkEAAAAAAAAAAAAqMyNBw7kpZs3Z9upU7Xkd7W35+qenjx96dI0iqKWGQAAk5WSCAAAAAAAAAAAAHCfbe3ry8tuvTWfP3iwlvwZjUZevXJlXtPdnVktLbXMAACY7JREAAAAAAAAAAAAgDN2ang4796xI1du25a+4eFaZjxt6dK8fc2arJg+vZZ8AICpQkkEAAAAAAAAAAAAOCP/fMcdefEtt2RTX18t+T87Z06uXbcuD54zp5Z8AICpRkkEAAAAAAAAAAAAGJM9p07llVu25IZ9+2rJX9TWlmt6evKMzs40iqKWGQAAU5GSCAAAAAAAAAAAADAqg8PD+eDu3XlTb2+ODQ1Vnl8ked6yZbm6pycL2toqzwcAmOqURAAAAAAAAAAAAIARff3IkbzwllvyP8eP15J/8ezZ+dC55+bBc+bUkg8AcDZQEgEAAAAAAAAAAADu0cGBgVx222356J49teTPbWnJVT09eUFXV1qKopYZAABnCyURAAAAAAAAAAAA4CcMl2Wu37s3r92yJQcHB2uZ8bSlS3NNT086p02rJR8A4GyjJAIAAAAAAAAAAAD8L98+diwv2rw5Xz96tJb8DTNn5o/POScPnz+/lnwAgLOVkggAAAAAAAAAAACQJDk6OJg39/bmj3btynAN+TMbjVy+enVevmJF2huNGiYAAJzdlEQAAAAAAAAAAADgLFeWZT6zb18u3bIle/r7a5nxG4sW5dp169I9fXot+QAAKIkAAAAAAAAAAADAWe3m48fz4s2b8+XDh2vJXzN9ev7onHPyawsX1pIPAMAPKYkAAAAAAAAAAADAWejE0FCu2rYt1+zYkYGyrDy/vShyWXd3LuvuzoyWlsrzAQD4SUoiAAAAAAAAAAAAcJa58cCBvHTz5mw7daqW/MfMn58PnHNOzpk5s5Z8AAB+OiURAAAAAAAAAAAAOEvsPHkyL968OZ8/eLCW/OXt7XnvunX57cWLUxRFLTMAALhnSiIAAAAAAAAAAAAwxZVlmT/Zsyev3rIlR4eGKs9vSfLyFSty+erV6Wj1aiIAwETxkxgAAAAAAAAAAABMYVv6+vLcTZvyL4cP15L/83Pm5EPnnpv7z55dSz4AAKOnJAIAAAAAAAAAAABT0Fj+0xoAACAASURBVFBZ5v07d+YNvb3pGx6uPH9RW1uu6enJMzo70yiKyvMBABg7JREAAAAAAAAAAACYYjYeP57nbNqU/3v0aOXZRZLnd3XlqjVrsqCtrfJ8AADOnJIIAAAAAAAAAAAATBEDw8N5x/btuXLbtvSXZeX5F8+enQ+de24ePGdO5dkAANx3SiIAAAAAAAAAAAAwBfzXsWP5/ZtvzneOH688e25LS67q6ckLurrSUhSV5wMAUA0lEQAAAAAAAAAAAJjE+oaG8patW/OuHTsyVEP+05YuzTU9PemcNq2GdAAAqqQkAgAAAAAAAAAAAJPU1w4fznM2bcotfX2VZ58/c2Y+eM45efj8+ZVnAwBQDyURAAAAAAAAAAAAmGTuHBzM63p788Fdu1JWnD2z0cjlq1fn5StWpL3RqDgdAIA6KYkAAAAAAAAAAADAJPKPhw7luZs2ZdupU5Vn/8aiRbl23bp0T59eeTYAAPVTEgEAAAAAAAAAAIBJ4I6Bgbxyy5Zcv3dv5dnL2tvzoXPPzRMXLao8GwCA8aMkAgAAAAAAAAAAAE3uc/v354WbN2dvf3/l2b/f2Zl3r12beW1tlWcDADC+lEQAAAAAAAAAAACgSe3r789LN2/OZ/fvrzx79fTpue7cc/PoBQsqzwYAYGIoiQAAAAAAAAAAAECTKcsyf7FvX162eXMODg5Wml0kecny5bl6zZrMbvUaIQDAVOKnOzgDRVG0JVmf5H5JLrj7ryuSzLv7a26SoSR9Se5IsjtJb5LvJPlGkn8vy7L6ex8BAAAAAAAAAIBJb+fJk3nBLbfkC4cOVZ593owZ+dj69fn5uXMrzwYAYOIpicAoFEXRSHJRkkckeWSShyWZNcJjrUmm5a7SyJokP/8jn50oiuIfkvxpkr8ty7Laqv89KIpia5JV4zHrHjy3LMuPTuB8AAAAAAAAAABoWsNlmY/u2ZNXb9mSo0NDlWa3JHlNd3fevGpVpre0VJoNAEDzUBKBe1AURWvuKoQ8JcmTkiyoMH7m3ZlPStJbFMU7knysLMtqf7MDAAAAAAAAAAAmhS19fblk06b86+HDlWc/cNasfHz9+lzc0VF5NgAAzUVJBH5MURQXJHl5kt9IsnAcRq5J8pEkzy+K4pKyLP97HGYCAAAAAAAAAABNYKgs876dO/PG3t70DQ9Xmt1eFHnz6tV5zcqVaWs0Ks0GAKA5KYnAT3pCkksmYO7FSb5eFMXLyrL8yATMBwAAAAAAAAAAxtH3jx/Pc26+Of9x7Fjl2Q+dMycfO++8nD9rVuXZAAA0LyURaC7Tkny4KIrlZVm+eaKXAQAAAAAAAAAAqjcwPJx3bN+eK7dtS39ZVpo9o9HI1WvW5KUrVqSlKCrNBgCg+SmJwH03lOT7SW5K0pvkQJLjSaYnWZhkWZKHJTlvDJlvKorieFmW76x4VwAAAAAAAAAAYAL917Fj+f2bb853jh+vPPsR8+blT847Lz0zZlSeDQDA5KAkAmfm5iQ3JvlSkv8oy/LESA8URbEsyfOSvDR3lUdG8vaiKL5bluUX79Omo/fvSa6vecZXa84HAAAAAAAAAICm1Dc0lLds3Zp37diRoYqz57S05F1r1+aSZctSuD0EAOCspiQCo3c4ySeSfLIsy2+N9eGyLPckeUtRFO9Kcm2SS0Z4pEjy0aIozi/L8vBY552BzWVZfnQc5gAAAAAAAAAAwFnla4cP5zmbNuWWvr7Ksx+/cGE+dM45WTF9euXZAABMPkoiMLJbk1yT5FOjuTFkJGVZHk/y3KIovprk40la7uX4siSvTfK6+zoXAAAAAAAAAAAYXyeGhnLZbbflA7t2paw4e2Fra95/zjn53SVL3B4CAMAPKInAPbslyVuTfLosy6pveExZln9WFMWsJH88wtGXFkXx9rIsj1a9AwAAAAAAAAAAUI9vHD2ap910Uy23h/zO4sV5/znnZEl7e+XZAABMbo2JXgCa0O1JXpTkgrIs/7yOgshpZVl+KMmfjXBsVpKn1LUDAAAAAAAAAABQncHh4bx169b87Le+VXlBZFl7ez53v/vl0xdcoCACAMBP5SYR+DFlWV4/ziNfl+S3k8y8lzNPSvLR8VkHAAAAAAAAAAA4E5tPnMjTb7op/3HsWOXZv9/ZmXetXZv5bW2VZwMAMHUoicAEK8tyd1EUNyR5zr0c+4WiKBplWQ6P114AAAAAAAAAAMDolGWZ6/bsyaW33poTw9W+4rNq2rT8yXnn5dELFlSaCwDA1NSY6AWAJMnfjvD5nCSrxmMRAAAAAAAAAABg9PaeOpXHf/e7ecEtt1RaECmSvHT58nzvQQ9SEAEAYNTcJALN4f8bxZmeJL11LwIAAAAAAAAAAIzO5/bvz3NvuSUHBgYqzT1vxox8bP36/PzcuZXmAgAw9SmJQBMoy/JQURT9Sdrv5di88doHAAAAAAAAAAC4Z0cHB/PyW2/N9Xv3VprbkuTV3d25fNWqTG9pqTQbAICzg5IINI8DSbru5fMZ47UIAAAAAAAAAADw03318OE84+abs/XkyUpzHzhrVj6+fn0u7uioNBcAgLOLkgg0j5kjfF7tb5UAAAAAAAAAAMCo9Q8P5/KtW/PO7dtTVpjbXhR506pVeW13d9oajQqTAQA4GymJQBMoiqIjydwRjt0xHrsAAAAAAAAAAAD/2/ePH8/Tbrop377zzkpzH9LRkY+vX5/zZ82qNBcAgLOXkgg0hwuTFCOc2TIeiwAAAAAAAAAAAHcZLsu8b+fOvO6223KqrO7+kNaiyFtWr85rVq5Mq9tDAACokJIINIdfG+Hzo0m2j8ciSVIURUuSNUm6kyxOMiPJUJITd++yM8mOsiyr/V8jAAAAAAAAAABAk9hx8mSedfPN+fLhw5Xmbpg5M5/asCEXd3RUmgsAAImSCEy4oigaSZ4ywrGvlWU5XPMq3UVRvCXJI5NclGTmSA8URXFbkv9K8uUkXyzLctyKLAAAAAAAAAAAUJe/uP32vOiWW3JkaKjS3D9Yvjzv6OnJjJaWSnMBAOA0JRGYeE/MXbd23JvPj8Mev3z311j03P315CQpiuKrST6S5DNlWQ5Wux4AAAAAAAAAANTr0MBAXrx5cz69b1+luV3t7fnE+vV59IIFleYCAMCPa0z0AnA2K4qiJclbRzjWn+Qvx2GdKvxCkk8luakoit+Z6GUAAAAAAAAAAGC0/unQoTzgG9+ovCDyO4sX57sPepCCCAAA40JJBCbW85Pcb4Qzf1qW5aHxWKZC65J8uiiKG4ui6JzoZQAAAAAAAAAA4J70DQ3lZZs359Hf+U529fdXlju3pSV/vmFDbjj//Cxoa6ssFwAA7k3rRC8AZ6uiKFYleccIxwaSvHMc1qnL45P8V1EUTyzL8psTvQwAAAAAAAAAAPyobx07lqfddFNuOnGi0txHzJuXT6xfn5XTp1eaCwAAI1ESgQlQFEUjySeSdIxw9NqyLLfUv1GtupJ8pSiKXyvL8l8nepnRKorixUleNA6j1o7DDAAAAAAAAAAAfsRQWead27fn8q1bM1iWleVOK4q8vacnL1uxIo2iqCwXAABGS0kEJsZbkjx8hDM7kryt/lWSJLcm+c8k30vy3SS9SY7c/dWXZH6ShUkWJfmZJL+Y5Bfu/vvRmJnkxqIoHlGW5TeqXb02i5OcP9FLAAAAAAAAAABQrdv6+vL0m27Kvx89WmnuA2fNyqc2bMj9Zs+uNBcAAMZCSQTGWVEUv5rk9SMcK5M8pyzLYzWtUSb5SpLPJ/lCWZa3jHB+/91fSfK1JNcWRdGS5ClJXpPkwlHMnJ3kr4qiuLgsywNntjYAAAAAAAAAAJyZsizz8b178/Jbb82dQ0OV5RZJXtvdnStWr860RqOyXAAAOBNKIjCOiqI4P8kNSUb6bfADZVn+Yw0rHEryN0k+NIpiyL0qy3Iod/1ZbiiK4veSfDhJxwiPrUxyXZLfvC+zAQAAAAAAAABgLPb19+e5mzbl8wcPVpq7evr0/Nn69fmFefMqzQUAgDOlJALjpCiKxUluTDJnhKPfSPKqmtZ4cFmWg1WHlmX5F0VRfCPJ/0nygBGO/0ZRFL9SluWXqt4DAAAAAAAAAAB+3I0HDuSSTZuyb2Cg0txnd3bm2nXrMqfVa3gAADQPd9vBOCiKYlaSv03SM8LRg0meXJZlfx171FEQ+ZHszUl+Kcm3R3H8qrr2AAAAAAAAAACAJLlzcDDP27Qpv/6971VaEFnU1pa/vuCCfHz9egURAACajp9QoWZFUbQn+askDx7haF+SJ5Zlua3+repRluXhoih+Pcl/J1l4L0cvKorikWVZ/vM4rXYm9ifZOA5z1iaZNg5zAAAAAAAAAADOGl8/ciRPu+mm3HbyZKW5v7pgQT523nnpnOZ1DwAAmpOSCNSoKIpGkk8leewIRwdy1w0i/1b/VvUqy3JHURSvSPJnIxx9RpKmLYmUZfnBJB+se05RFN9Pcn7dcwAAAAAAAAAAzgYDw8N567ZtuXrbtgxXmDuz0ch71q3L85YtS1EUFSYDAEC1lESgJsVdvw1el+TJIxwdTvLMsiy/UP9W46Msy08WRfHKJA+8l2NPLIqirSzL6u7yBAAAAAAAAADgrLWlry9P3bgx3zx2rNLch3R05JMbNuScmTMrzQUAgDo0JnoBmMLem+Q5ozj3wrIsb6h7mQnwvhE+n5vkovFYBAAAAAAAAACAqe0z+/blom9+s9KCSEuSt6xena9ddJGCCAAAk4aSCNSgKIork7xsFEdfWZbldXXvM0H+JslIt4T87HgsAgAAAAAAAADA1NQ3NJTnb9qUp27cmGNDQ5XlnjtjRr5+8cV58+rVaW14zQ4AgMmjdaIXgKmmKIrXJnnDKI5eXpble+reZ6KUZXm4KIpvJ3nQvRxbP177AAAAAAAAAAAwtWw8fjy/s3Fjvnf8eKW5L+7qyh+uXZuZLS2V5gIAwHhQEoEKFUXxB0neMYqj15Rl+da692kC38q9l0RWj9MeAAAAAAAAAABMEWVZ5hN79+YlmzfnxPBwZbmd7e25/rzz8riFCyvLBACA8aYkAhUpiuK5Sa4dxdEPlmX5mrr3aRJbR/h8yXgsAQAAAAAAAADA1HBscDAvvOWW/Pm+fZXm/taiRfnwuedmUXt7pbkAADDelESgAkVRPD3Jh5MUIxz9WJKX1r9R0zgywuczx2ULAAAAAAAAAAAmvW8fO5anbNyYzX19lWXOaWnJB845J09bujRFMdKrPwAA0PyUROA+KoriyUmuT9IY4egNSZ5XlmVZ/1ZNo3+Ez9vGZQsAAAAAAAAAACatsizzx7t355W33ppTFb5684tz5+bPNmzIqunTK8sEAICJpiQC90FRFL+e5M+TtIxw9HNJnlGW5XD9WzWVGSN8Xt3/1gEAAAAAAAAAgCnn8MBAnrNpU/76wIHKMtuLIletWZNXrFyZFreHAAAwxSiJwBkqiuKxST6bkW/D+FKS3ynLcrD+rZpO5wif3zkuWwAAAAAAAAAAMOn83yNH8tSNG7Pt1KnKMu8/a1Y+tWFDHjB7dmWZAADQTJRE4AwURfHwJH+TZNoIR7+c5DfLsuyvfanmtG6Ez3eNyxYAAAAAAAAAAEwaw2WZd+/Ykdf39mawLCvLffmKFXn7mjWZ3tJSWSYAADQbJREYo6IofjbJjUlmjHD0a0l+vSzLk/Vv1bQeMsLnveOyBQAAAAAAAAAAk8L+/v488+ab86VDhyrLXNDamk+sX58nLFpUWSYAADQrJREYg6IoLk7ypSQj3Tf5jSS/Vpbl8fq3ak5FUZyfZPUIx74zDqsAAAAAAAAAADAJfOXw4fzexo3Z3d9fWebPz5mTG84/PyunT68sEwAAmpmSCIxSURT3S/IPSeaOcPR/kjy2LMuj9W/V1J4xijP/XvsWAAAAAAAAAAA0taGyzJXbtuWtW7dmuKLMIsnru7tzxerVaW00KkoFAIDmpyQCo1AUxblJ/inJwhGObkzy6LIs76h/q+ZVFMX8JM8f4diWsiy3jMc+AAAAAAAAAAA0p92nTuVpN92Ufzl8uLLMpW1t+dSGDXnUggWVZQIAwGShJAIjKIpidZJ/TrJ0hKObkzyqLMv9de80Cbw9ybwRznx2PBYBAAAAAAAAAKA5/d3Bg3nGzTdn/8BAZZmPmj8/n1y/Pp3TplWWCQAAk4mSCNyLoii6cldBZMUIR7cmeWRZlntqX6rJFUXx2xn5FpGhJB8bh3UAAAAAAAAAAGgyA8PDeVNvb965Y0dlmS1J3rpmTS7r7k6jKCrLBQCAyUZJBO5BURSLk/xTkp4Rju5M8oiyLKv7rbVCRVGcn2RPWZZ3jMOsRyf55CiO/mVZllvq3gcAAAAAAAAAgOay7eTJ/O7Gjfn60aOVZa6YNi03bNiQh82bV1kmAABMVo2JXgCaUVEU85L8Q5INIxzdm7sKIr31b3XGHpPktqIo3lQUxcI6BhR3uSzJF5NMH+F4X5LX17EHAAAAAAAAAADN63P79+fCb36z0oLI4xcuzLd/5mcURAAA4G5KIvBjiqKY/f+zd99hdh2EmfDfc6dp1IslW5Zkq1llNCMJSEgzS/ItYEI1poQQSIDQshCSBVI2+VI2TwpfCCbFgaUkAQKmODjGGGMHwi6BJMQQY2tG3bJsy5IsyZLVRhpNuWf/wPaHmzzyPdK03+957iPPvee8573/zfVz3zn5/thh/ZMcen+S55Rluf3st2rYzCR/kOSeoig+WhTFT1QVXBTF05LclORPMry7E/3+KB/VAAAAAAAAAABQob6hofzy9u152caNOTw4WElmS1HkA8uW5frOzsxpaakkEwAAxoPhfKEbJprPJPmxYRz3uSQ/VhTFcI6twt6yLL/cYMbkJG9K8qaiKHYl+XKSryb5t7Is7xtuSFEUs5M8O8l/S/KcM7j+9UnedwbHAwAAAAAAAAAwhm0/cSI/s2lTvnf8eGWZSydNyuc6OvJD06dXlgkAAOOFkQg8Vtcwj3v7WW3xWN/I90cdVVmU5G0PPlIUxd4kW5LcmeS+JIeS9CUZSjIryewkc5M8I0lnkuIMr/fvSV5blmVZRXkAAAAAAAAAAEa3q/fty1u3bcvxoaHKMl81d24+snJlZjT76hsAADwevykDD5n/4OOnzkL2/0nykrIsj52FbAAAAAAAAAAARpETQ0N55/bt+Zv77qssc1Ktlr9Yvjxvnj8/RXGmf9sUAAAmDiMR4Gz7yyTvLstycKSLAAAAAAAAAABwdm3s7c2rNm7MphMnKstcNXlyPt/Rka6pUyvLBACA8cpIBDhbtiV5W1mW/3ukiwAAAAAAAAAAcHaVZZm/2bs377zjjpys1yvLff0FF+SqSy7JlKamyjIBAGA8MxKB8W9Lkk1JOs7R9bYneW+Svy/LcuAcXRMAAAAAAAAAgBFydHAwb922LZ/dv7+yzCm1Wj60YkVed8EFlWUCAMBEYCQC41xZljcluakoinlJfvLBxw8n6UwyqaLL7EpyU5JPJflmWZZlRbkAAAAAAAAAAIxitx47lldt3JgdfX2VZa6bMiWfW7MmKydPriwTAAAmCiMReJSyLBePdIezoSzL/Uk+/+AjRVE0JVmdZF2SpUkWPfhYmGRGkskPPtqSDCbpS3Isyd4ku5NsTdKd5DtlWW49l+8FAAAAAAAAAICRVZZl/nr37rx7x470V/j3RP/bhRfm/cuWZVJTU2WZAAAwkRiJwARVluVQkp4HHwAAAAAAAAAAMCy9Q0N569at+fT+/ZVlzmhqyt+sWpWXz51bWSYAAExERiIAAAAAAAAAAAAMyx0nTuSKjRvT3dtbWeYzp03LZzs6sqS9vbJMAACYqIxEAAAAAAAAAAAAeFJfuv/+vG7z5hwZGqos8z2LFuWPlixJa61WWSYAAExkRiIAAAAAAAAAAAA8oaGyzO/fdVf+8O67K8uc09ycT65enRfMmVNZJgAAYCQCAAAAAAAAAADAEzg0MJCf27w5Nx06VFnmf5kxI1d3dGRBW1tlmQAAwPcZiQAAAAAAAAAAAPAYtx47lpdv3Ji7+voqySuS/M7FF+d3Lr44zbVaJZkAAMAjGYkAAAAAAAAAAADwCB/fuze/tH17+ur1SvLmt7bm06tX56dmzaokDwAAeHxGIgAAAAAAAAAAACRJTtXr+ZXt2/PhvXsry7xs1qx8cvXqzGttrSwTAAB4fEYiAAAAAAAAAAAA5N6+vrxi48b8x7FjleQ1JfnjpUvznkWLUiuKSjIBAIDTMxIBAAAAAAAAAACY4L7+wAN59aZNOTAwUEnegtbWfH7Nmvz4jBmV5AEAAMNjJAIAAAAAAAAAADBBlWWZP9u1K795552pV5T5UzNn5rMdHZnX2lpRIgAAMFxGIgAAAAAAAAAAABPQscHBvGHLlnzh/vsry/z1RYvyR0uWpLlWqywTAAAYPiMRAAAAAAAAAACACWZzb2+u2LgxW06cqCRvalNTPr5qVV4+d24leQAAwFNjJAIAAAAAAAAAADCB/MP+/XnD1q05PjRUSd6qyZNz7Zo1WT1lSiV5AADAU2ckAgAAAAAAAAAAMAEM1uv5rZ07875duyrLfPl55+XvVq3KtGZfRQMAgNHAb+YAAAAAAAAAAADj3P7+/rx606b878OHK8mrJfn/li7NuxctSlEUlWQCAACNMxIBAAAAAAAAAAAYx/7j6NG8YuPG3HvqVCV5c1ta8rmOjvzUrFmV5AEAANUxEgEAAAAAAAAAABiHyrLMh/fsyTvvuCMDZVlJ5jOnTcs/rFmTRZMmVZIHAABUy0gEAAAAAAAAAABgnDk5NJRf2rYtn9i3r7LMt114Yf58+fK01WqVZQIAANUyEgEAAAAAAAAAABhHdp48mSs2bsxtx49XkjepVsuHLrkkr58/v5I8AADg7DESAQAAAAAAAAAAGCduOngwr9m8OQ8MDlaSt3jSpFy7Zk2eNm1aJXkAAMDZZSQCAAAAAAAAAAAwxtXLMn909935vbvuSllR5mWzZuXTHR2Z09JSUSIAAHC2GYkAAAAAAAAAAACMYYcHBvK6LVtyw8GDlWX+zsUX5/cWL05TUVSWCQAAnH1GIgAAAAAAAAAAAGPUhuPHc0VPT3b09VWSN6OpKZ9avTovOu+8SvIAAIBzy0gEAAAAAAAAAABgDPr0vn1589atOVmvV5LXNWVKrl2zJssnT64kDwAAOPeMRAAAAAAAAAAAAMaQ/no979mxI3+1e3dlma+ZNy8fWbkyU5qaKssEAADOPSMRAAAAAAAAAACAMWLPqVN55caN+bejRyvJay6KXLlsWd6xYEGKoqgkEwAAGDlGIgAAAAAAAAAAAGPAvxw+nFdt3Jh9AwOV5M1vbc01a9bkJ2bMqCQPAAAYeUYiAAAAAAAAAAAAo1hZlvmr3bvzrjvuyFBFmc+aMSOf6+jI/La2ihIBAIDRwEgEAAAAAAAAAABglOqv1/P27dvzsb17K8v81YUL86dLl6alVqssEwAAGB2MRAAAAAAAAAAAAEahA/39efnGjfnmkSOV5E2u1fI3K1fm1eefX0keAAAw+hiJAAAAAAAAAAAAjDIbjh/PS7q7c/epU5XkXdLenmvXrEnn1KmV5AEAAKOTkQgAAAAAAAAAAMAo8sX778/PbdqU3nq9kryXzJmTT65enRnNvi4GAADjnd/6AQAAAAAAAAAARoGyLPMn99yT3965s5K8IskfLlmS37zootSKopJMAABgdDMSAQAAAAAAAAAAGGEnh4byi1u35jP791eSN6e5OVd3dOR5s2dXkgcAAIwNRiIAAAAAAAAAAAAjaPepU7m8pyffPXaskrxnTJ2aL3R25uJJkyrJAwAAxg4jEQAAAAAAAAAAgBFyy9GjubynJ3v7+yvJe+MFF+SvL7kkk5qaKskDAADGFiMRAAAAAAAAAACAEXD1vn1545YtOVWWDWe1FkWuuuSSvPnCCytoBgAAjFVGIgAAAAAAAAAAAOdQvSzz2zt35r333FNJ3vzW1vxjZ2d+ZPr0SvIAAICxy0gEAAAAAAAAAADgHDk2OJjXbt6c6w8erCTvh6ZNy3WdnVnQ1lZJHgAAMLYZiQAAAAAAAAAAAJwDO0+ezEt6etLT21tJ3qvnzcvfrlyZ9qamSvIAAICxz0gEAAAAAAAAAADgLPvG4cN5eU9PDg4OVpL3h0uW5LcuuihFUVSSBwAAjA9GIgAAAAAAAAAAAGfRR/bsydu3b89gWTacNaVWy9+vXp2XzZ1bQTMAAGC8MRIBAAAAAAAAAAA4Cwbr9bxrx4781e7dleRd3NaW67u6snbq1EryAACA8cdIBAAAAAAAAAAAoGIPDAzkVZs25WsPPFBJ3qUzZuQLa9ZkXmtrJXkAAMD4ZCQCAAAAAAAAAABQoS29vXlxT0/uOHmykrxfvOCCfHDFirTWapXkAQAA45eRCAAAAAAAAAAAQEW+cvBgXr1pU44ODTWcVUty5fLleeeCBSmKovFyAADAuGckAgAAAAAAAAAA0KCyLPOBe+/Nr+3YkXoFeTOamvL5NWvyvNmzK0gDAAAmCiMRAAAAAAAAAACABpyq1/O2bdvy8fvuqyRvRXt7ru/qysrJkyvJAwAAJg4jEQAAAAAAAAAAgKdoX39/rujpyb8dPVpJ3vNmzcpnOzoyq6WlkjwAAGBiMRIBAAAAAAAAAAB4Cm47diwv6enJrlOnKsn71YUL876lS9Ncq1WSBwAATDxGIgAAAAAAAAAAAGfo2gMH8rrNm3OiXm84q6Uo8qEVK/KL8+dX0AwAAJjIjEQAAAAAAAAAAACGqSzL/OHdd+d377qrkrzzWlpy7Zo1edbMmZXkAQAAE5uRCAAAAAAAAAAAwDCcGBrKG7ZsyecPHKgkr2vKlFzf2ZnF7e2V5AEAABiJAAAAAAAAAAAAPIl7+/ry0p6e3Hr8eCV5L50zJ59avTpTIXqQ9QAAIABJREFUm32FCwAAqI5PGAAAAAAAAAAAAKfx7SNHcnlPT/YNDFSS99sXXZQ/WLIktaKoJA8AAOAhRiIAAAAAAAAAAABP4JP33Zc3b92a/rJsOGtSrZa/XbkyP3v++RU0AwAAeCwjEQAAAAAAAAAAgEcZKsv8jzvvzPt27aok78LW1lzX2Zkfnj69kjwAAIDHYyQCAAAAAAAAAADwA44ODuY1mzbly4cOVZL3zGnT8o+dnbmwra2SPAAAgCdiJAIAAAAAAAAAAPCgXX19eWF3d7p7eyvJ+7l58/LRlSvT3tRUSR4AAMDpGIkAAAAAAAAAAAAkufXYsbyouzt7+/sbziqS/PGSJfmNiy5KURSNlwMAABgGIxEAAAAAAAAAAGDC+/LBg/mZjRvTW683nDW1qSlXr16dF593XgXNAAAAhs9IBAAAAAAAAAAAmNA+uHt3fnn79jQ+D0kWT5qUL3V2pnPq1ArSAAAAzoyRCAAAAAAAAAAAMCHVyzK/vmNH3n/vvZXkPXvGjPzDmjU5r7W1kjwAAIAzZSQCAAAAAAAAAABMOCeHhvK6zZvzhfvvryTvLfPn568uuSSttVoleQAAAE+FkQgAAAAAAAAAADCh7O/vz0t7evLto0cbzmpK8ufLl+ftCxakKIrGywEAADTASAQAAAAAAAAAAJgwtvT25gXd3dnZ19dw1szm5lzT0ZHnzJ5dQTMAAIDGGYkAAAAAAAAAAAATwr8cPpzLe3rywOBgw1kr29vzpa6uXDJ5cgXNAAAAqmEkAgAAAAAAAAAAjHuf3rcvb9yyJf1l2XDWc2fNyuc7OjKzpaWCZgAAANWpjXQBAAAAAAAAAACAs6Usy/zhXXfltZs3VzIQedP8+flyV5eBCAAAMCq5kwgAAAAAAAAAADAu9dfreeu2bfn4ffdVkvcnS5bkNy66KEVRVJIHAABQNSMRAAAAAAAAAABg3Dk8MJBXbNyYfz58uOGs1qLIJ1evzs/Mm1dBMwAAgLPHSAQAAAAAAAAAABhX7u7ryws3bMjGEycazprd3Jwvdnbm0pkzK2gGAABwdhmJAAAAAAAAAAAA48Z3jx7Ni3t6cl9/f8NZy9vbc2NXVy6ZPLmCZgAAAGefkQgAAAAAAAAAADAufOn++/PqTZtyol5vOOvHp0/PFzs7c15rawXNAAAAzo3aSBcAAAAAAAAAAABo1F/de28u7+mpZCDyqrlz88/r1hmIAAAAY447iQAAAAAAAAAAAGPWUFnmPTt25M/vvbeSvN9YtCh/vHRpakVRSR4AAMC5ZCQCAAAAAAAAAACMSSeGhvJzmzfnuvvvbzirKcmHVqzImy+8sPFiAAAAI8RIBAAAAAAAAAAAGHP29ffnxd3d+c6xYw1nTWtqyjVr1uSy2bMraAYAADByjEQAAAAAAAAAAIAxZVNvb17Y3Z27+voazlrQ2povr12bdVOnVtAMAABgZBmJAAAAAAAAAAAAY8bXH3ggV/T05MjQUMNZ66dOzQ1dXVnQ1lZBMwAAgJFnJAIAAAAAAAAAAIwJn7zvvrxp69YMlGXDWT89e3Y+19GRac2+QgUAAIwftZEuAAAAAAAAAAAAcDplWeb3d+7ML2zZUslA5G0XXpjrOzsNRAAAgHHHpxwAAAAAAAAAAGDU6q/X86atW/P3+/ZVkve+pUvz7kWLUhRFJXkAAACjiZEIAAAAAAAAAAAwKj0wMJArNm7M/zl8uOGsSbVa/n7Vqrxi3rwKmgEAAIxORiIAAAAAAAAAAMCos/PkybyguztbTpxoOOu8lpZc39mZH5sxo4JmAAAAo5eRCAAAAAAAAAAAMKrccvRoXtzdnf0DAw1nrWhvz41r12ZZe3sFzQAAAEY3IxEAAAAAAAAAAGDU+McDB/JzmzfnZL3ecNazZszIdZ2dmd3SUkEzAACA0c9IBAAAAAAAAAAAGHFlWeYv7r0379qxI2UFea+ZNy9/u2pV2mq1CtIAAADGBiMRAAAAAAAAAABgRA2VZX71jjty1e7dleT9vxdfnD9YvDhFUVSSBwAAMFYYiQAAAAAAAAAAACOmd2goP7tpU7508GDDWc1FkQ+vWJE3zp9fQTMAAICxx0gEAAAAAAAAAAAYEff39+eF3d255dixhrOmNzXlC2vW5DmzZ1fQDAAAYGwyEgEAAAAAAAAAAM65u06ezGUbNmTbyZMNZy1qa8uNXV3pnDq1gmYAAABjl5EIAAAAAAAAAABwTm04fjzP37Ahe/v7G856+tSpuaGrK/Pb2ipoBgAAMLYZiQAAAAAAAAAAAOfMNw4fzku7u3NkaKjhrBfNmZPPrF6dqc2+BgUAAJAYiQAAAAAAAAAAAOfItQcO5DWbNuVUWTac9Y4FC/Lny5enqSgqaAYAADA+GIkAAAAAAAAAAABn3Yd2787bt29Po/OQIsmVy5blVxYuTGEgAgAA8AhGIgAAAAAAAAAAwFlTlmV+/6678gd3391wVnutlk+vXp2XzZ1bQTMAAIDxx0gEAAAAAAAAAAA4Kwbr9bx9+/Z8ZO/ehrPmtbTkS11deeb06RU0AwAAGJ+MRAAAAAAAAAAAgMqdHBrKz27alC8ePNhw1qrJk3NjV1eWtLdX0AwAAGD8MhIBAAAAAAAAAAAq9cDAQF7S05NvHTnScNalM2bk+s7OzGppqaAZAADA+GYkAgAAAAAAAAAAVObevr78dHd3enp7G866/LzzcvXq1WlvaqqgGQAAwPhnJAIAAAAAAAAAAFRic29vLtuwIbtOnWo46y3z5+evL7kkzbVaBc0AAAAmBiMRAAAAAAAAAACgYf9+5Ehe1N2dQ4ODDWf97sUX5/cXL05RFBU0AwAAmDiMRAAAAAAAAAAAgIbccP/9edWmTTlZrzeUUyT54CWX5G0LFlRTDAAAYIIxEgEAAAAAAAAAAJ6yv9u7N2/eujVDDea0FUWu7ujIFXPnVtILAABgIjISAQAAAAAAAAAAzlhZlnnvPffkt3bubDhrelNTru/qyrNnzqygGQAAwMRlJAIAAAAAAAAAAJyRelnmv99xR/5y9+6Gs+a3tuamtWuzdurUCpoBAABMbEYiAAAAAAAAAADAsJ2q1/Pzmzfn8wcONJy1or09N69dm8Xt7RU0AwAAwEgEAAAAAAAAAAAYlqODg3lZT0++fvhww1nPnDYtX+7qynmtrRU0AwAAIDESAQAAAAAAAAAAhuG+U6fygu7ufO/48Yazfnr27FyzZk2mNDVV0AwAAICHGIkAAAAAAAAAAACndceJE3nehg3Z2dfXcNbPn39+PrZyZVpqtQqaAQAA8IOMRAAAAAAAAAAAgCf03aNH84Lu7hwYGGg469cXLcp7ly5NURQVNAMAAODRjEQAAAAAAAAAAIDH9dVDh/Kynp701usNZ31g2bL86qJFFbQCAADgiRiJAAAAAAAAAAAAj/GZffvyC1u2ZKAsG8ppKYp8YtWq/Oz551fUDAAAgCdiJAIAAAAAAAAAADzCB3btyrt27Gg4Z2pTU65dsybPnT27glYAAAA8GSMRAAAAAAAAAAAgSVKWZX7zzjvzp7t2NZw1t6UlX1m7Ns+YNq2CZgAAAAyHkQgAAAAAAAAAAJCBej1v2ro1n9y3r+GspZMm5ea1a7N88uQKmgEAADBcRiIAAAAAAAAAADDB9Q4N5ZUbN+Yrhw41nPW0qVNzY1dXLmhrq6AZAAAAZ8JIBAAAAAAAAAAAJrD7+/vzwu7u3HLsWMNZ/3XmzFzb2Znpzb6WBAAAMBJ8GgMAAAAAAAAAgAnqrpMnc9mGDdl28mTDWT8zd24+sXp12mq1CpoBAADwVBiJAAAAAAAAAADABLTh+PE8f8OG7O3vbzjrnQsW5APLl6dWFBU0AwAA4KkyEgEAAAAAAAAAgAnmG4cP56Xd3TkyNNRw1p8sWZLfuOiiFAYiAAAAI85IBAAAAAAAAAAAJpBrDxzIazZtyqmybCinKcnHVq7M6+fPr6YYAAAADTMSAQAAAAAAAACACeJje/bkLdu2pbF5SNJeq+WaNWvywjlzKukFAABANYxEAAAAAAAAAABgAnj/rl15z44dDefMbm7ODV1d+bEZMypoBQAAQJWMRAAAAAAAAAAAYBwryzK/s3Nn/uieexrOWtTWlpvXrs3qKVMqaAYAAEDVjEQAAAAAAAAAAGCcqpdl3rl9e/56z56GszqnTMlNa9dmQVtbBc0AAAA4G4xEAAAAAAAAAABgHBqs1/OGrVvzqX37Gs561owZ+WJnZ2a1tFTQDAAAgLPFSAQAAAAAAAAAAMaZvqGhvHrTpnzx4MGGsy4/77xcvXp12puaKmgGAADA2WQkAgAAAAAAAAAA48jxwcG8tKcnXz98uOGst8yfnw+uWJGmoqigGQAAAGebkQgAAAAAAAAAAIwThwYG8oING/Ifx441nPV7F1+c31u8OIWBCAAAwJhhJAIAAAAAAAAAAOPAfadO5XkbNqS7t7ehnCLJBy+5JG9bsKCaYgAAAJwzRiIAAAAAAAAAADDG3XXyZJ5z++3Z0dfXUE5LUeTq1avzinnzKmoGAADAuWQkAgAAAAAAAAAAY9jm3t489/bbs7u/v6GcybVa/rGzM8+bPbuiZgAAAJxrRiIAAAAAAAAAAExYQ/UyOw4cT/e9R7Jt37EcOTmQU4P19A/V09pUS1tzLTPaW7Li/GlZu3BGls6dmqZaMdK1H/afx47lsttvz8HBwYZyZjQ15ca1a/PjM2ZU1AwAAICRYCQCAAAAAAAAAMCEUZZlvn3noXx1075suPdwNu45mpMDQ8M+f3JrUzrmT8/ahTPz3I7z86NLZ6coRmY08i+HD+dF3d05NjT8/o9nXktLbl67NuunTauoGQAAACPFSAQAAAAAAAAAgHHvyMmBXHvrvfnUt+/OjgO9TznnRP9Qvnv3A/nu3Q/kb/91Z5bNnZLX/ujFueLpCzOjvaXCxqd348GDefnGjemr1xvKWdTWlq+tW5cVkydX1AwAAICRZCQCAAAAAAAAAMC4dffB3vyvb+zIdd/bc0Z3DBmuHQd68z+/tCl/etPWXP60C/O2Zy/LxXOmVH6dH/S5/fvz2s2bM1iWDeWsaG/PV9ety0WTJlXUDAAAgJFmJAIAAAAAAAAAwLgzOFTPR7+5Mx/42rb0DzZ2t43hODkwlM/csitfuHV33vXcFXnzs5amqVZUfp2P7tmTt27blsbmIcn6qVNz89q1mdfaWkkvAAAARgcjEQAAAAAAAAAAxpU79h/Lu6/ZkNt3HT7n1+4frOe9X9mSm3ruy5+9cm2Wz5tWWfb77rknv37nnQ3n/MT06bmhqyszW1oqaAUAAMBoUhvpAgAAAAAAAAAAUIV6vcyHv7EjL/jLb43IQOQH3bbrcF7wl9/Kh7+xI/V6Y/f9KMsyv33nnZUMRJ43a1ZuXrfOQAQAAGCccicRAAAAAAAAAADGvIGhen7tmttz3W17RrrKw/oH6/mTr2zJ5r1H875XrktL05n/Pdd6WeaXt2/PB/c0/r5eft55+XRHR9pq/q4sAADAeGUkAgAAAAAAAADAmNY3MJR3XH1rvrZ5/0hXeVzX3bYnx08N5qrXPD2TWpqGfd5AvZ43bt2aT+3b13CHN1xwQT6yYkWaDUQAAADGNZ/6AAAAAAAAAAAYswaG6qN6IPKQr23en3dc/b0MDNWHdXzf0FBesXFjJQORX124MB9budJABAAAYALwyQ8AAAAAAAAAgDGpXi/za9fcPuoHIg/52uZ9+bVrbk+9Xp72uGODg3lhd3euP3iw4Wv+z8WLc+WyZakVRcNZAAAAjH5GIgAAAAAAAAAAjEkf/eadue62PSNd44xcd9uefOxbdz7h64cGBvKc22/P1w8fbvhaf758eX538eIUBiIAAAAThpEIAAAAAAAAAABjzh37j+X9X9020jWekj/7p225Y/+xxzy/99SpPPu223LLsce+diZqST6+alV+ZeHChnIAAAAYe4xEAAAAAAAAAAAYUwaH6nn3NRvSP1gf6SpPSf9gPe+5ZkOG6uXDz+08eTKXfu976entbSi7tShyzZo1+YULLmi0JgAAAGOQkQgAAAAAAAAAAGPKx761M7fvOjzSNRpy267D+eg370ySbOrtzaXf+17u7OtrKHNyrZYburpyxdy5VVQEAABgDGoe6QIAAAAAAAAAADBcdx/szZVf3TbSNSpx5Ve3ZcHSaXnD3dtycHCwoayZzc35cldXfnzGjIraAQAAMBYZiQAAAAAAAAAAMGb8r2/sSP9gfaRrVOLotOQVd2xKf9FYzryWlvzTunVZN3VqNcUAAAAYs4xEAAAAAAAAAAAYE46cHMh139sz0jUqcWJuU+5f35aywYHIora2fG3duqyYPLmaYgAAAIxpRiIAAAAAAAAAAIwJ1956b04ODI10jYb1XtCU+9e2JbXGFiIr29vz1XXrsmjSpIqaAQAAMNYZiQAAAAAAAAAAMOqVZZm///bdI12jYccWNedQR2tSNDYQWT91am5euzbzWlsragYAAMB4YCQCAAAAAAAAAMCo9+07D+XOA70jXaMhR5a05PDKxkcdPzF9em7o6srMlpYKWgEAADCe1Ea6AAAAAAAAAAAAPJmvbtr3mOcOf+vTOXbbTSPQ5syUSR64pCWHt92cfPzjDWVdNmtW/mndOgMRAAAAHpc7iQAAAAAAAAAAMOptuPfwI34+/K1P58i/fubhn6etf/65rjQsZZJDHa05fvtNyZVX/v8vvP71Z5z1irlz8+nVq9Na83dhAQAAeHw+MQIAAAAAAAAAMKoN1cts3HP04Z8fPRA5dPNVo/KOImWRHFzb9tiByCc+ccZ3FHnjBRfksx0dBiIAAACclk+NAAAAAAAAAACMajsOHM/JgaEkjx2IPGS0DUXKIrl/XVt6//MrjxyIPOQMhiL/feHCfGzlyjQVRbUlAQAAGHeMRAAAAAAAAAAAGNW67z2S5IkHIg8ZLUORspYceFpbTnznCQYiDxnGUOQPFi/O+5ctS2EgAgAAwDA0j3QBAAAAAAAAAAA4nW37jj3pQOQhh26+Kkkybf3zz3atx1WvJQeePil9/37j6QciD/nEJ77/7+tf/5iX/mL58rxz4cJqCwIAADCuGYkAAAAAAAAAADCqHTk5kKapc4Z9/EgNRepNyf5nTMqpfx3mQOQhcx753mpJ/m7Vqvz8BRdUWxAAAIBxz0gEAAAAAAAAAIBR7dRg/eHBx0MDkCdzroci9eYHByLfOsOByLvelbz4xQ//2FoU+WxHR142d+5ZaAkAAMB4ZyQCAAAAAAAAAMCo1j9UT5JROxQZakn2/9Ck9P9LYwOR5nry5fVdec7s2WehJQAAABOBkQgAAAAAAAAAAKNaa1Pt4f8ebUORoZZk3w9PysA3GhuI1AbKvPzYNAMRAAAAGlJ78kMAAAAAAAAAAGDktDU/8isu09Y/P7Mve8ewzz9081U5dttNVdfKYFuRfc9sb3wgcqrM+bf0ZUlaK+8IAADAxOJOIgAAAAAAAAAAjGoz2lse89xI31FkcFKRfT88KYNf/3JDA5Gmk/Wc/52+tJwoM/1x3icAAACcCSMRAAAAAAAAAABGtRXnT3vc50dqKDLQ/v2ByNA/NzYQaT5Rz/m39KW5r0ySrHyC9wkAAADDZSQCAAAAAAAAAMCo1rVwxhO+dq6HIgOTHxyIfK3BgUjvgwORU+XDz3UteOL3CQAAAMNRG+kCAAAAAAAAAABwOsvmTk17S9MTvj5t/fMz+7J3DDvv0M1X5dhtN51xj/4pRfY9s/GBSMuxei74j0cORCa3NmXp3Kln3AkAAAB+kJEIAAAAAAAAAACjWlOtyJoLp5/2mLM9FOmfVsu+H2nP0FcbG4i0HhnK+becTFN/+YjD1lw4PU21Yvi5AAAA8DiMRAAAAAAAAAAAGPXWLpz5pMecraHIqem17PvhSanffENjA5HDQ5n3nb40DTz20OG8PwAAAHgyRiIAAAAAAAAAAIx6z+04f1jHVT0UOTWzmoFI26GhnP+dvjQNPv7hw31/AAAAcDpGIgAAAAAAAAAAjHo/unR2ls6dMqxjqxqK9M2qZd8PTUp5U2MDkUkHhzLvP/tSG3r8w5fNnZIfWTJ7+PkAAADwBIxEAAAAAAAAAAAY9YqiyOt+9OJhH9/oUOTknFr2/9CklF9pcCByYDBzTzMQSZLX/ejFKYpi+NcAAACAJ2AkAgAAAAAAAADAmHDF0xemvaVp2Mc/1aHIiblN2f/0SSlvbGwg0r5vMPNuPZVa/YlPaW9pyhXPWDj8awAAAMBpNI90AQAAAAAAAAAAGI4Z7S25/GkX5jO37Br2OdPWPz/J9wcgw3Ho5quSjtZkTxoaiEzeO5jzNpxKUZ7+tMufdmGmT2oZ/nUAAADgNIxEAAAAAAAAAAAYM9727GX5wq270z94mttzPMqZDkXygTMYhySPGYhM2T2YOT1PPhBpba7lbc9edmbXAgAAgNOojXQBAAAAAAAAAAAYrovnTMm7nrvijM+btv75mX3ZO6ov9KiByNRdA5nT/eQDkSR513NX5OI5U6rvBAAAwIRlJAIAAAAAAAAAwJjypkuXZN2imWd8XuVDkUcNRKbdPZDZG/tTDOPU9Ytm5s3PWlpdFwAAAIiRCAAAAAAAAAAAY0xzUy3vf+XatDaf+VdfKhuKPGogMn3nQGZtHt5ApLW5lj975do01YZzNAAAAAyfkQgAAAAAAAAAAGPO8nnT8u7nrnhK5zY8FHn0QGRHf2ZuHd5AJEne87wVWT5v2lO/PgAAADyB5pEuAIxuRVE0J1mWZHGSaUmmJulLcjTJ3iRby7I8MWIFAQAAAAAAAJiw3vyspdm892iuu23PGZ1XJhl6+YuTNa3JlVee2UUfNRCZsa0/M+8cGPbpl6+/MG+6dOmZXRMAAACGyUgEnoKiKFqSrErSmWTNg/8uTDLzwceMJENJTiZ5IMmeJDuTbEjynST/VpZl/7lvPjxFUXQluSLJC5KsT9J6msPLoii2J7kpyfVJvl6WZXn2WwIAAAAAAAAw0dVqRd73ynU5fmowX9u8f1jnlEkOr2jJ0aWtyZbGrj9zy6nMuGtw2Mc/Z/X5ed8r16VWG+49RwAAAODMGInAMBRFUUvytCT/T5L/muTSJFOe5LTmJG35/mhkSZKf+IHXThRF8U9JPpHkhrIsh/9/jM6ioiguS/KbSX7yTE5LsuLBxzuTbCuK4gNJPlqW5VDlJQEAAAAAAADgB7Q01XLVa56ed1x965MORcokD6xqzbHFLcmXvnTmdxFJHj5n1rLnZfo9ZzYQueo1T0tLU+3MrwkAAADD5FMnPIGiKJqLorisKIq/SXIgyXeT/GmSy/LkA5EnMznJ5Un+Md8fVbylKIqmBjOfsqIoFhRFcW2+fzeQn2wwbkWSDyX5z6IofqTRbgAAAAAAAADwZCa1NOVDr31GLl9/4RMeUyY51NHgQOQhV16Z4vobhn345esvzIde+/RMahmxrwYAAAAwQRiJwKMURbGmKIqPJrkv3x9NvDHJ7LN4ySVJPpzklqIonnYWr/O4iqK4NMmtSV5WcfS6JN8siuKXKs4FAAAAAAAAgMdoaarlyletz//46VVpbX7kV2LKJAc7W3P8ogoGIg86dPNVOXbbTac9prW5lt96wapc+ar17iACAADAOeHTJzzWi5O8Kcmcc3zdpyf596Io3nquLlgUxUuTfD3JvLN0iZYkHyyK4r1nKR8AAAAAAAAAHlarFXnrs5flxndemnWLZiZJyiK5f21behdWNxB5yOmGIusXzcyN77w0b/kvy1KrFZVdEwAAAE6neaQL/F/27jzIzrO+8/b30b5L1i5hW8abZC3dbbIMhBBsy46JCUsgEMgLMcNik8WZbAPJZCYG8k4SkpkMk5gEOzBsISYQwmvAEOOFQEi9k5AJfbTblndbsixZsmWpJXWr+54/ZCUmtnVa/Zyj3q6rSmVXPXf/7h9UyVXnlD56gO8xNclHqqp6QSnlt9p5UVVVlyX5yxwLOdrtvVVVHSyl/PYpuAsAAAAAAACAce7cxbPzhXe/JB/5u3vz6489kJ7FE1seiBy395brkiSzu16R5NjbQ371svPzzpednYniEAAAAE4xkQjU159kc5KtSe5LsifJwSTTcuxtJMuS/HCSlScx8788HVV8sMW7JkmqqjoryedyLEppZmOSTyf5uyR3J3kyycwkZyR5cZKfSrI+SbNvtj5QVdWGUspNQ9saAAAAAAAAAAbvaEr+Zn5PDmYIgciv/Mqxfw7yZ/becl2mTKzytne8M+9++TlZsWDmEDYGAACA+kQiMDTbknw5ydeS/EMppafZD1RVtSzJVUmuybF4pJnfrapqYynlq7U2ffYek3LsDSLzmhzdleSaUsrnn+PZk0//2pTko1VV/UCSjyR5UZOZH6+qqquU8uBJrg0AAAAAAAAAg9bT35/XbtqUW/ftG1og8qpXHfv3gSQfGtzPPvrVP84LX7M2KxZ0nPzCAAAA0CIThnsBGEWeSPKhJN9XSrmglPKeUso3BhOIJEkpZWcp5f1JViT56CB+pMqxAKNZzHGyfiHJDzY500jyoucJRJ6llPKdJD+U5MYmR0/Lsf8PAQAAAAAAAKAtnjp6NFds2FA7EKmOlixZemnmX/4Lg/7xq6++OjfccMPJrgwAAAAtIxKB5rYnuTrJC0opv1xK+ec6w0opB0sp70pyZZL+JseXJXlvnfueqaqqRUne1+TY9iSXlVJ2nMzsUsqRJG9NclOToz9RVdVlJzMbAAAAAAAAAAbjyaNHc/mGDfnmk0/WCkSmDiSv2zczP33Wslx11bvy2mveN+gxQhEAAACG06ThXgBGsLuSfCDJZ0spzWKOk1ZK+VRVVTOT/EmTo9dUVfW7pZT9Lbj215LMPcHz3iRvLKXsHsrwUkp/VVVXJulOctYJjn4gya1DuQOefteUAAAgAElEQVQAAAAAAAAAnsu+vr786IYN+aennqoViCyYNClf7+zMi2bP/tfnr+vIDWuX5eqrrx7UuOPnrrrqqsHvAAAAAC3gTSLwbLuS/FySNaWUz7QjEDmulPKnST7V5NjMJG+se1dVVXNy7I0oJ/KhUsp369xTSnkyyX9ocuzFVVW9rM49AAAAAAAAAHDcvr6+XNZo1A5EFk+enG90dX1vIPK0q666Ktdff/2gx3qjCAAAAMNBJAL/Rinl46WUPy2lHD1FV/5Gkp4mZ17bgnuuzInfIvJEkv/agntSSvlSkr9rcuwXW3EXAAAAAAAAAOPb3r6+XNpo5P8cOFArEFk+ZUq+2dWVdbNmPe9xoQgAAAAjnUgEhlkpZUeSG5sce1lVVXV/v761yfMbSin7a97xTP+9yfNXVVV1omgFAAAAAAAAAE7o8b6+rG808s81A5Ezp07Nty68MKtmzmz6Y0IRAAAARjKRCIwMX2nyfE6SFUMdXlXVeUl+oMmxjw51/vP4cpKdJ3g+NcnrW3wnAAAAAAAAAOPEnt7erO/uTnfNQOTsadPyrQsvzDnTpw/6x4UiAAAAjFQiERgZvjWIM2fXmP+qJs//Tynl7hrzn6WUMpDkc02ONdsLAAAAAAAAAJ5lT29v1jcaaRw8WCsQOX/69HzrwguzYtq0k95BKAIAAMBIJBKBEaCUsjdJb5Nj82pccWmT5zfXmF1n7sVVVU1s090AAAAAAAAAjEG7e3tzSaORDTUDkTUzZuSbXV15wdSpQ95FKAIAAMBIIxKBkWNPk+eDf6/tM1RVNSnJjzQ5dttQZg/C3yU5fILnc5P8QJvuBgAAAAAAAGCMeezpQGRjzUDkwlmz8rddXVlaIxA5TigCAADASCISgZFjRpPnJ4otTmRNkpkneN6X5B+HOPuESimHk3y3yTGRCAAAAAAAAABNPdbbm0u6u7OpZiDyg7Nn5/bOziycMqVluwlFAAAAGClEIjACVFU1O8feqnEi+4Y4/kVNnm8ppRwZ4uzB+Kcmzy9s490AAAAAAAAAjAG7entzcXd3Nvf01ApEXjJnTm7t7Mxpkye3fEehCAAAACPBpOFeAEiSdCWpmpy5p8bsE9kwxLmD1WjyXCQCAAAAAAAAwPN69MiRXNJoZGvNQOSlc+bkax0dmT2pfX9c5qqrrkpyLAAZjOPnjv8cAAAA1CUSgZHhlU2e70/y4BBnn9/k+d1DnDtYzeKW89p8PwAAAAAAAACj1KNHjuTiRiPbagYiPzx3br66bl1bA5HjhCIAAAAMpwnDvQCMd1VVTUjyxibHvl1KGRjiFS9s8nz7EOcOVrP5M6uqWtTmHQAAAAAAAAAYZXY+MxBJkscfH/wPPyMQedkpDESOu+qqq3L99dcP+vyOHTvauA0AAADjiUgEht9r0jzk+NJQBldVVSVZ0eRYu79p2pmkWeDS7H8/AAAAAAAAAOPIjiNHclF3978GIknytrclV17Z/IefEYj8yDAEIscNNhS59tpr8773va/9CwEAADAuiERgGFVVNTHJB5oc603y+SFecVqSaU3OPDrE2YNSSulPsqfJseXt3AEAAAAAAACA0eORpwORuw4devbDZqHIMwKRi+bNy1c7OjJrGAKR45qFIgIRAAAAWk0kAsPr6iRrm5z5ZCll7xDnLxjEmceGOPtkNLtjMHsCAAAAAAAAMMY9cuRILu7uzt3PFYgc93yhyDMCkYvnzctX1q3LzIkT27PoSXi+UEQgAgAAQDsM31+VAONcVVUrkvxek2N9ST5Y45r5gzizv8b8wWp2x2D2BAAAAAAAAGAMe/jw4VzcaGT7iQKR4972tmP//OQnj/3zGYHIJfPm5cvr1mXGCAhEjrvqqquSJFdffXUSgQgAAADtIxKBYVBV1YQkn0gyu8nRD5VS7qlx1WlNnveUUvprzB+sUReJVFX180l+7hRcdc4puAMAAAAAAABgRHvo8OFc3N2dew4fHvwPHQ9FFiz4l0Bk/bx5+dIIC0SOOx6K7NixQyACAABA24hEYHi8P8lFTc48lOS3a94zrcnznprzB+tgk+fN9hwOi5KsHu4lAAAAAAAAAMa6B58ORO49mUDkuOOhSJJLTzstX1q7NtNHYCBy3PFQBAAAANplwnAvAONNVVVXJPlPTY6VJO8opTxV87opTZ4frTl/sJrd02xPAAAAAAAAAMagBw4fzkVDDUSe4bJREIgAAADAqSASgVOoqqrVSW5M899715VSbm3BlSIRAAAAAAAAAEak+w8dykXd3bmvZiBy+Wmn5SaBCAAAACRJJg33AjBeVFW1KMmXk8xpcvQ7SX6tRdc2i1H6W3RPM83u8U0dAAAAAAAAwDhyPBB54MiRWnNeMX9+vrhmTaYJRAAAACCJN4nAKVFV1cwkX0lydpOjjyd5Qymlt0VXN3uDx6kKxZrd03dKtgAAAAAAAABg2N3XokDkCoEIAAAAPIs3iUCbVVU1JckXkvxgk6OHkrymlPJAC69vFpucqv8GTG7yvFVRTCvtTrLlFNxzTpKpp+AeAAAAAAAAgGF376FDubi7Ow/WDEReOX9+vrB2baZO8PejAgAAwDOJRKCNqqqakOTPk1ze5Ghfjr1B5O9bvEKzN3RMafF9z2fURSKllA8n+XC776mqanOS1e2+BwAAAAAAAGC43fN0IPJQzUDkxxcsyF+tWSMQAQAAgOfg0zK0SVVVVZIbkryhydGBJFeWUm5uwxoHmjyf1YY7n8ucJs+b7QkAAAAAAADAKHbPoUO5qAWByKsFIgAAAHBCPjFD+/yPJO8YxLmfLaXc2KYd9jZ5PrmqqmltuvuZZjd53mxPAAAAAAAAAEap7T09efl3v5uHawYir1mwIJ8XiAAAAMAJ+dQMbVBV1f+b5D8M4uivllJuaOMqjw/izLw23j/YOwazJwAAAAAAAACjzN09PXl5d3ce6e2tNee1Cxfmc2vWZIpABAAAAE7IJ2dosaqq3pvkNwdx9NpSyh+2eZ09gziztM07JMmyJs9FIgAAAAAAAABjzF1PByI7agYir1u4MJ9bvVogAgAAAIPg0zO0UFVVv5jk9wZx9A9KKR9o9z6llJ40DzCWtHOHqqpmJJnV5NgD7dwBAAAAAAAAgFPrzp6eXNTdnZ01A5HXL1yYz65enckCEQAAABgUn6ChRaqqeleSDw3i6IdLKe9p9z7PcH+T5yvafP9g5t/f5h0AAAAAAAAAOEW2HTzYkkDkDYsW5UaBCAAAAJwUn6KhBaqqemuSjySpmhz9WJJr2r/R97ivyfPz2nx/s/m7nn7jCQAAAAAAAACj3NanA5FHawYib1y0KJ+54AKBCAAAAJwkn6Shpqqq3pDk42n+++nGJFeVUkr7t/oem5s8X9nm+89v8rzZfgAAAAAAAACMAlsOHszF3d3Z1ddXa86bFi8WiAAAAMAQ+TQNNVRV9eokn0kyscnR/y/Jz5RSBtq/1bP8c5PnF7b5/hc1ef7dNt8PAAAAAAAAQJttblEg8ubFi/PpVasySSACAAAAQ+ITNQxRVVWXJ/lckslNjn4tyU+VUo62f6vn1CwSOb2qqsVtvP/7mjwXiQAAAAAAAACMYpsOHMjF3d15rGYg8tOLF+dTAhEAAACoxadqGIKqqi5K8sUkU5scvSPJ60opvW1f6nmUUh5O8kCTYxe14+6qqpYnOb/JsW+3424AAAAAAAAA2m/jgQO5pNHI7pqByFuWLMmnLrhAIAIAAAA1+WQNJ6mqqpck+XKS6U2OfjvJq0sph9u/VVO3NXl+WZvuvbTJ87tLKc0CFgAAAAAAAABGoA0tCkTeumRJPrFqVSZWVYs2AwAAgPFLJAInoaqqFyX5WpJZTY5+J8krSykH27/VoNza5Pmrq6qa2IZ7f7LJ86+34U4AAAAAAAAA2mzTgQNZ32hkT81A5MolS/JxgQgAAAC0jEgEBqmqqrU5FjXMbXK0keTyUsr+9m81aDcn6TnB88Vp/taPk1JV1fwklzc59vlW3gkAAAAAAABA+205eDCXtCAQedvSpfmYQAQAAABaSiQCg1BV1flJbkuyoMnRLUkuK6Xsa/9Wg1dKOZDkS02OXdPia9+dZMoJnj+c5FstvhMAAAAAAACANtp28GAu6e7O7pqByNuXLs3HVq4UiAAAAECLiUSgiaqqzkpye5IlTY7eneTSUsrudu80RP+ryfMrqqrqasVFVVXNSvPo5JOllNKK+wAAAAAAAABov7t6enJJo5FdNQORdy5blj9buTITBCIAAADQciIROIGqqpbnWCByepOj9ydZX0rZ2falhqiUcmuSDSc4UiX5UIuu+40kS0/w/EiS61p0FwAAAAAAAABttr2nJxd3d2dnb2+tOe9atizXn3++QAQAAADaRCQCz6OqqkVJbktydpOjDye5pJTyUPu3qu2DTZ6/vKqqX65zQVVVL0nynibHPlFKebTOPQAAAAAAAACcGvceOpSLG43sqBmIXLVsWT4iEAEAAIC2EonAc6iqal6Srye5oMnRR3MsELmv/Vu1xI1JvtPkzAerqnrVUIZXVXVeki8kmXSCY08led9Q5gMAAAAAAABwat1/6FAu7u7Ow0eO1Jrz7uXL86cCEQAAAGg7kQj8G1VVzUry1SRdTY7uSXJpKeXu9m/VGqWUkuQXkpQTHJuc5PNVVb3zZGZXVfXSJN9MsqzJ0fd7iwgAAAAAAADAyPfA4cO5uNHIgzUDkZ9dvjx/ct55AhEAAAA4BU70t/3DeHVjkpcM4txfJnlJVVWDOdsKO0spN9cdUkr5x6qqfjfJfzrBsalJ/qyqqtcn+a1SyvO+faSqqhVJ3pvkXWn+35RvJvnQSa4MAAAAAAAAwCn20OHDuaS7O/cfPlxrzs8tX57rzjsvlUAEAAAATgmRCDzbukGe+/m2bvFs30xSOxJ52m8leWmSlzc594okr6iqaluSv0tyd5L9SWYmOSPJv0vy4iSD+TbvsSQ/XUrpH+rSAAAAAAAAALTfI0eO5OLu7txbMxB5t0AEAAAATjmRCIxDpZT+qqpem+QbSboG8SOrnv41VE8kubyUsqPGDAAAAAAAAADabOfTgcg9NQORdy1blg8LRAAAAOCUmzDcCwDDo5TyRJIfTfJPbb7qsRwLRLrbfA8AAAAAAAAANTz6dCBy96FDteb8+6VL85Hzz88EgQgAAACcciIRGMdKKbuTvCzJp9p0xXeSfH8p5R/bNB8AAAAAAACAFnistzeXNBq5s2Yg8jNLluTPVq4UiAAAAMAwEYnAOFdKOVxKuTLJjye5t0Vjn0ryq0l+qJTyUItmAgAAAAAAANAGu3t7c0l3d7b29NSa8/8sXpz/tWpVJgpEAAAAYNiIRIAkSSnl5iSrkrw1x94AMhQPJPmNJGeVUv6wlHK0VfsBAAAAAAAA0Hp7enuzvtHI5pqByJsWL84nBCIAAAAw7CYN9wIw0pRSzhruHYZLKaUvyZ8n+fOqqs5I8mNJfiDJ6iQrksxJMiPJkRx7W8jOJFuTdCe5pZTSGI69AQAAAAAAADh5e/v6ctmGDdl48GCtOW9YtCifXrUqkyb4u0oBAABguIlEgOdUSnkoyQ1P/wIAAAAAAABgDNnX15fLGo10HzhQa87rFi7MZy64QCACAAAAI4RP6AAAAAAAAAAA48gTfX350Q0b8s81A5HXLFiQG1evzmSBCAAAAIwYPqUDAAAAAAAAAIwT+48ezSs2bMg/PfVUrTmvWrAgn1uzJlMEIgAAADCi+KQOAAAAAAAAADAOPPV0IPIPNQORK+bPz+cFIgAAADAi+bQOAAAAAAAAADDGHTh6NFds3Jj/f//+WnMuP+20fGHNmkwViAAAAMCI5BM7AAAAAAAAAMAYdrC/P6/cuDHffvLJWnMuPe20fHHt2kybOLFFmwEAAACtJhIBAAAAAAAAABijevr786qNG/OtmoHIJfPm5aa1azNdIAIAAAAjmkgEAAAAAAAAAGAMOtTfn9ds2pRvPPFErTkvnzs3X1q3LjMEIgAAADDiiUQAAAAAAAAAAMaYw/39ee2mTblt375ac142d26+sm5dZgpEAAAAYFQQiQAAAAAAAAAAjCFHBgbyus2b8/WagcgPzZmTm9ety6xJk1q0GQAAANBuIhEAAAAAAAAAgDHiyMBAfnLz5nxt795ac/7d7Nn5WkdHZgtEAAAAYFQRiQAAAAAAAAAAjAG9AwP5qc2b85XHH6815wdmz84tnZ2ZIxABAACAUUckAgAAAAAAAAAwyvUNDORNW7bkppqByPfNmpWvd3RkrkAEAAAARiWRCAAAAAAAAADAKHZ0YCA/vXVrvrhnT605XbNm5eudnZk3eXKLNgMAAABONZEIAAAAAAAAAMAodXRgIG/ZujV/tXt3rTkdM2fmts7OzBeIAAAAwKgmEgEAAAAAAAAAGIX6S8mV27blL2sGImufDkQWCEQAAABg1BOJAAAAAAAAAACMMv2l5N9v25a/eOyxWnNWz5iR2zs7s2jKlBZtBgAAAAwnkQgAAAAAAAAAwCgyUEreeeed+fSuXbXmrJoxI3d0dWWxQAQAAADGDJEIAAAAAAAAAMAoMVBKrr7rrnzi0UdrzTl/+vTc0dmZJQIRAAAAGFNEIgAAAAAAAAAAo8BAKfm5u+7KR3furDXn3OnTc0dXV5ZNndqizQAAAICRQiQCAAAAAAAAADDClVJyzd135/qagcjZ06blG52deYFABAAAAMYkkQgAAAAAAAAAwAhWSskvb9+eP9mxo9acs6ZNyze6unL6tGkt2gwAAAAYaUQiAAAAAAAAAAAjVCklv37vvfmfjzxSa86ZU6fmG52dOVMgAgAAAGOaSAQAAAAAAAAAYIR63/335/cfeqjWjDOmTs03urpy1vTpLdoKAAAAGKlEIgAAAAAAAAAAI9DvPPBAPvDAA7VmvGDKlNzR2ZmzBSIAAAAwLohEAAAAAAAAAABGmP/+0EP5zfvuqzVj2ZQpuaOrK+fOmNGirQAAAICRTiQCAAAAAAAAADCCXPfww/m1e+6pNWPJ5Mm5o7Mz5wtEAAAAYFwRiQAAAAAAAAAAjBA37NiRa7ZvrzVj8eTJuaOrK6tmzmzRVgAAAMBoIRIBAAAAAAAAABgBPvnoo3n3XXfVmrFw8uTc3tmZ1QIRAAAAGJdEIgAAAAAAAAAAw+yzu3bl7du2pdSYsWDSpNze2Zm1s2a1bC8AAABgdBGJAAAAAAAAAAAMo7/evTtv2bo1AzVmzJs0Kbd2dqZDIAIAAADjmkgEAAAAAAAAAGCYfGXPnrxpy5b015gxe+LE3NLRkQtnz27ZXgAAAMDoJBIBAAAAAAAAABgGX9+7N6/fvDl9pQx5xswJE/K1jo784Jw5LdwMAAAAGK1EIgAAAAAAAAAAp9g39u3LazZtSm+NQGT6hAn5yrp1eencuS3cDAAAABjNRCIAAAAAAAAAAKfQt594Ij++cWMODwwMecbUqspNa9fmotNOa+FmAAAAwGgnEgEAAAAAAAAAOEX+Yf/+XLFxY3pqBCKTqypfWLs2l82f38LNAAAAgLFAJAIAAAAAAAAAcAr881NP5fJGI0/19w95xsQkf7l6dV65YEHrFgMAAADGDJEIAAAAAAAAAECbbTxwIJc1GnmyRiAyIclnVq/OTyxa1LrFAAAAgDFFJAIAAAAAAAAA0EZbDx7M+kYje48eHfKMKsknVq3KTy1e3LrFAAAAgDFHJAIAAAAAAAAA0CZ39/RkfaOR3X19tebccP75eevSpS3aCgAAABirRCIAAAAAAAAAAG1w36FDuaTRyM7e3lpzrjvvvLxz+fIWbQUAAACMZSIRAAAAAAAAAIAWe/Dw4VzSaOThI0dqzfnDc87Jz7/gBS3aCgAAABjrRCIAAAAAAAAAAC2048iRrG80cv/hw7Xm/M4LX5hfPuOMFm0FAAAAjAciEQAAAAAAAACAFtnV25v1jUa2HzpUa861K1bkN1asaNFWAAAAwHghEgEAAAAAAAAAaIE9vb25tNHItp6eWnN+/cwzc+1ZZ7VmKQAAAGBcEYkAAAAAAAAAANS0r68vP7phQzYdPFhrzi+dfnp+54UvTFVVLdoMAAAAGE9EIgAAAAAAAAAANew/ejSv2LAh3z1woNacn12+PH94zjkCEQAAAGDIRCIAAAAAAAAAAEN04OjRXLFhQ/7xqadqzXnH0qW57rzzBCIAAABALSIRAAAAAAAAAIAh6Onvz6s2bcrf799fa85blizJ9StXZoJABAAAAKhJJAIAAAAAAAAAcJIO9/fnJzZtyt8+8UStOW9YtCgfX7kyEwUiAAAAQAuIRAAAAAAAAAAATkLvwEB+cvPmfH3fvlpzXrtwYT5zwQWZNMEf3wAAAABaw7cMAAAAAAAAAACD1DcwkDdt2ZKb9+6tNeeK+fPz2dWrM1kgAgAAALSQbxoAAAAAAAAAAAahv5S8devWfHHPnlpzLj3ttHxhzZpMFYgAAAAALebbBgAAAAAAAACAJgZKydu3bctf7t5da86PzJ2bm9auzbSJE1u0GQAAAMC/EokAAAAAAAAAAJzAQCm5+q678qldu2rNecmcOfnKunWZIRABAAAA2kQkAgAAAAAAAADwPEop+cW7785Hd+6sNef7Z8/O1zo6MnvSpBZtBgAAAPBsIhEAAAAAAAAAgOdQSsmv3XNPPrxjR605XbNm5ZaOjswViAAAAABtJhIBAAAAAAAAAPg3Sin5z/fdlz98+OFac9bMmJFbOzoyf/LkFm0GAAAA8PxEIgAAAAAAAAAA/8ZvP/BAfufBB2vNWDl9em7v6srCKVNatBUAAADAiYlEAAAAAAAAAACe4Q8efDDX3n9/rRnnTJuW27u6skQgAgAAAJxCIhEAAAAAAAAAgKdd9/DDec+999aasWLq1NzR1ZUXTJ3aoq0AAAAABkckAgAAAAAAAACQ5GM7d+aa7dtrzXjBlCm5o6srZ06b1qKtAAAAAAZPJAIAAAAAAAAAjHt/sWtX3nXnnbVmLJk8OXd0deXs6dNbtBUAAADAyRGJAAAAAAAAAADj2l/v3p2f2bo1pcaMhZMn5/aurpw/Y0bL9gIAAAA4WSIRAAAAAAAAAGDc+urjj+dNW7akv8aM0yZNym2dnVkzc2bL9gIAAAAYCpEIAAAAAAAAADAu3b5vX163aVP6ytDfITJn4sTc2tmZzlmzWrgZAAAAwNCIRAAAAAAAAACAcefbTzyRV2/cmCM1ApFZEyfmlo6OfN/s2S3cDAAAAGDoRCIAAAAAAAAAwLjynf37c8XGjekZGBjyjOkTJuTmdevy4rlzW7gZAAAAQD0iEQAAAAAAAABg3GgcOJDLN2zIU/39Q54xtarypbVr8yPz5rVwMwAAAID6RCIAAAAAAAAAwLiw9eDBXNZoZN/Ro0OeMbmq8oW1a3Pp/Pkt3AwAAACgNUQiAAAAAAAAAMCYt72nJ+sbjezu6xvyjAlJbly9Oq9csKB1iwEAAAC0kEgEAAAAAAAAABjTHjx8OOsbjezs7R3yjCrJJ1etyusXLWrdYgAAAAAtJhIBAAAAAAAAAMasHUeO5JLu7jx45EitOdeff37esnRpi7YCAAAAaA+RCAAAAAAAAAAwJj3W25v1jUbuOXy41pz/ee65edfy5S3aCgAAAKB9RCIAAAAAAAAAwJizt68vP9poZFtPT605v3f22fnF009v0VYAAAAA7SUSAQAAAAAAAADGlP1Hj+YVGzakcfBgrTnXrliR9555Zou2AgAAAGg/kQgAAAAAAAAAMGYc7O/PKzduzHeeeqrWnP94xhm59qyzWrMUAAAAwCkiEgEAAAAAAAAAxoTD/f15zcaN+faTT9aa8/PLl+eDZ5+dqqpatBkAAADAqSESAQAAAAAAAABGvd6Bgfzk5s25/Yknas15+9Kl+aPzzhOIAAAAAKOSSAQAAAAAAAAAGNWODgzkp7dsyc1799aa8+bFi3PDypWZIBABAAAARimRCAAAAAAAAAAwavWXkiu3bcsX9uypNecnFi7MJ1etykSBCAAAADCKiUQAAAAAAAAAgFFpoJS8+6678hePPVZrzhXz5+ezq1dn8gR/jAIAAAAY3Xy7AQAAAAAAAACMOqWU/NL27fnozp215lwyb17+as2aTBGIAAAAAGOAbzgAAAAAAAAAgFGllJJfv/fe/PEjj9Sa89I5c3LT2rWZPnFiizYDAAAAGF4iEQAAAAAAAABgVPntBx7I7z/0UK0Z3z97dm7u6MisSZNatBUAAADA8BOJAAAAAAAAAACjxh88+GCuvf/+WjM6Zs7MLR0dmSsQAQAAAMYYkQgAAAAAAAAAMCpc9/DDec+999aasWrGjNza2Zn5kye3aCsAAACAkUMkAgAAAAAAAACMeB/buTPXbN9ea8Y506bl9s7OLJ4ypUVbAQAAAIwsIhEAAAAAAAAAYET7i1278q4776w144ypU3N7V1eWT53aoq0AAAAARh6RCAAAAAAAAAAwYv317t35ma1bU2rMWDZlSu7o7MyKadNathcAAADASCQSAQAAAAAAAABGpK8+/njetGVL+mvMWDh5cm7r7My5M2a0bC8AAACAkUokAgAAAAAAAACMOLfv25fXbdqUvjL0d4jMmzQpt3Z0ZPXMmS3cDAAAAGDkEokAAAAAAAAAACPK3z/5ZF69cWOO1AhEZk+cmFs6OtI1e3YLNwMAAAAY2UQiAAAAAAAAAMCI8Z39+/NjGzakZ2BgyDNmTJiQr65blx+cM6eFmwEAAACMfCIRAAAAAAAAAGBEaBw4kMs3bMhT/f1DnjG1qnLT2rX54XnzWrgZAAAAwOggEgEAAAAAAAAAht3WgwdzWaORfUePDnnG5KrKF9auzaXz57dwMwAAAIDRQyQCAAAAAAAAAAyr7T09Wd9oZHdf35BnTEhy4+rVeeWCBa1bDAAAAGCUEYkAAAAAAAAAALxXLu0AACAASURBVMPmwcOHs77RyM7e3iHPqJJ8ctWqvH7RotYtBgAAADAKiUQAAAAAAAAAgGGx88iRrG808uCRI7XmXH/++XnL0qUt2goAAABg9BKJAAAAAAAAAACn3O7e3lzaaGT7oUO15vzRuefmXcuXt2grAAAAgNFNJAIAAAAAAAAAnFJP9PXl8g0bsqWnp9acD559dq45/fQWbQUAAAAw+olEAAAAAAAAAIBT5qmjR/NjGzfmuwcO1Jpz7YoVec+ZZ7ZoKwAAAICxQSQCAAAAAAAAAJwSh/r78+pNm/K/9++vNec/nnFGrj3rrNYsBQAAADCGiEQAAAAAAAAAgLY7MjCQ123enL994olac35++fJ88OyzU1VVizYDAAAAGDtEIgAAAAAAAABAWx0dGMibt2zJ3+zdW2vO25cuzR+dd55ABAAAAOB5iEQAAAAAAAAAgLbpLyVXbtuWL+7ZU2vOmxcvzg0rV2aCQAQAAADgeYlEAAAAAAAAAIC2KKXk3Xfdlb947LFac35i4cJ8atWqTBSIAAAAAJyQSAQAAAAAAAAAaLlSSn5p+/Z8dOfOWnNeMX9+bly9OpMm+CMOAAAAAM34BgUAAAAAAAAAaLnfvO++/NEjj9SacdG8efnrNWsyVSACAAAAMCi+RQEAAAAAAAAAWuq/PvBAfvfBB2vNePGcOfnS2rWZPnFii7YCAAAAGPtEIgAAAAAAAABAy/yPhx7Kf77vvlozLpw1K19bty6zJ01q0VYAAAAA44NIBAAAAAAAAABoiet37Miv3HNPrRmrZ8zI1zs6Mm/y5BZtBQAAADB+iEQAAAAAAAAAgNo+/eij+dm77qo149zp03NbZ2cWTpnSoq0AAAAAxheRCAAAAAAAAABQy1899ljetm1bSo0ZZ06dmts7O7Ns6tSW7QUAAAAw3ohEAAAAAAAAAIAhu/nxx/PmrVszUGPGsilTcntnZ86cNq1lewEAAACMRyIRAAAAAAAAAGBIbt+3L6/ftClHy9DfIbJw8uTc1tmZc2fMaOFmAAAAAOOTSAQAAAAAAAAAOGl//+STefXGjTlSIxCZN2lSvt7RkdUzZ7ZwMwAAAIDxSyQCAAAAAAAAAJyUf9q/P1ds2JCegYEhz5g1cWK+tm5dLpw9u4WbAQAAAIxvIhEAAAAAAAAAYNA2HjiQyzdsyP7+/iHPmDZhQr6ybl1ePHduCzcDAAAAQCQCAAAAAAAAAAzKXT09uazRyN6jR4c8Y3JV5Ytr1uTl8+a1cDMAAAAAEpEIAAAAAAAAADAI9x86lPWNRnb19Q15xsQkn1u9Oq9YsKB1iwEAAADwL0QiAAAAAAAAAMAJPXLkSC5pNPLwkSNDnlEl+fQFF+S1ixa1bjEAAAAAvodIBAAAAAAAAAB4Xrt6e7O+uzv3HT5ca85HV67Mm5csadFWAAAAADwXkQgAAAAAAAAA8Jz29vXlskYjdx46VGvOH597bt6+bFmLtgIAAADg+YhEAAAAAAAAAIBn2X/0aF6xYUM2HjxYa87vnX12fuH001u0FQAAAAAnIhIBAAAAAAAAAL7Hwf7+vHLjxnznqadqzfkvK1bkvWee2aKtAAAAAGhGJAIAAAAAAAAA/IvD/f157aZN+faTT9aa8yunn573n3VWa5YCAAAAYFBEIgAAAAAAAABAkqRvYCBv3LIlt+3bV2vOu5cvz38755xUVdWizQAAAAAYDJEIAAAAAAAAAJD+UvKWrVvz5ccfrzXnZ5YsyYfPO08gAgAAADAMRCIAAAAAAAAAMM4NlJJ3bNuWz+3eXWvOGxYtysdWrswEgQgAAADAsBCJAAAAAAAAAMA4VkrJL9x9dz65a1etOa+cPz9/fsEFmTTBH0UAAAAAGC6+mQEAAAAAAACAcaqUkvfce2/+dMeOWnPWz5uXv1qzJlMEIgAAAADDyrczAAAAAAAAADBOvf/++/PfHnqo1oyXzpmTm9aty7SJE1u0FQAAAABDJRIBAAAAAAAAgHHo9x98MO9/4IFaM75/9uzc3NGRmQIRAAAAgBFBJAIAAAAAAAAA48x1Dz+c9957b60Za2fOzN90dGTupEkt2goAAACAukQiAAAAAAAAADCOfHznzlyzfXutGedPn57bOjuzYPLkFm0FAAAAQCuIRAAAAAAAAABgnPjsrl15x5131ppx1rRpub2zM0umTGnRVgAAAAC0ikgEAAAAAAAAAMaBm/bsyVu2bk2pMeMFU6bk9s7OnD5tWsv2AgAAAKB1RCIAAAAAAAAAMMbdsndv3rh5c/przFg8eXJu6+zM2dOnt2wvAAAAAFpLJAIAAAAAAAAAY9g3n3gir920Kb1l6O8QOW3SpNza2ZlVM2e2cDMAAAAAWk0kAgAAAAAAAABj1P9+8sn8+MaNOTwwMOQZsydOzC0dHemYNauFmwEAAADQDiIRAAAAAAD+L3v3HmZXXd+L/71mMrmQENKEJBgSAgkESCAB9FS8UKpcqrX2IBY99Xg7VhNqbXsKai/H3xE9x6Mtiu2pVkHr0VIvLVVR6xW0RbSl3sgkJEAgwUAIJCGQe0jm8v39kYwMIbeZvWfvubxez7Oemdlrrc96LzIPf6w97/0FAGAYunP79rx0+fLs6Orq94xjWlryjbPPzn+aOLGOyQAAAAAYKEoiAAAAAAAAADDMrNy5M5cuW5YtnZ39njGmqvKVs87KCydNqmMyAAAAAAaSkggAAAAAAAAADCP379qVi9vb81hHR79njKqq/NOCBbl48uQ6JgMAAABgoCmJAAAAAAAAAMAwsfbJJ3NRe3se2bu33zNaknz2zDPzG8cfX79gAAAAADSEkggAAAAAAAAADAPr9+zJRUuX5sE9e2qa86kzzsirpk2rUyoAAAAAGklJBAAAAAAAAACGuE179+bi9vasfvLJmuZ87LTT8oYTTqhTKgAAAAAaTUkEAAAAAAAAAIawJzo6cumyZbl7166a5nxo7txceeKJdUoFAAAAQDMoiQAAAAAAAADAELW9szMvXbYsS3fsqGnOe08+OVfNmlWnVAAAAAA0i5IIAAAAAAAAAAxBu7q68hvLl+c/tm+vac6fnHRS3jV7dp1SAQAAANBMSiIAAAAAAAAAMMTs6e7OK+66K9/furWmOX9w4on5P6eckqqq6pQMAAAAgGZSEgEAAAAAAACAIaSjuzuvXrEi33niiZrm/M4JJ+TDp56qIAIAAAAwjCiJAAAAAAAAAMAQ0VVKXn/PPfnK5s01zXnNtGm5/vTT06IgAgAAADCsKIkAAAAAAAAAwBDQXUrecu+9+cLGjTXNecXxx+czZ5yRVgURAAAAgGFHSQQAAAAAAAAABrlSSv7gvvvy/x59tKY5L5k8OZ+fPz+jWvy5AAAAAMBw5KkPAAAAAAAAAAxipZT88Zo1+ej69TXNedGkSfnSggUZoyACAAAAMGx58gMAAAAAAAAAg9h7167NtQ89VNOM502cmK+edVbGtbbWKRUAAAAAg5GSCAAAAAAAAAAMUh988MFc8/Of1zTjvAkT8o2zz86EUaPqEwoAAACAQUtJBAAAAAAAAAAGob95+OG8Y82ammYsOOaYfHvhwkxqa6tTKgAAAAAGMyURAAAAAAAAABhkPv3II/m9++6racZp48bllkWLcvzo0XVKBQAAAMBgpyQCAAAAAAAAAIPIP2zcmN+5996aZsweMybfXbQozxozpk6pAAAAABgKlEQAAAAAAAAAYJD46mOP5bV3353uGmbMGD063z3nnMwaO7ZuuQAAAAAYGpREAAAAAAAAAGAQ+M7jj+eKFSvSWUq/Z0xta8utixZl7rhxdUwGAAAAwFChJAIAAAAAAAAATfb9LVty2V13ZW8NBZFfGjUqtyxalDPHj69jMgAAAACGEiURAAAAAAAAAGii/9i2LS9bvjy7u7v7PePY1tZ8a+HCLJowoY7JAAAAABhqlEQAAAAAAAAAoEmWbt+elyxblh1dXf2eMa6lJV8/++z88sSJdUwGAAAAwFCkJAIAAAAAAAAATbBy585csmxZtnR29nvG6KrKV846KxdMmlTHZAAAAAAMVUoiAAAAAAAAANBg9+/alYvb2/NYR0e/Z4yqqvzTggW5ZPLkOiYDAAAAYChTEgEAAAAAAACABnrwySdzUXt7Htm7t98zWpJ89swz8/Ljj69fMAAAAACGPCURAAAAAAAAAGiQR/bsyUXt7Xlwz56a5nzqjDPyqmnT6pQKAAAAgOFCSQQAAAAAAAAAGmDT3r25uL099+/eXdOcvznttLzhhBPqlAoAAACA4URJBAAAAAAAAAAG2JaOjvzasmVZuWtXTXM+NHdufvfEE+uUCgAAAIDhRkkEAAAAAAAAAAbQ9s7OvHT58ty5Y0dNc9578sm5atasOqUCAAAAYDhSEgEAAAAAAACAAbKrqyu/eddduWPbtprm/PGsWXnX7Nl1SgUAAADAcKUkAgAAAAAAAAADYE93dy6/667865YtNc35/RNPzPvnzElVVXVKBgAAAMBwpSQCAAAAAAAAAHXW0d2dV69YkW8/8URNc37nhBPyl6eeqiACAAAAwFFREgEAAAAAAACAOurs7s5r7747X9m8uaY5r5k2LdeffnpaFEQAAAAAOEpKIgAAAAAAAABQJ92l5E333pt/3LSppjmXHX98Pn3GGWlVEAEAAACgD5REAAAAAAAAAKAOSin53VWrcuOGDTXNecnkyfnC/Plpa/GWPgAAAAB944kSAAAAAAAAANSolJI/uv/+3PDIIzXN+dVJk/KlBQsyRkEEAAAAgH7wVAkAAAAAAAAAalBKyZ898ED+6uGHa5pz/sSJ+epZZ2Vca2udkgEAAAAw0iiJAAAAAAAAAEAN/tfatfnAgw/WNOPcCRPyzbPPzrGjRtUpFQAAAAAjkZIIAAAAAAAAAPTTtQ8+mHf//Oc1zVhwzDH5zsKFmdTWVp9QAAAAAIxYSiIAAAAAAAAA0A8fWbcu71yzpqYZp40bl1sXLcrxo0fXKRUAAAAAI5l1aqFGVVVVSeYm+U9JnrP/67lJJhzmtLWllJMHPt3TVVX18ySzG33dXt5SSvlkE68PAAAAAABQs67uktWbdmT5uq1ZtWF7tu7uyJ7O7uzt6s7o1paMGdWS48a1Zd70Y7Nw5nGZM3VCWluqZsemzj65fn1+//77a5px8tix+e6iRTlhzJg6pQIAAABgpFMSgT6qquqkPFUGec7+bVJTQwEAAAAAADBgSim5Y83juWXlhixbtyUr1m/L7o6uoz7/mNGtmf+siVk4c1IumT8958+ZnH2fQ8ZQ9fePPprFq1bVNGPmmDH53qJFmTV2bJ1SAQAAAICSCBxWVVXTs68M0nuVkKlNDQUAAAAAAEBDbN3dkS/9bF3+/o61Wb1pZ7/n7NrblZ+sfSI/WftEPvXDBzJ36vi89vzZufy8mTluXFsdE9MI/7RxY95wzz0pNcyY3taW7y5alFPGjatbLgAAAABIlESGtKqqxid5XpJnJTk+yZgkW5OsSfLTUspjTYw3XHw7yaJmhwAAAAAAAKBx1m7emY/ftjo337m+TyuGHK3Vm3bmPV9bmb/41r257NwZufLCuZk9ZXzdr0P9/fNjj+W377473TXMmDJqVG5dtCjzjjmmbrkAAAAAoIeSyBBUVdV/SfLWJM/Nof8NS1VVP05yfZIbSyn1f3oNAAAAAAAAw0hnV3c+cfsD+fCtq7K3s5YawNHZ3dGVz//ooXzxZw/nqkvm5S0XzElrSzXg16V/bnn88bxyxYp0lv6vITJp1KjcsmhRzpowoY7JAAAAAOApSiJ1VFXV2CQth9i9u5Qanhbum392ks8mWdDz0uEOz74SyS8neWdVVb9TSvn3Wq4PAAAAAAAAw9X9G7fn6puWpf2hLQ2/9t7O7nzgm/fkW3c9mg9esTCnTju24Rk4vO9v2ZL/fNdd2VvDW77HtrbmWwsX5txj/fsCAAAAMHCUROqkqqoTkjyUg5dEdieZleSJGua/NMkXkkzIU+WQIz2BrPZvZyT516qqfq+U8sn+ZmDY+7ck/2+Ar3H7AM8HAAAAAADok+7ukk/cviYfuqUxq4ccztKHtuTX/+8PcvX+VUVarCoyKNyxdWtetnx5dnf3//djXEtLvn722XnuxIl1TAYAAAAAz6QkUj+/laT1IK+XJH9fSqmlIPK8JF9OMrrXzF/sPsRp5YDj2pJcX1VVFEUGVElyf5JHkvxKk7P01X1+NwAAAAAAgJGko6s777ipPTcvXd/sKL+wt7M77//mPbn7kW259opFaWs92GfU0Sg/2749L1m2LDu6uvo9Y0xV5atnnZULJk2qYzIAAAAAODglkfp51f6vBxY4SpLr+ju0qqoJST6XfQWRntlH85FBvY/pKYxUST5aVdVdpZQ7+puJp/l5kh8n+cn+7aellK1VVf1qkn9pYi4AAAAAAAAO48mOrrztcz/LrXdvbHaUg7p56frs2NOZj7zmvIxtO9hn1THQ7tqxI5e2t2drDQWRtqrKF886KxdPnlzHZAAAAABwaEoidVBV1aQkL8jBCyK3l1JW1TD+z5LMzqELIiWHVvX62lMUaUvy8aqqziulNHe97KHn4Ty9EPKTUsrm5kYCAAAAAACgrzq6ugd1QaTHrXdvzNs+d2c+9trzrCjSYPfu2pWL29uzubOz3zNak3xh/vy8bMqU+gUDAAAAgCPwJLE+npunFzJ6+2p/h1ZVdXySP8yRCyLVQbbe+w889+wkb+tvrhHmr5O8PMkJpZSZpZRXlFLeV0r5toIIAAAAAADA0NPdXfKOm9oHfUGkx613b8g7bmpPd/fhPjuOelqze3cuWro0Gzo6+j2jSvJ3Z56Zy6dOrV8wAAAAADgKVhKpj+ceZl+/SyLZV+QYl31lj94lj97lkMeTfCHJD5M8luT4JM9O8tok0w5xbpXk3VVVXV9K2VNDvmGvlPK3zc4AAAAAAABA/Xzi9jW5een6Zsfok5uXrs/8GROz+FfmNjvKsPfQk0/movb2PLx3b01zPnn66XnN9Ol1SgUAAAAAR89KIvXRuyTS+yN87i+lrO7PwKqqqiRvOmBez/ye0sc/J5lXSnlbKeXzpZRb9n99e5JTk/zD/mMPthLJpCSX9ScbAAAAAAAADEX3b9yeD92yqtkx+uWD31mV+zdub3aMYe2RPXvy4vb2/PzJJ2ua85HTTsubnvWsOqUCAAAAgL5REqmPeXl6maOnmPGzGmb+SpKZveYlTxVESpLbk7yilPL4wU4upewopfx2kq/l6UWR3l5bQz4AAAAAAAAYMjq7unP1Tcuyt7O72VH6ZW9nd95+07J0dR/sbT9qtWnv3lzc3p77d++uac4H587N7514Yp1SAQAAAEDfKYnUaP+KH7MOsXtZDaNfecDP5YDv31pK6TqKOW9MsvWAGT1lk0urqppYQ0YAAAAAAAAYEj75gwfS/tCWZseoydKHtuQTt69pdoxh54mOjly6bFlW7tpV05z/dfLJuXrWod46BgAAAIDGUBKp3Ywko/d/Xx2wr5aSyEvzzNU/elYE+UYpZeXRDCmlPJHkI72y9c44Ksl5NWQEAAAAAACAQW/t5p257pZVzY5RF9fdsiprN+9sdoxhY1tnZ16ybFmW7thR05w/Pemk/I/Zs+uUCgAAAAD6T0mkdof7KJi1/RlYVdXJSeb2/HiQQ/62jyM/e5h95/ZxFgAAAAAAAAwpH79tdfZ2djc7Rl3s7ezOx29b3ewYw8LOrq68bPny/Gj79prm/PeZM/O+U05JVR3srV0AAAAAaCwlkdpNOMy+rf2cecEBP/deUWRHkm/2ZVgp5Z4kPz/IrERJBAAAAAAAgGFs6+6O3Hzn+mbHqKub71yfbU92NDvGkLa7qyu/uXx5frC1v2/p7nPljBm5bu5cBREAAAAABg0lkdodc5h9/X2i+IKDvFZlX8Hj1lLK3n7MXJaDr0pyWj9mAQAAAAAAwJDwpZ+ty+6OrmbHqKvdHV350k/XNTvGkLW3uzu/tWJFvrdlS01z3jB9ej562mkKIgAAAAAMKkoitTtcSaS/6xI//zD7vt3Pmfce8HPJvtLIcf2cBwAAAAAAAINaKSU33rG22TEGxI13rE0ppdkxhpyO7u78l5Ur843HH69pzqunTs3fnnFGWhREAAAAABhkRjU7wDAw5gj7nuzLsKqqJiaZn30ljoP5l77M62XzIV6f2M95DGNVVbUmOSXJSUmmJhmXpCvJriTbkqxL8lApZUfTQgIAAAAAABzBHWsez5pNO5sdY0Cs3rQz//HA4zl/zpRmRxkyukrJ6++5J19+7LGa5lx2/PG58cwz06ogAgAAAMAgpCRSu8M9VT4mfSyJJHlh9q3w0rPSR++yyMZSyn19nNfjUDmtJEKPk6qqek+Si5Kcm8OvkpMkqapqTZKfJvlekm+UUh4c2IgAAAAAAABH75aVG5odYUDdsnKDkshR6i4lb7733nxh48aa5rxk8uR8Yf78tLW01CkZAAAAANSXkkjtth1m3+QkfV2n+FcP8lpPWeTf+jirt72HeP1wK6Ewsrxo/9YXc/ZvVyRJVVW3J7k+yT+UUjrrGw8AAAAAAKBvlq3b0uwIA2q431+9lFLytvvuy6cffbSmOS+aNClfWrAgYxREAAAAABjEPL2q3dbD7DutH/NefJh9P+zHvB5jD/H6rhpmwoEuSPL3Se6uqurVzQ4DAAAAAACMXF3dJSvWH+7z3oa+Feu3pau7NDvGoFZKydtXr87H1q+vac4LJk7MV886K+NaW+uUDAAAAAAGhpJI7TYfZt+ZfRlUVdWJSc7NvlVDDub2vsw7wHGHeH1HDTPhUE5N8oWqqr5WVdUJzQ4DAAAAAACMPKs37cjujq5mxxhQu/Z2Zc0mb/cdzv/3wAO5bt26mmY859hj8/WFCzNh1Kg6pQIAAACAgaMkUrvVeWo1jgPLHZf0cdZlSar931cHzNuR5Kd9TveUGYd4fXsNM+FIfiPJT6uqek6zgwAAAAAAACPL8nVbmx2hIZY/PDLusz/et3Zt3vfggzXNWDR+fL69cGGOUxABAAAAYIjwJKtGpZRSVdWyJOfnqVJHyb6Sx69UVTWplLLlKMe96SCv9ZRFvl9K6a4h6smHmLuhhplwNGYkua2qqpeVUv612WGOVlVVv5fkrQ241NwGXAMAAAAAAEacVRtGxmel3TtC7rOvPvzQQ3nXAw/UNOPMY47JdxYtyuS2tjqlAgAAAICBpyRSH3dmX0kkefoKIGOT/EGS9x5pQFVVL0xybp4qmBzoezVmXJBnrnSS7FsJBe5P8qMkdyVZnuSBJFv3b7uT/FKSKUmOT/KcJL+S5IL9Px+NY5J8raqqF5dSflzf6ANmapL5zQ4BAAAAAAD0z9bdHc2O0BDbGnyf11xzTWbMmJHFixc39Lp98bGHH85Vq/e/Dfq1ryWbNydvfGOfZswdOza3LlqUaaNH1z8gAAAAAAwgJZH6+EaS3z3gtZ6yxzurqrq5lLLsUCdXVdWa5MNHuMZX+huuqqopSWb1ytS7LKIkMjKVJLcl+WqSr5dSVh3h+E37tyT5QZK/3P97+6ok70xyzlFcc0KSL1ZVdV4p5bH+xQYAAAAAADg6ezq7mx2hIfZ0NO4+r7nmmrznPe/5xc+DsSjy/x55JG+97759P3zta8l11z218yiLIrPHjMn3zjknM8aMqX9AAAAAABhgLc0OMEx8K8nG/d/3XgmkZN8KCl+vqur5BzuxqqqxSW5M8uyDnNtT6PhhKWVNDfleeJh999cwl6Hn8SR/meSMUsqLSikfPoqCyEGVUrpKKZ8vpZyb5L8mOZq1zGcluaE/1wMAAAAAAOiLvV0jpCTSoPs8sCCyZMmS3HDD4Hrb5+8ffTS/c++9+344sCDymc8kn/70EWfMGD063z3nnJw0duzAhAQAAACAAWYlkToopXRVVfX5JH+Yp1bp6Cl4lCQnJrmtqqrvZN+KIA9m33/7c5K8KcnsXucczKdqjPjiw+xrr3E2Q8svl1I66z20lPK5qqp+nOSfkiw8wuGvqKrqpaWUb9Y7BwAAAAAAQI/RrSPj8/LGNOA+DyyI9FiyZEmSwbGiyD9u3Jg33HPPvjdrDyyI9PjMZ/Z9PcSKItPa2vLdRYsyd9y4gYoJAAAAAANOSaR+rs2+wseEPLUKSO+iSGuSl+zfejtw5ZCe73usTfLZGrO9vNfM3rOfKKXcW+NshpCBKIj0mn1fVVUXJvmX7CtAHc77kiiJAAAAAAAAA2bMqBFSEmkb2Ps8VEGkx2Aoinx506a8ZuXKdCeHLoj0OERRZPKoUbl10aKcMX78QMUEAAAAgIZQEqmTUsr6qqquSfKhPL2I0bsocrCVQnqvPNJbz3nvKqV09DdXVVXPTnJyr+v3/npHf+fCwZRStlRV9ZtJ7kwy5TCHnltV1UWllO82KFp/bEqysgHXmZtkTAOuAwAAAAAAI8px49qaHaEhJg7gfR6pINKjmUWRf37ssbx65cp0JUcuiPQ4oChyXGtrvrNoUc6eMGGgYgIAAABAwyiJ1NdfJbkiyfl5eimkd1HkYHoXRHqv+PHNUsrnasz0+sPs+/caZ8MzlFIeqqrqj5L83REOfX2SQVsSKaV8NMlHB/o6VVWtSDJ/oK8DAAAAAAAjzbzpxzY7QkOcPoD3OWPGjKM+thlFkW8//nheuWJFOko5+oJIjyn7Pu9sfEtLvrlwYZ597Mj4fQEAAABg+BsZayw3SCmlO8lvJrknzyyGVIfZfjGi17H3JXlNLXmqqhqzf8ahyimD9g/0GdpKKTcmaT/CYf+5qqqR8RFeAAAAAABAw50987hmR2iIs08cuPtcvHhxrr/++qM+fsmSJbnhhhsGLE9v33viiVx2113Z25+CyFVXJS9/eca2tOTrCxfmeceNjN8VAAAAAEYGJZE6K6U8luQFSW7JUwWQcpRbQTbS2gAAIABJREFU9p/zwyQXllK21RjnvyaZ0mtu77LIY6WUO2qcD4fzV0fYf1yScxsRBAAAAAAAGHnmTp2QcW2tzY4xoI4Z3Zo5UycM6DUGY1Hk9i1b8vLly/Nkd3e/CyKjqypfOeusXDhp0sAFBQAAAIAmUBIZAKWUJ0opv5bkTUnW5uCrhvTove+xJH+S5MWllA11iHJVniqG9C6IlCTfrMN8OJwvJ+k4wjHPa0QQAAAAAABg5GltqbJgxsRmxxhQC2ZMTGvLwd6CrK/BVBT5961b8+vLl2dXDQWRUVWVf1qwIJdOnjwgGQEAAACgmZREBlAp5dNJ5ib5texbVeHfkmxMsjf7/nh+Q5JlST6Z5LeTnFJK+YtSypH+sP6Iqqp6ZZL5eXoJpff2z7VeAw6nlLIlydIjHHZGI7IAAAAAAAAj08KZw3uViEbe32Aoivx427a8ZNmy7Ojq6ndBpDXJF+bPz8uPP76u2QAAAABgsBjV7ADDXSmlJLll/9ZIP0/yisPs/06DcjCy/SzJfzrM/pMblAMAAAAAABiBLpk/PZ/64QPNjjFgLpk/vaHXW7x4cZJ9BZCj0XNcz3m1uHP79ly6bFm21VAQaUly45ln5pVTp9acBwAAAAAGKyWRYaqU8tMkP212Dka8nx9h/7RGhAAAAAAAAEam8+dMzpyp47Nm085mR6m7uVPH57mnTG74dZtRFFm+Y0cuaW/Pls7OfhdEqiSfOuOM/Pb0xhZrAAAAAKDRWpodABjWth5h/zENSQEAAAAAAIxIVVXldefPbnaMAfG682enqqqmXHvx4sW5/vrrj/r4JUuW5IYbbujXte7euTMXt7dncw0FkSS5Yd68vOGEE/qVAQAAAACGEiURYCDtPcL+toakAAAAAAAARqzLz5uZcW2tzY5RV+PaWnP5s2c2NUMjiiL37dqVi9rbs7Gjo6aCyEdPOy1vnjGjT9cGAAAAgKFKSQQYSOOOsH93Q1IAAAAAAAAj1nHj2nLZucOrIHDZuTMycWzzP4trIIsiD+zenRe3t+eRvXtrKoh8eO7cvPXEE4/+XAAAAAAY4pREgIF0pDW7dzQkBQAAAAAAMKJdeeHcjB41PN4aHT2qJVdeOLfZMX5hIIoiDz75ZF60dGnW7dlTU0Hkz+fMyX+fNevozwUAAACAYWB4PAkFBqtTj7D/4YakAAAAAAAARrTZU8bnqkvmNTtGXVx1ybzMnjK+2TGepp5FkYf37MmLli7N2hoLIu89+eS886STjv5cAAAAABgmlESAgfTcI+x/oCEpAAAAAACAEe/NLzwli2ZNanaMmpwza1LecsGcZsc4qHoURR7dsycvXro0a558sqaCyLtmz87/d/LJR38uAAAAAAwjSiLAgKiqan6Sk49w2LIGRAEAAAAAAMio1pZ86IqFGT1qaL5FOnpUSz54xcK0tlTNjnJItRRFNu3dm4va27Nq9+6aCiLvmDUr71UQAQAAAGAEG9XsAMCw9fqjOObfBjwFAAAAAADAfqdOOzZXXzIv7//mPc2O0mdvv3ReTp12bLNjHNHixYuT7CuAHI0lS5ZkR1dXPvOc52Tlrl01FUT+8MQT8+dz5qSqBm+RBgAAAAAGmpIIUHdVVf1SkiM9+V9dSlndiDwAAAAAAAA93nLBnNz9yLbcvHR9s6MctcvOmZE3v3BOs2Mctb4WRa5+61v3lT2SfhdEfnfGjHz41FMVRAAAAAAY8ZREgIHw/iSTjnDMPzYiCAAAAAAAjHRd3SWrN+3I8nVbs2rD9mzd3ZE9nd3Z29Wd0a0tGTOqJceNa8u86cdm4czjMmfqhLS2DN8/tG9pqXLtFYuyY09nbr17Y7PjHNHFZ07PtVcsSssQ+zfpa1GkT+WQ5GkFkd854YR85LTTFEQAAAAAIEoidVNV1f9sdob+KKW8t9kZGF6qqvqtHHkVka4kf9uAOAAAAAAAMOKUUnLHmsdzy8oNWbZuS1as35bdHV1Hff4xo1sz/1kTs3DmpFwyf3rOnzN52P3xfVtrSz7ymvPyts/9bFAXRS4+c3o+8ppz09ba0uwo/dLnosjR6lUQed306bn+9NPTMsx+RwEAAACgv5RE6ueaJKXZIfpBSWSYq6pqfpJHSilPNOBalyS58SgOvamUsnqg8wAAAAAAwEiydXdHvvSzdfn7O9Zm9aad/Z6za29XfrL2ifxk7RP51A8fyNyp4/Pa82fn8vNm5rhxbXVM3Fxj21rzsdc+O++4qT03L13f7DjPcNk5M3LtFYuGbEGkR92LIr0KIq+eOjWfOv30tCqIAAAAAMAvKInU31B6AjkUSy303aVJ3l1V1XVJ/qaUsrneF6j2fXzYHyf5Xzny/1d2J/mzemcAAAAAAICRau3mnfn4batz853r+7RiyNFavWln3vO1lfmLb92by86dkSsvnJvZU8bX/TrN0NbakutedU7OfNbEfOiWVdnb2d3sSBk9qiVvv3Re3vzCOWlpGUpvPR5a3YoivQoilx9/fG4888yMahnaJRoAAAAAqDdPzOqvDJGNkWVS9q0a82BVVZ+oquoF9RpcVdW5Sb6V5P05uuLZNaWUB+p1fQAAAAAAGKk6u7rzsX9dnUs+/P18/kcPDUhBpLfdHV35/I8eyiUf/n4+ftvqdHUPj7ecWlqqLLlwbr7xBy/MolmTmprlnFmT8o0/eGEW/8rcYVMQ6bF48eJ85GMf6/+AXgWRl0+Zks/Pn582BREAAAAAeAYridTfUHhaOzye2DdIVVW/kmReH087/Qj7J1RV9eZ+xLmtlHJfP87rcUySNyd5c1VVDyX5epJbkvxbKeXRox1SVdXkJBcmeWuSi/tw/a8mubYPxwMAAAAAAAdx/8btufqmZWl/aEvDr723szsf+OY9+dZdj+aDVyzMqdOObXiGgXDqtGPzxSufl0/+4IFc1+BVRUaPasnVl8zLmy+Yk9ZhVg7psbe7O995wQv2lT2uu65vJ/cqiLxk8uTctGBBRiuIAAAAAMBBKYnAkb0pyRvqPHNKkk/047z/lqSWkkhvs5JcuX9LVVWPJLknyZokjyZ5PMmTSbqS/FKSyUmmJnl2krPS90LUvyd5bSlFSQkAAAAAAPqpu7vkE7evyYcaXGI4mKUPbcmv/98f5OpL5uUtF8wZFitfjGptyZUXzs1LzzohH79tdW6+c/2ArtAyrq01l507I1deODezp4wfsOs0W2d3d16zcmW+unlzTXMumjQpX1qwIGMURAAAAADgkJRE6q+ZfwB/qCfv/iifo/Gs/duLBmD2vyb5zVLK9gGYDQAAAAAAI0JHV3fecVN7bl66vtlRfmFvZ3fe/817cvcj23LtFYvS1jo8/nh/9pTxef/lC/Onv35mvvTTdbnxjrVZvWln3ebPnTo+rzt/di5/9sxMHNtWt7mDUVcped099+SLjz2WfO1rfV9FJEmuuy6njRuXr7znPRnX2lr/kAAAAAAwjCiJ1FczPx6p5KkyyIE5hv7HNjGU/d8kV5dSOpsdBAAAAAAAhqonO7ryts/9LLfevbHZUQ7q5qXrs2NPZz7ymvMytm34/BH/xLFteeMLTskbnn9y/uOBx3PLyg1Ztm5L7np4W59WGDlmdGsWzJiYhTMn5ZL50/PcUyanqob/W3jdpeRN99yTL2zc2P+CyH73ve99+exJJ2Xx4sV1TAgAAAAAw4+SSJ2UUhrysUhVVY1OMiXJ5CQzkzw/yQv2b2PyzLJISfLXSd5RSuloREbYb1WSK0sp/9LsIAAAAAAAMJR1dHUP6oJIj1vv3pi3fe7OfOy15w2bFUV6VFWV8+dMyflzpiRJurpL1mzakeUPb829G7Zn2+6O7Onozp6u7oxpbcmYtpZMHNeW06cfm7NPPC5zpk5Ia8vwL4X01l1Klqxalb/bsKHmgkiPJUuWJImiCAAAAAAchpLIEFNK2Zvkkf3biiTfTpKqqqYm+b0kVyaZlqfKIlWS30/ygqqqfqOUsqEZuWmqe5KsTDK/Qde7L8kHktyomAQAAAAAALXp7i55x03tg74g0uPWuzfkHTe157pXnZOWYVyKaG2pctr0Y3Pa9GObHWVQKqXk9++7L5985JG6FUR6KIoAAAAAwOENr4/wGcFKKZtKKdckOTXJZ7OvHJI8VRR5dpIfVlV1SnMS0iyllG+VUhYkmZ7k1Uk+luQnSZ6s42UeSvKJJBcmOb2U8ikFEQAAAAAAqN0nbl+Tm5eub3aMPrl56fp88gdrmh2DJiml5KrVq/M369fXvSDSY8mSJbnhhhvqPhcAAAAAhgMriQwzpZQdSV5XVdWtST6ZfUWgnqLInCS3VlV1fillUxNjDimllDcmeWOTY9SslLIxyT/u31JVVWuSM5Msyr7fjVn7t5lJjktyzP5tTJLO7CuVbM++VWweTnJvkuVJflxKubeR9wIAAAAAACPB/Ru350O3rGp2jH754HdW5cVnTMup06y0MZKUUvKna9bkL9et63tB5Kqr9n09ynOsKAIAAAAAB6ckMkyVUj5TVdXY7Fs1ouSposgpSb5SVdUFpZSuZmakufb/+9+1fwMAAAAAAAaRzq7uXH3Tsuzt7G52lH7Z29mdt9+0LF/83eentaVqdhwa5Jqf/zx//tBD/SuIvPzlSZJpo0dn4wc+cFSnKYoAAAAAwDO1NDsAA6eUcn2Sv86+ckiyryiSJM9N8idNCQUAAAAAAMARffIHD6T9oS3NjlGTpQ9tySduX9PsGDTI+9auzXvXrq2pIDJn7Nj89N3vzvXXX3/Upy9ZsiQ33HBDX+MCAAAAwLClJDL8/c8kj/f6uWdFkXdVVTWzOZEAAAAAAAA4lLWbd+a6W1Y1O0ZdXHfLqqzdvLPZMRhg1z74YN71wAM1FUROGjMm3zvnnMwcOzaLFy9WFAEAAACAflISGeZKKVuT/EWeWk2kx+gkVzc+EQAAAAAAAIfz8dtWZ29nd7Nj1MXezu58/LbVzY7BAPqrdevyzjVraiqInDh6dL53zjmZPXbsL3YrigAAAABA/yiJjAyfP+DnntVE3lRV1egm5AEAAAAAAOAgtu7uyM13rm92jLq6+c712fZkR7NjMAA++vDD+e/3319TQeSE/QWRuePGPeMwRREAAAAA6DslkRGglPJQkpUH2TUhyUUNjgMAAAAAAMAhfOln67K7o6vZMepqd0dXvvTTdc2OQZ197OGH87b77qupIDK1rS3fXbQo84455pCHK4oAAAAAQN8oiYwc/559q4ccSEkEAAAAAABgECil5MY71jY7xoC48Y61KaU0OwZ1csP69XlrjQWRyaNG5dZFizJ//PgjnqYoAgAAAABHT0lk5NhwiNfPbmgKAAAAAAAADuqONY9nzaadzY4xIFZv2pn/eODxZsegDj65fn2WrFpVU0Fk0qhRuWXRoiycMOGoT1cUAQAAAICjoyQycmw64OeSfSuLzGtCFgAAAAAAAA5wy8pDfebX8DDc728k+NQjj+QtNRZEjm1tzbcXLsx5xx7b5+srigAAAADAkSmJjBxdh3h9UkNTAAAAAAAAcFDL1m1pdoQBNdzvb7j79COP5M333ltTQWR8S0u+tXBhfnnixH7nUBQBAAAAgMNTEhk5ph3i9fENTQEAAAAAAMAzdHWXrFi/rdkxBtSK9dvS1V2aHYN++LtHH82b7r03pYaCyLiWlnx94cI8/7jjas6jKAIAAAAAh6YkMnLMPsTrnQ1NAQAAAAAAwDOs3rQjuzsOtTD88LBrb1fWbNrR7Bj00Wc3bMgb77mnpoLImKrKV886KxdOmlS3XIoiAAAAAHBwSiIjx6VJDvbRTNsbHQQAAAAAAICnW75ua7MjNMTyh0fGfQ4Xn9+wIa+/++6aCiKjqypfPuusXDx5ct3zKYoAAAAAwDMpiYwAVVX9apLpPT8e8PWhhgcCAAAAAADgaVZtGBmf63XvCLnP4eAfNm7Ma+++O901FETaqipfOuusvHTKlAFKqSgCAAAAAAdSEhnmqqqqklx7iN0lyb0NjAMAAAAAAMBBbN3d0ewIDbFthNznUHfTxo35rytX1lwQ+eKCBXnZABZEeiiKAAAAAMBTlESGv/+T5NnZVwipDrL/3xsbBwAAAAAAgAPt6exudoSG2NMxMu5zKPvipk357ZUr05Ukmzcf/Ym9CiKjqio3LViQlx9//IBkPJi+FkXWr18/gGkAAAAAoHlGNTsAA6OqqlFJPpDkj3LogkiSfKNhoQAAAAAAADiovV0jozyxZ4Tc51D15U2b8l96CiJJ8sY37vv6mc8c/sQDCiL/OH9+/nMDCyI9Fi9enGTfSiGH8+53vzvXXHNNAxIBAAAAQOMpiQwzVVW1JHlZkr9IMi/7yiGl1yGl12t3lFLWNDwkAAAAAAAATzO6taXZERpizAi5z6HoK489lletXJnOUp6+40hFkV4FkdYkX5g/P6+YOnXAch7JkYoiCiIAAAAADHdKIkNcVVWjk5yeZGGS5yV5ZZJpeWrlkMOtInLtgAcEAAAAAADgiMaMGhnliTFtI+M+h5qvPfZYrlix4pkFkR6HKoocUBD5/Pz5eWUTCyI9DlUUURABAAAAYCRQEqmTqqoauSJHleSYJMcmGXOQfclTq4f0Loj0XkXk+6WUmwcyJAAAAAAAAEfnuHFtzY7QEBNHyH0OJV/fvDm/tWJFOg5VEOlxYFGkV0GkJcln58/PFdOmDVjOvjqwKKIgAgAAAMBIoSRSPyfn8Kt2NErvp7cHFkR6PJ7kvzUmDgAAAAAAAEcyb/qxzY7QEKePkPscKr65eXMuv+uu7D1SQaRHT1FkypSnFURuPPPMvHoQFUR69BRF1q9fryACAAAAwIihJFJ/R/kEdUAdWFTpvarIriSXl1J+3tBEAAAAAAAAHNLZM49rdoSGOPvEkXGfQ8G3H388r+hLQaRHT1Ek+958/MwZZ+Q106fXNVs99RRFAAAAAGCkaGl2AGpWHWTrrXdBZEOSi0sptzcuHgAAAAAAAEcyd+qEjGtrbXaMAXXM6NbMmTqh2TFIcsvjj+eyu+7Knr4WRHqpknz6jDPy2hNOqF8wAAAAAKBmSiL1d7DSxkBuByoHbD3HfTnJolLKHXW+XwAAAAAAAGrU2lJlwYyJzY4xoBbMmJjWloO9vUUjffeJJ/Kbd92VJ7u7+z2jSvKp00/P6xVEAAAAAGDQURKpvwNLGo3ekqeXSL6d5EWllFeWUjYO3G0DAAAAAABQi4UzJzU7woAa7vc3FPzLE0/k5cuX11QQSZJPnn563visZ9UpFQAAAABQT0oi9dXoVUQOtu1O8i9J/jjJnFLKS0sptw3sbQMAAAAAAFCrS+ZPb3aEATXc72+wu23Llrxs+fLsrrEgcsO8eXmTgggAAAAADFqjmh1gGPlMA69VknQm2ZNka5KNSR5Mcm+SVaWUrgZmAQAAAAAAoA7OnzM5c6aOz5pNO5sdpe7mTh2f554yudkxRqzvb9mSX1+2rOaCyMfnzctbZsyoUyoAAAAAYCAoidRJKeW/NTsDAAAAAAAAQ1dVVXnd+bPznq+tbHaUunvd+bNTVVWzY4xIP9hfENlVY0Hko6edliUKIgAAAAAw6LU0OwAAAAAAAACwz+Xnzcy4ttZmx6ircW2tufzZM5sdY0T6t61b89Lly7OzxoLIX596at564ol1SgUAAAAADCQlEQAAAAAAABgkjhvXlsvOHV6rNVx27oxMHNvW7Bgjzh1bt+Yly5ZlR1dXTXP+6tRT87aZSj4AAAAAMFQoiQAAAAAAAMAgcuWFczN61PB4G2/0qJZceeHcZscYcX60bVt+bdmybK+xIHLd3Ln5AwURAAAAABhShsfTZQAAAAAAABgmZk8Zn6sumdfsGHVx1SXzMnvK+GbHGFF+vG1bLm1vz7YaCyIfnDs3fzRrVp1SAQAAAACNoiQCAAAAAAAAg8ybX3hKFs2a1OwYNTln1qS85YI5zY4xovx0+/ZcumxZttZYEPnzOXNytYIIAAAAAAxJSiIAAAAAAAAwyIxqbcmHrliY0aOG5tt5o0e15INXLExrS9XsKCPGndu355L29mzp7KxpzvtPOSXvPOmkOqUCAAAAABptaD5VBgAAAAAAgGHu1GnH5upL5jU7Rr+8/dJ5OXXasc2OMWIs3b49F7e354kaCyL/+5RT8iezZ9cpFQAAAADQDEoiAAAAAAAAMEi95YI5ueycGc2O0SeXnTMjb37hnGbHGDGW7diRi9vb83iNBZH3nHxy/oeCCAAAAAAMeaOaHQAAAAAAAAA4uJaWKtdesSg79nTm1rs3NjvOEV185vRce8WitLRUzY4yIizfsSMXtbdnc40FkXfPnp3/efLJ9Ql1FLq6S1Zv2pHl67Zm1Ybt2bq7I3s6u7O3qzujW1syZlRLjhvXlnnTj83CmcdlztQJafU7BQAAAABHRUkEAAAAAAAABrG21pZ85DXn5W2f+9mgLopcfOb0fOQ156attaXZUUaEFTt35qL29jzW0VHTnHfNnp13D3BBpJSSO9Y8nltWbsiydVuyYv227O7oOurzjxndmvnPmpiFMyflkvnTc/6cyakqpREAAAAAOBglEQAAAAAAABjkxra15mOvfXbecVN7bl66vtlxnuGyc2bk2isWKYg0yMqdO/PipUuzqcaCyJ+ddFLee/LJA1a42Lq7I1/62br8/R1rs3rTzn7P2bW3Kz9Z+0R+svaJfOqHD2Tu1PF57fmzc/l5M3PcuLY6JgYAAACAoU9JBAAAAAAAAIaAttaWXPeqc3LmsybmQ7esyt7O7mZHyuhRLXn7pfPy5hfOSUuLlR0a4Z79BZGNNRZE/njWrPzvU04ZkILI2s078/HbVufmO9f3acWQo7V6086852sr8xffujeXnTsjV144N7OnjK/7dQAAAABgKFISAQAAAAAAgCGipaXKkgvn5qIzp+Xqm5al/aEtTctyzqxJ+eAVC3PqtGOblmGkuXfXrryovT0baiyIvH3WrLx/zpy6F0Q6u7rzidsfyIdvbUyJaXdHVz7/o4fyxZ89nKsumZe3XDAnrcpKAAAAAIxwI74kUlXV64/muFLK39VjzmBzpPsCAAAAAABg8Dl12rH54pXPyyd/8ECua/CqIqNHteTqS+blzf4gv6Hu2bkzL25vz6N799Y056qZM/MXA1AQuX/j9qYVl/Z2ducD37wn37rrUcUlAAAAAEa8qpTS7AxNVVVVd5Ij/kcopbTWY85gc6T7AgZWVVUrksw/8PX58+dnxYoVTUgEAAAAAMBQs3bzznz8ttW5+c712d3RNWDXGdfWmsvOnZErL5yb2VPGD9h1eKa7d+7Mi5YurXkFkT888cR8+NRT61oQ6e4u+cTta/KhBpeVDqWnxPSWC+akRYkJAAAAYERZsGBBVq5cebBdK0spCxqdp1lG/EoivRzuCWFfyh9D6UnjkCu1AAAAAAAA8HSzp4zP+y9fmD/99TPzpZ+uy413rM3qTTvrNn/u1PF53fmzc/mzZ2bi2La6zeXorNxfENlYY0Hk9wegINLR1Z133NSem5eur9vMWu3t7M77v3lP7n5kW669YlHaWluaHQkAAAAAGkpJ5CmHKkz09SnpUCleDKUyCwAAAAAAAEcwcWxb3viCU/KG5///7N17nN11fefx93cmk3ALIBEiAQxJINxJwFZRUVwFuSiKVGzVWmkrE2ypulFb3d5gt6ttVdxtqZpoq9bVXlhdtqjVAm1drfVSJQlgAAkIxCCEhCQEcp357R+Tw0wmM5OZc87Mmcvz+XjMY875nd/v+/sM8a9zfJ3v8fnuAxtzy48ezaq1m3LnT7eMaIeRg6a357Q5h+bMYw/PBafOzgvmHdHUsIDhu3Pr1rx85cqsbzAQ+c05c/I/mxyIbN/VlWu+8MPcuvqxpq3ZTDetWJetO3bnhjednQM62ls9DgAAAACMGZFIr4HeEa0n+JgI75BPlJAFAAAAAACAESql5Jz5s3LO/FlJkq7uKvev35o7fro59zz6ZLZs25Udu7qzo6s7M9rbMqOjLYce2JGTZs/MGccclvlHHpL2tonwkdfkdseeQOTxBgORq+fMyZ+feGLTdxAZz4FIza2rH8s1X7g9H//ls+0oAgAAAMCUIRIBAAAAAACASay9reTE2TNz4uyZrR6FYVq5dWtesWJFNuze3dA6nUcfnb9ociDS3V3lvTeuHPeBSM2tqx/Ne29cmevfsDht4icAAAAApgBfl9KrGuCnWeuMtx8AAAAAAACYkq699tosX7681WMMasWTT+blfQORm29OPvOZEa/ztqOPzscXLkxbEwORJPnkN+/PTSvWNXXN0XbTinX51Lfub/UYAAAAADAm7CTSo1nvjPrqGQAAAAAAABinrr322lx33XXPPO/s7GzhNPv64ZNP5vyVK/NE30Dk+ut7T7jyymGt86vPeU6WjUIgct9jT+Yjt9zb1DXHyof/6d68/OSjcsJRdtQBAAAAYHITiSTzxtk6AAAAAAAAQJP1D0SWLFmSZPyEIj/YE4hsGiwQ+exne37vJxR56+zZ+eRJJzU9ENnd1Z1337gqO3d3N3XdsbJzd3fec+OqfPHtL0p7m+/+AwAAAGDymvKRSFVVD46ndQAAAAAAAIDm6h+I1IyXUOT7W7bkgpUrs7mrq+dA/0CkZj+hyJXPeU4+ddJJaW9yIJIkn/rWA1n58KamrzuWVjy8KZ/85v25+rwFrR4FAAAAAEZNW6sHAAAAAAAAABgtgwUiNUuWLMny5cvHcKK9fXfLlpw/nECk5rOfTT7zmX0O//pznpO/HKVA5MENT+X6W+5t+rqtcP0t9+bBDU+1egwAAAAAGDUiEQAAAAAAAGBS2l8gUtOqUOTfN2/OK1euzJbhBiI1/UKRq44+OstPOiltoxCIJMknvrEmO3d3j8raY23n7u584htrWj0GAAAAAIwakQgAAAAAAAAwKc2ZM2fY5451KPKD4o69AAAgAElEQVTtzZtz4apVIw9EambNSpIsOfrofGLhwlELRDZv25Wbbl83Kmu3yk23r8uW7btaPQYAAAAAjAqRCAAAAAAAADApdXZ2ZtmyZcM+f6xCkW9t2pQLV63Kk/UGIkuXJpdemrfPmZOPjWIgkiRf+uHabNvVNWrrt8K2XV350g/WtnoMAAAAABgVIhEAAAAAAABg0hpvocg3N23KRatWZWuDgcg1xxyTvzjxxFENRKqqyue+8+Cord9Kn/vOg6mqqtVjAAAAAEDTiUQAAAAAAACASW28hCLf2LQpF69alae6u3sO1BmIvOOYY/JnJ5yQMoqBSJJ85/6NuX/9U6N6j1ZZs/6pfPeBja0eAwAAAACaTiQCAAAAAAAATHqtDkX+5YknckkTApF3HXts/scYBCJJcsuPHh31e7TSZP/7AAAAAJiaRCIAAAAAAADAlNCqUOS2J57Iq+64I083GIi8+9hjc/2CBWMSiCTJqrWbxuQ+rTLZ/z4AAAAApiaRCAAAAAAAADBljHUocuvGjXn1HXdkW4OByHuPOy4fGsNApKu7yl3rtozJvVrlrnVb0tVdtXoMAAAAAGgqkQgAAAAAAAAwpYxVKPJPGzfm0jvvzPYGA5H3Pfe5+ZP588csEEmSNeu3ZtuurjG7Xys8vbMr96/f2uoxAAAAAKCpprV6AOpTSpmf5IIkL0lydJJnJ5mRZHOS+5P8R5KvVFV1d8uGBAAAAAAAgHGqs7MzSU8AMhy182rX7c/XNmzIZXfemR3Vnp0q6gxE/stzn5s/mjdvTAORJLlj7eYxvV+r3PHTzTlx9sxWjwEAAAAATSMSmWBKKT+X5I/SE4js9VKfxz+X5A1J/rSU8s0kv1dV1bfGaEQAAAAAAACYEEYrFPnqhg153Z13ZmeDgcjvz52b644/fswDkSS599Enx/yerXDPFPk7AQAAAJg6RCJNVErpzOD/Tf+2qqqNDa5/XZLfqz0d4JRqz/G+r700yTdKKZ9I8q6qqnY1MgMAAAAAAABMJs0ORb78+OP5hbvuajgQ+cO5c3PtvHnDv67JNm+bGh8rbpkifycAAAAAU4dIpElKKc9P8on0hBr93V9V1ccaXP+zSX45vQHIQPcZ6HgtGrk6yUmllNdUVfV0I7MAAAAAAADAZNKsUOQfHn88r7/rruxqMBC57vjj8wfHHz/860bBjt3dLb3/WNmxa2r8nQAAAABMHW2tHmASecOe36XfT5L8z0YWLqX8fpK37Fmvyt47huzvp+/5/ynJ3zUyCwAAAAAAAExGnZ2dWbZs2bDPX7JkSZYvX/7M85vWr29KIPLfxkEgkiQ7u6ZGPLFjivydAAAAAEwddhJpnisy8C4em5P8Vb2LllLOTPL7fdYug5za995lgMe1UOSSUsp7qqr6cL0zAQAAAAAAwGRU744iz37d6/KLP/pRdjcYiHxg3ry8f+7cEc08Wqa3T43vG5wxRf5OAAAAAKYOkUgTlFJOSHJcekOMvr+/XFXV0w0s/+H0/DvV1uyrf5Qy0PHS73hJ8gellC9UVbWugbkAAAAAAABg0qknFCn33JPq0kt7DtQZiPzx/Pn5nec+d6TjjpoZ06ZGPDGjY2r8nQAAAABMHSKR5njBEK/9Q72LllLOSXJ+hg5Easd3JtmQ5IgkM/qcU7u29Lnm4PTEJ2+qdzYAAAAAAACYrEYailR9o5A6ApEPzZ+f94yjQCRJDjuwo9UjjIlDp8jfCQAAAMDU4WtRmuOcPo/77uKxK8nXGlj3nQMcq4UfNZ9N8vyqqg6oquqYqqoOTHJmkk8MMlMtGnlDKeW4BmYDAAAAAACASauzszPLli0b/gXXX19XIPKRBQvGXSCSJAtnz2z1CGPipCnydwIAAAAwdYhEmuN5/Z7Xdu34flVVW+tZsJRyeJLLsm/gUVu/K8mbq6r61aqq/qPvtVVV3VlV1W8kuTQ9oUrt2r67kZQkb65nNgAAAAAAAJgKRhyKDNeeQOSjCxZk6XHj83vdzjj2sFaPMCbOOGZq/J0AAAAATB0ikeaYl71jjpo7GljztUlm7HncP+6okvxJVVV/O9QCVVV9Ncm7+l3fd523NDAfAAAAAAAATHpND0X2BCJ/dsIJedc4DUSSZMGRh+TAjvZWjzGqDprenvlHHtLqMQAAAACgqUQiDSqlHJBkdu1pv5dXNbD0Zf2e941QNiX54HAWqarqE0lWpjcuqf1OkpNLKfMamBEAAAAAAAAmvaaFInsCkRtOPDG/deyxja83itrbSk6bc2irxxhVp805NO1tA33fHgAAAABMXCKRxs0d4rW6dhIppUxL8vLsuztJLfD4q6qqnh7Bkh8Z4rWzRzgeAAAAAAAATDnTL720J/Ko155A5GMnnpjfPOaY5g02is489vBWjzCqJvvfBwAAAMDUJBJp3OwhXltf55rPSzJzz+OBvrrmr0e43s1Jdu953D88OWuEawEAAAAAAMCU8lePPJJfu+eepN5QZE8gsmzhwrx9ggQiSXLBqUN9FDrxTfa/DwAAAICpSSTSuIOGeG1LnWue2+9537Dj/qqqRrRDSVVVm5OsyMDByaIRzgYAAAAAAABTxifXrcuv33PPPt/ENuJ1Fi5M55w5TZlprJwz/4jMP/LgVo8xKhYceXBeMO+IVo8BAAAAAE0nEmncUJHI5jrXfPEAx0p6YpGv1rnm6kHWnFjvRAMAAAAAAMAYWbZuXTrvvbf3wM03J9dfP/KFrr8+3V/+cvMGGyOllLzlnLmtHmNUvOWcuSlloO/YAwAAAICJTSTSuKEike11rvnCZNAvI7qtzjXv7/e8tv5hda4HAAAAAAAAk9bHfvrTXN2MQGSPJUuWZPny5U2YbGxdfvaxObCjvdVjNNWBHe25/HnHtnoMAAAAABgVIpHGDfX1MiPee7mUsiDJ7D5r941FqiTfGOmaezw5yPFD61wPAAAAAAAAJqWPPPxwfvPHP+490GAgUjMRQ5HDDuzIZWfNafUYTXXZWXNy6AEdrR4DAAAAAEaFSKRxW4Z4bahdRgZz3gDHaiHKj6qq2lzHmkmydZDjM+tcDwAAAAAAACadP/rJT/KeNWt6DzQpEKmZiKHI1ectyPRpk+Oj5enT2nL1eQtaPQYAAAAAjJrJ8U5eaw0VbdSzR/HLBjleJfm3OtarGezfeqidUAAAAAAAAGBKqKoqv3f//fn9n/yk92CTA5GaiRaKzJ11cJZesLDVYzTF0gsWZu6sg1s9BgAAAACMGpFI44baSeTEOtY7Pz1ByEC+Vcd6NQcOcvzJBtYEAAAAAACACa+qqrx3zZr894ce6j040kBk6dKUpUuHffpEC0Xedu68LDru8FaP0ZDFxx2eq14yv9VjAAAAAMCoEok07uEhXjt7JAuVUs5J8pza0wFO+eZI1uvnyEGOb21gTQAAAAAAAJjQuqsqv/XjH+cja9f2HqwjEGm/9NL87e/8TpYtWzbsyyZSKDKtvS0fueLMTJ82MT9inj6tLR++4sy0tw30MSwAAAAATB4T8x28caSqqvVJHqk97fNSSXLxCJe7ov/yfR7/pKqqh1K/Of2e1979HGonFAAAAAAAAJi0uqoqnffck79Yt673YB2ByLTXvCZ/e+qpecNRR6Wzs3PShiInHDUz775gYavHqMt7XrkwJxw1s9VjAAAAAMCoE4k0x+3pjS5KeuOO00opZw1ngVLKjCRvzd5hSN/1bmtwxoHera2SNBKeAAAAAAAAwIS0u7s7b129On/5s5/1HqwzEPm7U0/N64866pnDkzkUueol83PZ4v7fTze+XbZ4Tt527vxWjwEAAAAAY0Ik0hzfH+K1/zrMNa5OcsSexwPtcXzriCba16nZN0BJkjUNrgsAAAAAAAATys7u7rxx9ep8/rHHeg/WEYh0vOY1ufHUU3P5kUfu8/JkDUXa2ko+dMWinH/KUfs/eRw4/5TZ+dAVi9LWNtBHsAAAAAAw+YhEmuPv+j2v7f5RklxSSnnPUBeXUhYmuS57Rxx9Hz+V5Mv1DldKOSXJoX1m6+u+etcFAAAAAACAiWZ7V1def9dd+d/r1/cerCMQmf6a1+SLp52WywYIRGomayjS0d6WG9509rgPRc4/ZXZueNNZ6Wj3sTgAAAAAU4d3w5qgqqq707ObSC0OSfYORf6klPLxUspz+l9bSrkoyW0ZOOKorXFjVVVPNzDiS4Z47ccNrAsAAAAAAAATxtNdXXntnXfm5g0beg/WEYgc8NrX5uYzzsilz372fk+frKHIAR3t+fgvPy+XLZ7T6lEGdNniOfn4L5+dAzraWz0KAAAAAIypaa0eYBL5yyQ/3+9Y31CkM8mvl1L+I8lD6flvvyjJ/H7nDaTRd4EvGuK17zW4NgAAAAAAAIx7W3fvzqV33pl/3bSp92AdgcjBr31tvnzGGXnZs5417Ms6OzuT9AQgw1E7r3bdeNXR3pbr37A4pxx9aD5yy73Zubu71SNl+rS2vOeVC/O2c+enrW2wj18BAAAAYPISiTTPp5K8PcmZ2Tv46BuATEvygj0/6XNOlb1Vfa77clVV3613qFLKAUku6HOPvvf6cVVVT9S7NgAAAAAAAEwEm3fvzsWrVuXft2zpPVhHIHLoZZflH888My867LARzzBZQ5G2tpIl5y3IK045Ku++cVVWPrxp/xeNksXHHZ4PX3FmTjhqZstmAAAAAIBWa2v1AJNFVVXd6YlEnjnU53Et+KjFH6Xfsdo5/a/bleR9DY72miQH97tH7d7fbnBtAAAAAAAAGNc27tqV81eubDgQedbrXpfbFi2qKxCp6ezszLJly4Z9/pIlS7J8+fK67zeWTjhqZr549QvzvotPzvRpY/sx9PRpbXn/xSfni29/kUAEAAAAgCnPTiJNVFXVd0op1ya5LntHIcm+UUj6HO+vdu7SqqpWNzjWrwzx2r81uDYAAAAAAACMW+t37swFK1dm5VNP9R6sIxA58vLLc8uiRVl0yCENzzRZdxRJkmntbbn6vAW5+PTn5BPfWJObbl+Xbbu6Ru1+B3a057Kz5uTq8xZk7qyD938BAAAAAEwBIpEmq6rqv5VSDkny3uy7U8hAQcgzl/Z7/udVVX2skVlKKccnuWiAtWu+3sj6AAAAAAAAMF49smNHXrFyZVY//XTvwToCkaN/4Rdy66JFOfXg5kUIkzkUSZK5sw7OBy8/M++/5JR86Qdr87nvPJg165/a/4XDtODIg/OWc+bm8ucdm0MP6GjaugAAAAAwGYhERkFVVb9TSlmZ5M+TPCsD7yAykJJkZ3p2EGkoENnjmiRtfe7dd4Y7qqpa24R7AAAAAAAAwLjy8PbtefnKlblv27beg3UEIse9/vW5bdGinHjQQU2fcbKHIkly6AEdufLF8/LWFx2f7z6wMbf86NGsWrspd/50y4h2GDloentOm3Nozjz28Fxw6uy8YN4RKWWo7+cDAAAAgKlLJDJKqqr6Qinlq0mWJvnVJMfs55KtST6X5I+rqnq40fuXUp6V5KoMHKdUSb7c6D0AAAAAAABgvHlg27a8fOXK/GT79t6DdQQi8664Iv+8aFGOP/DA5g+5x1QIRZKklJJz5s/KOfNnJUm6uqvcv35r7vjp5tzz6JPZsm1Xduzqzo6u7sxob8uMjrYcemBHTpo9M2ccc1jmH3lI2ttEIQAAAAAwHCKRUVRV1aYkf5DkD0opi5L8fJIFSQ5Pz64hG5M8luR7Sb5XVdXuJt6+M0l3ki2DvP4PTbwXAAAAAAAAtNy9Tz+dl69YkZ/u3Nl7sI5AZOEb3pDbFi3KsQcc0Pwh+5kqoUhf7W0lJ86emRNnz2z1KAAAAAAw6YhExkhVVSuTrBzD+/1Jkj8Zq/sBAAAAAABAK9311FN5xYoVeXTXrt6DdQQip/3iL+bWRYvynBkzmj/kIKZiKAIAAAAAjA6RCAAAAAAAADChrXjyyVywalUe7xuIJMmGDcNfZOnSLH7jG3PLmWfm2dOnN3fAYRhpKLJu3brRHAcAAAAAmKBEIgAAAAAAAMCE9f0tW/LKVauyaffufV+88sqe35/97NCLLF2an3/Tm/L1M8/Mszo6mj7jcA03FPnDP/zDXHvttWMwEQAAAAAw0YhEAAAAAAAAgAnp3zZvzsWrVuXJrq7BT9pfKLJ0aV785jfnq2eemUOntf7j0/2FIgIRAAAAAGAorX+XEwAAAAAAAGCE/uWJJ3LpHXfkqe7u/Z88WCiydGn+01vekn84/fQcMg4CkZrBQhGBCAAAAACwP+PnnU4AAAAAAACAYfjahg153V13ZftwApGa/qHI0qW56K1vzZdOOy0Htrc3fcZG9Q9FBCIAAAAAwHCIRAAAAAAAAIAJ4/8+/njecNdd2VlVI7+4ForMmpXXXnll/u600zKjra2p8zVTLRRZt26dQAQAAAAAGBaRCAAAAAAAADAh3PjYY3nT6tXZXU8gUnPllXnDkUfmf51ySjrGcSBSUwtFAAAAAACGY/y/6wkAAAAAAABMeZ/72c/ySz/6UWOBSJK3zJ6dz0+QQAQAAAAAYKS88wkAAAAAAACMa59cty5vvfvudDe4zlVHH53PnHxypglEAAAAAIBJyrufAAAAAAAAwLh1w9q16bz33jS2f0jyW8cck2ULF6atlKbMBQAAAAAwHolEAAAAAAAAgHHpww89lN+6776G1/nt447L/zzhhBSBCAAAAAAwyU1r9QCtVkr5q1bP0EJVVVW/3uohAAAAAAAAoL8/+slP8vs/+UnD6/zh3Ln5w+OPF4gAAAAAAFPClI9EklyZNLw79URU0vN3i0QAAAAAAAAYN6qqyu898EA+8NBDDa/1gXnz8v65c5swFQAAAADAxCAS6eWrgwAAAAAAAKCFqqrKu9esyUfXrm14rY8uWJB3HXdcE6YCAAAAAJg4RCK9ptpuIqIYAAAAAAAAxo3uqso1P/5xPr5uXcNrfezEE/P2Y45pwlQAAAAAABOLSKTXVIomploQAwAAAAAAwDjWVVXpvOee/NXPftbQOiXJX550Un716KObMxgAAAAAwAQjEuklnAAAAAAAAIAxtrO7O29ZvTp/v359Q+u0J/ncKafkjbNnN2cwAAAAAIAJqK3VAwAAAAAAAADNd+2112b58uWtHmNIT3d15bI77+wJRG6+OfnMZ+pap6OU/P1ppwlEAAAAAIApz04iyUOxiwgAAAAAAACTyLXXXpvrrrvumeednZ0tnGZgW3bvzqvvuCPf3Ly5JxC5/vreF6+8ctjrzCglXzz99Lxq1qzmDwkAAAAAMMFM+UikqqrjWz0DAAAAAAAANEv/QGTJkiVJxlco8vjOnblo1ar8YOvWfQORz3625/cwQpED29ryD6efnvOPOGJ0BgUAAAAAmGCmfCQCAAAAAAAAk0X/QKRmPIUiP92xIxesXJnVTz+9byBSM4xQ5JD29nzljDPy0sMPH51BAQAAAAAmIJEIAAAAAAAATAKDBSI14yEUWbNtW85fuTI/2b598ECkZohQ5LD29nztzDNzzmGHjc6gAAAAAAATlEgEAAAAAAAAJrj9BSI1rQxF7ty6Na9ctSqP7Ny5/0CkZoBQ5Ihp03LLokU5e+bM0RkUAAAAAGACE4kAAAAAAADABDdnzpxhn9uKUOR7W7bk4lWrsnH37uEHIjWzZj3z8MiOjty2aFHOOOSQUZgSAAAAAGDiE4kAAAAAAADABFcLPmoByP6MZSjyr088kUvvvDNbu7pGHogsXZpcemmS5Ojp03PbokU55eCDR2lSAAAAAICJTyQCAAAAAAAAk8B4DEW+/Pjjef1dd2VHVTUUiMw74IDcumhR5h944ChNCgAAAAAwOYhEAAAAAAAAYJIYT6HI3zz6aH7l7ruzu8FA5NSDDsotixZlzowZTZ8RAAAAAGCyEYkAAAAAAADAJDIeQpHl69bl6nvvTZU0FIj83MyZ+cczzsizp09v2mwAAAAAAJNZW6sHAAAAAAAAAJqrs7Mzy5YtG/b5S5YsyfLly5ty7w899FCWNCEQOe+ww3LbokUCEQAAAACAEbCTCAAAAAAAAExCY72jSFVV+b0HHsgHHnqo50ADgcirjjgiN552Wg5sb69rFgAAAACAqUokAgAAAAAAAOPUtddemzlz5tQdboxVKNJdVXnHj3+cv1i2LNmwIZk1q+5A5BePPDJ/fcopmd7WNqIZAAAAAAAQibRcKeW0JGclOT3JsUmOSXJokgOTzEhS9pxaVVW1oCVDAgAAAAAAMOauvfbaXHfddc88H6+hyO7u7vzaPffkc5/61MjCkJo+gchVRx+djy9cmPZS9nMRAAAAAAADEYmMsVJKe5JLk7whyflJZg102gDHqhHe5/AkRwzy8saqqjaNZD0AAAAAAADGTv9ApN4dPmpGKxTZ3tWVN65enZs+/emGA5H3HHdc/nT+/BSBCAAAAABA3UQiY6SUcnCSdyR5Z5Ija4eHuKRvFFLPO+FnJvmXQV77epJL6lgTAAAAAACAUdY/EKkZb6HI1t27c9mdd+a2z32u4UDkj+bNy3957nMFIgAAAAAADWpr9QBTQSnlV5I8kOSPkhyVnuijpCcEGeynIVVV/b8k3+xzr74/F5RSjm70HgAAAAAAADTXYIFIzZIlS7J8+fK61+/s7MyyZcuGff5g93ti165csGpVUwKRPz/hhPzu3LkCEQAAAACAJhCJjKJSymGllJuTfDrJs7NvGJIMHHH0/WlE7R35/vdsS/LmBtcGAAAAAACgifYXiNS0OhR5dOfOvGzFinzn859vKBBpS/LZk0/ONcceO/I1AAAAAAAYkEhklJRS5if5fpJLsncckuwbgTR1F5E+bk7yk4HGS3JlE+8DAAAAAABAg+bMmTPsc1sVijy4fXtecvvtWfW3f9tQIDK9lPzv007LrzznOSNfAwAAAACAQU1r9QCTUSllQZJ/SVL72qO+cUj6HcsArzVFVVVVKeWvk/zBnvuVPr9PKaWcUFXVfc2+LwAAAAAAACPX2dmZpCfIGI7aebXrxuJ+z1qzJk/s3t1QIHJQW1tuOv30XHDEESNfAwAAAACAIYlEmqyUcmiSr6QnEBkqDul77JEkDyXZkOTZSZ6f3pijUZ9LTyQykPOTiEQAAAAAAADGifEeijzxp39a131qgcjh06blK2eckRcddlh96wAAAAAAMKS2Vg8wCX0mycIMHoiUPT/fS3JVkhOrqjqmqqoXVlX16iSfbOYwVVWtSXJnencR6ev8Zt4LAAAAAACAxnV2dmbZsmXDPn/JkiVZvnz5mN1vxPYEIkd1dORfFy8WiAAAAAAAjCKRSBOVUi5Pcln2DUSq9AYiK5K8vKqqc6qq+ss9Ecdo+2q/57VZXjYG9wYAAAAAAGCExjoU+cW3/Gp+5b3/ve7rB7UnEDl2+vR886yzsuiQQ5p/DwAAAAAAniESaZJSSnuSD/U9tOd3391Dlid5YVVV/zq206Xv/frubPKsUsopYzwLAAAAAAAAwzAWociDG57K+7+0Kud84LZ8o21RjrjwmpGOObg9gci0p7oz45+35NNfuy8PbniqeesDAAAAALCPaa0eYBJ5Y5J56Y1C0udxleRDVVW9r0WzfSe9u5tU/V47JcnqsR0HAAAAAACA4ejs7EzSE4AMR+282nWD2d3VnU9+84F89NZ7s3N39zPHZy6+KEmy8es31DNurz2BSMeWrsz+j+3ZvTP5m+89nC/+8KdZesHCXPWS+WlvK/tfBwAAAACAEbGTSPP8er/nfQORL7YwEElVVZuSPDzIyyeP5SwAAAAAAACMTLN3FLnvsSfzC5/49/zJ1+7eKxCpqV7z6p7Io157ApEZT3Rl9ve2p31n70s7d3fnj//x7vzCx7+d+x57sv57AAAAAAAwIJFIE5RSjk7y0gy8W8fWJL8x5kPt6+707nDSl0gEAAAAAABgnGtGKNLdXWXZN9bkkj/7VlY+vGmfa6okm+Z35IlTZ9Q/6J5A5IDHu3LUf2xP++6BT1vx8KZc8mffyrJvrEl3dzXwSQAAAAAAjNi0Vg8wSbwsvbuG9P/9kaqqHm/daM94cJDj88d0CgAAAAAAAOrS2dmZpCcAGY7aeZ2dndnV1Z333rgyN61YN+C5VZJNJ03Plnkdyc03J9dfX/ecBz66O0eu3JGy7yYle9m5uzsf/Me7s/qRLfnQFYvS0e777QAAAAAAGiUSaY4XD/HaX43ZFEP72QDHSpLDx3oQAAAAAAAA6lNPKLKrqzu3H/S83Lr6sQHPqZJsPG16th7XeCCS66/PgRftTFl00bAvuWnFumzdsTs3vOnsHNDRXv+9AQAAAACIr+NpjpP6PK7tIpIkP6qqam0L5hnIE/2e1/btnjnWgwAAAAAAAFC/zs7OLFu2bNjnX/Mbb8//+Zu/HvC1qiSPL5rRnEBkj41fuyFPrvjaiK65dfVjueYLt2dX1362HwEAAAAAYEgikeaYl97ooqZK8m8tmGUw2wc5LhIBAAAAAACYYEYaimz8+r7hRndbsv6sGXn66GlNC0SGut/+3Lr60bz3xpXp7u7/sRsAAAAAAMMlEmmOIwY5/uiYTlGfQ1o9AAAAAAAAACPXSCjS3Z489nMHZNtRzQ9EBrrfcN20Yl0+9a37mz4LAAAAAMBUIRJpjoMHOf7YmE4xtGcNcrxrTKcAAAAAAACgaeoJRTbf+bU8+vwDsuOI9lELRPreb6ShyIf/6d7c99iTozQRAAAAAMDkNq3VA0xy7a0eoI/Bdjt5ekynAAAAAAAAoKk6OzuTJEuWLBnW+Zu+ckNy0vSeJ/UEIkuXJlWSjw7v2o1fvyFJMnPxRcM6f+fu7rznxlX54ttflPa2MvL5AAAAAACmMDuJNMdTgxwfLMxohVmDHN8yplMAAAAAAADQdCPdUSTXX193IFIueXWOPOaCHHHhNcO+bKQ7iqx4eFM++c37Rz4fAAAAAMAUJxJpjuMW/1wAACAASURBVMFCi8HCjFY4q9/zkp7veFrbglkAAAAAAABoss7OznzgI382ejdYujTl4lfnqB9sz0HruzJz8UWjGopcf8u9eXDDYN/VBgAAAADAQEQizfFQeqKL/haN9SADKaUcluSM9EQh/T04xuMAAAAAAAAwSrYcf96Iwo1hW7o0bRe+OrO/tz0HbOx+5vBohiI7d3fnE99YM+JRAQAAAACmMpFIc/Tf67pKTzTy86WU6S2Yp79z0/tv3T9muWOMZwEAAAAAAGAUbN62Kzfdvm7E4cZ+LV2a9gteldnf25YZW7r3eXk0Q5Gbbl+XLdt3DXttAAAAAICpTiTSHD/s87hvhDE9yUvHeJaBXDnEa98fqyEAAAAAAAAYPV/64dps29WVJDlk8UU58M3vbHzRpUsz7RWvyuzvbs/0rQNtWt9jtEKRbbu68qUfrB32ugAAAAAAU51IpDn+bYjX3jFmUwyglLIgyevSs7tJ+vxOkp1JvjvmQwEAAAAAANBUVVXlc995sOdxkidOnp5tb7ssWbq0/kWXLk3Hy3oCkY5tgwciNaMVinzuOw+mqvZ/fwAAAAAARCLNcnuS9Xse940xSpJLSimntGSqHr+b3n/n0ud3leSfq6p6qiVTAQAAAAAA0DTfuX9j7l//VKqSPL5oRp48vqOxBZcuzfSXXpLZ39uWaTuGH2iMRiiyZv1T+e4DG4e9JgAAAADAVCYSaYKqqrqTfDF7Rxg1bUk+VUppH+u5SilXJLkyvcFKfzeO6UAAAAAAAACMilt+9Gi625PHnjcjTx89refgzTcn119f13rTnurO7O9tT/uukV87GqHILT96dOSDAAAAAABMQSKR5vlUv+e13TqS5JwkHxjLYUopC/fM1Pernfo+3pjkb8ZyJgAAAAAAAEbH9x95Io/+/AHZ/uzGA5Ek2b3sf+SpHwwdbgyl2aHIqrWb6p4FAAAAAGAqEYk0SVVVP0xyW/aOQ2qPS5L3lFKuHYtZSinnJPlGkpl95kifx1WSZVVV7RiLeQAAAAAAABg99z+9Lf90zI7sPHzPxvYNBiI1w9nhYyjNDEXuWrclXd3VgK8BAAAAANBLJNJcv5feQGSgUOT3SymfKaXMHOjiZiil/HqSf0kyu899+86TJI8n+dPRmgEAAAAAAICxccfWrXnhD3+YnQfv+divSYFIzXgJRZ7e2ZX712+tew4AAAAAgKlCJNJEVVV9N8kns/fOHcneochbktxXSukspbQ3696llFeXUn6YZHmSGdk7Cuk/x+9WVbWlWfcGAAAAAABg7H1r06a8dMWKPLZ7V8+BJgciNeMlFLnjp5vrngEAAAAAYKoQiTTfe5Lcs+dx31CjbyhyZJKPJ/lZKWVZKeWVpZRZI7lJ6fHiUsoHSyl3Jfm/SRb3uU/tnrU5ase/UlXVp+r4uwAAAAAAABgnbn788VywalU27d6958DoBCI14yEUuefRJ+u+PwAAAADAVDGt1QNMNlVVbS2lXJ7k20kOTW+gkewbcMxK8rY9PymlrE8y6D7ZpZTrk8xLMn/Pz0F91npmhH7H+oYqa5JcOdK/CQAAAAAAgPHj0488kqvuuSddtQP1BiLvWpqZD+3Kk1/682GdvvHrNyTpCT7qUbuuts5I77dl26667gsAAAAAMJWIREZBVVWrSymXJPlakkMycCjSP+ZIkqPSs8tI+p1f+/3OAa555rYDvNb32KNJLqyqauOI/hgAAAAAAADGhaqq8qcPP5z33X9/78E6A5HyjqWZfeT5mTGjOx0XVnWHGyPVSCiyY1d3XfcEAAAAAJhK2lo9wGRVVdW/J7kwyWO1Q9k72ij9jtd+BgpAavZ33WCByINJXlZV1QN1/jkAAAAAAAC0UHdV5d1r1jQnELnmP+foWa/IjC090cXMxRfliAuvGfb1G79+Q55c8bUR37dmpPfr2rohSbKjSyQCAAAAALA/IpFRVFXVd5I8P8kPsm/ckfSGHf3jj0GXHOL6/ufUXv/3JC+qquqeuv8QAAAAAAAAWmZnd3d+ZfXqfHTt2t6DdQYi7b/xnzPniPPT8fTeH0mN11DksBe/MYef++YkyYx2H20CAAAAAOyPd1JHWVVVDyd5YZLfS7IzA8ciNf2Dj/4GikqeuVX2jkN2J/mvSV5SVdUj9c4PAAAAAABA6zzV1ZXX3HFHPv/YY70H6wxEpi15V+Y86xWZtmPg7ywbb6FI30AkSWZ0+GgTAAAAAGB/vJM6Bqqq6qqq6gNJTkzyl0m6sm8s0n+XkP0uO8A1tTW/lOTUqqqurarKvtsAAAAAAAAT0OM7d+blK1bk60880XuwzkCk423vytFHnJ+23UOfN15Ckf6BSJIcemBH3fcBAAAAAJgqRCJjqKqqtVVVXZXkuenZWeTeDLw7yEDhyGBRSO3n8SR/nuTkqqpeX1XVmrH4mwAAAAAAAGi+h7Zvz7m3357vPflk78E6A5EZv/rOHP3s89M2zK8Wa3UoMlAgkiQnzZ5Z9z0AAAAAAKaKaa0eYCqqqupnST6Q5AOllPlJLk7y/CRnJVmYZPowllmf5PYk301ya5JvVVU13F1IAAAAAAAAGKfueuqpXLhyZX66c2fvwZEGIkuXJhs25IDuw3PUURekjPBTpJmLL0rSE4AMR+282nUjVbuua+uGAQORJDnjmMPqWhsAAAAAYCoRibRYVVX3J/mLPT9JklLK7CRzksxMcmCSjiQ7kjydZEOSh6qqenrspwUAAAAAAGA0fXvz5rz6jjvyxO7dvQfrCUQuvTTP+tGOHPrQ7v2fP4hWhSIDOWh6e+YfeUhd6wIAAAAATCUikXGoqqpHkzza6jkAAAAAAAAYO1/ZsCFX3HVXtnV39x6sJxB51avz7JXbc/AjXQ3PNNahyGBOm3No2ttKU9cEAAAAAJiMRCIAAAAAAADQYp/92c/y63ffnb2yjjoCkXLxq3PkD3bkwA2NByI14yEUOfPYw5u2FgAAAADAZCYSAQAAAAAAgBb60EMP5bfvv3/vg3UEIm0XvjpHfW97Zmzp3v/5I9TqUOSCU2c3ZR0AAAAAgMlOJAIAAAAAAAAt0F1V+e01a/KRtWv3fqGOQGTu61+f5/xgR342CoFITatCkQVHHpwXzDuioTUAAAAAAKaKtlYPAAAAAAAAAFPNru7uXHn33U0JRE7/pV/Kv519dpacNbe5Qw5g5uKLcsSF1wz7/I1fvyFPrvhaQ/d8yzlzU0ppaA0AAAAAgKlCJAIAAAAAAABj6Kmurlx255353KOP7v1CHYHIi9/85vy/xYtzzIwZufzsY3NgR3tzhx3AWIYiB3a05/LnHVvXtQAAAAAAU5FIBAAAAAAAAMbIhl27cv7Klfnqxo0DvLhh+AstXZpLr7wytyxalGd1dCRJDjuwI5edNadJkw5tpKFI19YR/G19XHbWnBx6QEdd1wIAAAAATEXTWj3AeFVKeVaSD2XokOa2qqo+P0YjDamUckCSP01yyBCnfbuqqk+N0UgAAAAAAAD08fD27blw1aqsfvrpgU+48sqe35/97NALLV2aX73qqixfuDDT2vb+KOvq8xbkiz/8aXbu7m584P2YufiiJD07hQzlsBe/MYef++YRrz99WluuPm9BXbMBAAAAAExVIpHB/fckv5akGuT1VUneMXbjDK2qqu2llK8m+Yckg+0j/sZSyr9UVbVmDEcDAAAAAACY8lY/9VReuWpV1u7YMfSJ+wtFli7N+37zN/OBefNSStnn5bmzDs7SCxbmj//x7sYGHqb9hSL1BiJJsvSChZk76+C6ZwMAAAAAmIqG2iVjyiqlnJmkMz2BSBng59Ekl1RVtbVlQw6gqqqvJfmt9MyY7Dv3jCQfbc10AAAAAAAAU9O/b96cc2+/ff+BSM2VVyZvfeu+x5cuzUff9a58cP78AQORmredOy+Ljju8vmHrMHPxRTniwmv2Od5IILL4uMNz1UvmNzoaAAAAAMCUIxIZ2LXp/W9T9flJku4kb6mq6pEWzLVfVVUtS/J36YlCquw7/6tKKS9o0XgAAAAAAABTyv9Zvz4vX7kyG3fvHtmF/UKRtne/O//rt3877zruuP1eOq29LR+54sxMnzZ2HwX2D0UaCUSmT2vLh684M+1tg4cwAAAAAAAMbFqrBxhv9uwi8tr0RhW12KL2+0NVVd3WovGGqzPJ85Mcv+d5bfaaa5NcPLYjMVGVUqYlWZCe/z3NTHJIku1JtiR5JMk9VVU93bIBAQAAAABgnPrztWvzzvvu2+tDmhG58sokyfRnPzv/9/3vz0WzZg370hOOmpl3X7AwH/zHu+u9+4jNXHxRkqRr64a6A5Ekec8rF+aEo2Y2aywAAAAAgClFJLKvd2TfMKTmJ+kJLMa1qqqeLKW8I8nNGTh2eWUp5ZSqqla3akbGt1LKGUkuT3JJksVJpg9xelVK+XGSryX5hyT/XFVV3Z93AQAAAADARNddVXnvmjW5fu3ahtea9ba35StnnpkXHHroiK+96iXzs/qRLblpxbqG5xiuWihSr8sWz8nbzp3fpGkAAAAAAKaesdtjegIopRya5JeSfb7QqRZYvLOqqh1jPlgdqqr6SpIvZ9/QpebtYzvR5FV6nFBKeWMp5SOllP9XSnmylFIN8fOTVs89kFLKhaWUf0myKj1B1PMzdCCS9PxvbGF6Aqtbk9xdSrm6lNI+mrMCAAAAAMB4tL2rK7/0ox81JRA5bsaMfOuss+oKRJKkra3kQ1csyvmnHNXwLGPh/FNm50NXLEpbW2n1KAAAAAAAE5ZIZG+vT3LQnsf9dxP5TlVVX27VYHX6L+kNRPr+Lkl+uZRiJ5k6lFKeW0q5vJTywVLKLUk2Jvlxki8kWZrkJUkOaeWMI1VKOaaU8qX07AbysgaXW5jk40l+UEp5QaOzAQAAAADARLFx165csGpVbly/vuG1Tj3ooHz7rLNy8sEHN7ROR3tbbnjT2eM+FDn/lNm54U1npaPdx5cAAAAAAI3wLuvefmGI1z44ZlM0SVVVd6Z3N5H0+Z0khyW5YMyHmmBKKbNLKa8upVxXSvlKKeWxJA8m+WKS9yU5P8nhLR2yQaWUc5P8MMnrmrz0oiTfLKXYtQYAAAAAgEnvgW3b8qIf/jDf2ry54bVedOih+eZZZ+XYAw5owmTJAR3t+fgvPy+XLZ7TlPWa7bLFc/LxXz47B3TYpBwAAAAAoFF2ktijlHJwkldk3503kuS+CbiLSM1Hk1w6yGuvS/KPYzjLRPT19MQOk1Ip5bVJbkzSMUq36EjysVLK3Kqq3jdK9wAAAAAAgJb6jy1b8uo77siju3Y1vNarjjgif3/aaTmovbnBREd7W65/w+KccvSh+cgt92bn7u6mrl+P6dPa8p5XLszbzp2ftray/wsAAAAAANgvO4n0elGS6Xse9915o0ryhZZM1ARVVf1rkodrT/v8Lkle3oqZGB9KKRck+buMXiDS1++UUn5/DO4DAAAAAABj6isbNuS8FSuaEoi8dfbs/J/TT296IFLT1lay5LwF+eo7zs2i41q7Ufri4w7PV99xbjpfukAgAgAAAADQRCKRXucN8dqEjUT2+NvsHb7UzCulHNOCeWixUsrxSf4+yYxhnH5Hkt9O8sIkz05PVHJ4kjOSXJXk1uy9885g/uuenUsAAAAAAGBSWL5uXV5zxx15urvxXTnec9xx+fTJJ6ejbfQ/vjvhqJn54tUvzPsuPjnTp43tx4XTp7Xl/RefnC++/UU54aiZY3pvAAAAAICpYFqrBxhHntfncd//w/vDVVX9eKyHabJbkrx3kNd+PslPx3AWWqyUMi09O4js7yvCHk3yW1VV3TjAa5v3/NyZ5FOllJ9P8okkZ+9nzU+XUhZXVfXQCMcGAAAAAIBxo6qq/O4DD+SDDzX+dndJ8tETTsg7jz228cFGYFp7W64+b0EuPv05+cQ31uSm29dl266uUbvfgR3tueysObn6vAWZO+vgUbsPAAAAAMBUJxLpdXr2jkPKnuffaM04TfXtJLvS8+/df8eH05PcNOYTTV5VkvuSPJLkpS2eZTDXJHn+fs5ZmeSSqqrWDWfBqqq+X0p5UZJPJ3njEKc+K8n/SHL5cNYFAAAAAIDxZmd3d37t7rvz+ccea3itA9ra8vlTTsnlRx7ZhMnqM3fWwfng5Wfm/Zecki/9YG0+950Hs2b9U01bf8GRB+ct58z9/+zdeZiddX03/vc9W/YFQhIIwYTsmSyEoAV324paWyvFrRW39lKwrlVrF59qg3axrVrt41MltFYrllaUH2r92Yr9WcU+bhBCyAYJSyAEkkDIvs7M/fsjCUJM5kwy98w5M3m9rutcSeZ7n/f3c18sf5w77/PN5RdNzuihrZXlAgAAAABwfEoiSYqiGJHk3Bz+C/5HyyFH/bQuQ1WoLMu9RVGsSbIwP18SmVuHkQaT+3P435Fbj7xuK8tyR1EUL0jy3TrOdVxFUYxPsqTGZeuTXFqW5daTyS7L8kBRFK9PMjzJy7u59DeKori0LMubTyYfAAAAAADqbfuhQ7l81ap8d/v2XmeNa2nJ1xcsyLPGjKlgst4bPbQ1b3r2+Xnjs6bmx/dty82rN2fFxu1Z+dDOkzphZHhbc+ZNGp2Fk8fm0vaJufj8M1MURR9ODgAAAADAkymJHHZuN2vr+m2KvrUuh0six+rfs8sHtofy1ELIrWVZPlbfkU7a7yfp7mnTwSSvPtmCyFFlWXYWRfHGJMuTTO3m0g8nURIBAAAAAGDAeHD//vzKihVZtXdvr7OmDR2aby1cmFnDh1cwWbWKosgl08blkmnjkiSdXWXu3bo7dz60I3dt3pWd+w7lwKGuHOjsypDmpgxpbcroYa2ZPXFUFpw7JtPGj0xzk1IIAAAAAEC9KIkcdk43a/f02xR969j7OHpqSnf3TvK/k2xO8tOyLDfXe5jeKIpidJKralz2ybIsb+/NPkdOUnl3kq91c9klRVE8tyzLW3qzFwAAAAAA9Ic7du/OS1esyKaDB3ud9QujRuUbCxZkQltbBZP1veamIjMnjsrMiaPqPQoAAAAAAD3QVO8BGsQZ3az1/rzwxvD4CX7e3b2f9sqy/MeyLP99oBdEjnhjuj9FZHuSP69io7Isv56kVgHkXVXsBQAAAAAAfenmbdvy3Ntvr6Qg8uvjxuW7ixYNmIIIAAAAAAADj5LIYcO6WdvVb1P0rd0n+Hl3987g8voa60vLstxZ4X4fr7H+sqIouiutAAAAAABAXX3+4Yfz0jvvzK7Ozl5nvW3SpNw4f36GNzdXMBkAAAAAAByfkshhQ7pZ6/3XQjWGE91Hd/fOIFEUxcwkz6hx2T9UvO03kjzczfqQJK+oeE8AAAAAAOi1sizz4fvvz2/fdVc6yrLXeX89bVo+PXNmmouigukAAAAAAODElEQO664IMqLfpuhbw0/w845+nYJ6eVmN9dvKslxX5YZlWXYl+XKNy2rNBQAAAAAA/epQV1fefNdd+dP77+91VltR5Pq5c/P+pz0thYIIAAAAAAD9QEnksL3drJ2oXDHQnKjs0t29M3i8sMb6N/to31q5v1gURXMf7Q0AAAAAACdlV0dHXnbnnfncI4/0OmtsS0u+fcEF+c2JEyuYDAAAAAAAekZJ5LDuihLn9tsUfWvSCX6uJDLIFUXRkuR5NS77Th9tf0uS/d2sj0nyjD7aGwAAAAAAemzTgQN53vLl+c/HH+911tOGDMn/XHhhnj92bAWTAQAAAABAzymJHPZoN2vn99sUfevY+zh6pvnW/h6EfjcvJz5JJkkOJflJX2xcluX+JLfXuExJBAAAAACAulq1Z0+euWxZlu/e3eusC0eOzI8WL077iO4+mgcAAAAAgL6hJHLY/d2sze2vIfpYe5LymJ+VSTbUYRb61+Ia66vLsjzQh/vfWmP9wj7cGwAAAAAAuvXfjz+eZy9blgcO9P6j8peceWa+v2hRzhkypILJAAAAAADg5CmJJCnLcluSo18NdWyR4tn9PE7liqI4J8mUo388Zvn+/p2GOlhUY31FH+9/R411JREAAAAAAOri+s2b8+IVK7Kjs7PXWW8+55x8ff78jGxpqWAyAAAAAAA4NUoiP3NXnlqgKI/8+ZlFUQz0T/Nf0M3a2v4agrqZVWN9XR/vf0+N9Zl9vD8AAAAAADxFWZb5qwceyGvXrMnB8tjvDzt5H5k6NUtnzUprk0dvAAAAAADUl0+qf+aHT/r9k8sio5O8pJ9nqdqru1n7Ub9NQb2cX2N9fR/vXyt/RFEU4/t4BgAAAAAASJJ0dHXl7evW5Y/uvbfXWS1FkS/MmZM/mTo1RXHsYe4AAAAAAND/lER+pruyxBX9NkXFiqIYl8Mll6Nfg/Xkr8Pak2RFvw9FvykOP5GaUuOyTX08xsNJumpcU6vIAgAAAAAAvbanszOXr1qVz2zq/Ufjo5qb860FC/KGs8+uYDIAAAAAAKiGksjP/Hd+vkhR5vCpIq8oimJ6PYaqwLuTDDny++JJv5ZJbinLCs5Qp5GdkWRojWse6csByrLsTPJojcsm9eUMAAAAAACw+eDB/OLy5fnGY4/1Ouvctrb84MIL88Izz6xgMgAAAAAAqI6SyBFlWW5K8sM8tUhxVHOSD/X7UL1UFMVZSd6Rp54e8mRf6cdxqI9xPbhmS59PUXuPnswJAAAAAACn5O69e/PMZcvy0127ep21YMSI/Gjx4iwcObKCyQAAAAAAoFpKIk91bGni6IkbRZLXFUXxi/0/Uq/8bZKxR35/9F6O6khyU79PRH/ryVeY7ezzKWrv4avWAAAAAADoE/+zY0eeuWxZ7tu/v9dZvzx2bG658MJMHlrrEG8AAAAAAKiPlnoP0GC+lOQvkgzJz8ohedLvP1cUxdPLsuz9OeR9rCiKVye5Ik+9j+RnZZGbyrJ8vB6z0a/OqLG+tyzLzn6YY8CVRIqieHuSt/XDVtP7YQ8AAAAAgNPSV7duzRWrV+dAeaJD13vuDRMn5trZs9PW5DvYAAAAAABoXEoiT1KW5daiKL6Y5C352akbTz6B42lJvlIUxYvKsjxUjxl7oiiKxUk+l6eeHHKsj/fTONRXra8y29svUyR7aqw34leujU/SXu8hAAAAAAA4NZ988MG89557un1Y0lN/MmVKPjx1aoqiqH0xAAAAAADUka86+nkfS3L0ZIVjiyJFkucl+VpRFI34l9pTFMXTk3w7yfCjPzry69H5yyS3lGX5kzqMR/9rq7He0S9T1N6n1pwAAAAAANAjnWWZ96xfn/dUUBBpTrJ01qx85PzzFUQAAAAAABgQlESOUZbluiR/n5+VK456clHkxUm+UxTFpH4er1tFUVyW5DtJzszPZk2eeqJIV5L39PNo1I+SCAAAAAAAp43dHR25fOXKfHLjxl5njWhqyjcWLMhbJjXU4yAAAAAAAOiWksjxfTDJliO/f3LB4slFkWclWV4UxW/082w/pyiKEUVRfCrJV5OMTo77xVhHZ7+2LMvb+3M+6qrWf+OdNdarUmuf5n6ZAgAAAACAQWvj/v157vLl+fpjj/U6a2Jra7534YX5lXHjKpgMAAAAAAD6j5LIcZRluTPJVfn500SSn5UtkuSsJF8piuI/iqJY2F/zPTFIUTQVRfHGJHcleccxsx17ikiZ5L4kf9SvQ1JvtU7waOmXKWrvc6hfpgAAAAAAYFC6defO/MKyZVm+e3evs+YMH54fLV6ci0aNqmAyAAAAAADoX/31F8QHnLIsv1YUxceS/H5+dnrIUceWMS5NcntRFN9O8ukk/1mWZa2/nH/KiqKYmOSKJO9Kcl5+vhByvD/vT/LKIwUYTh8Ha6z31/8DWmus15qzHrYmWd0P+0xPMqQf9gEAAAAAGJS+smVL3rB2bfZ1dfU663ljxuSm+fNzRmutj7UBAAAAAKAxKYl074+TLEzyopy4KPLkn7/oyGtHURRfT/L/Jfnvsiwf6M0QRVE0JbkoyQuSvCTJ83L4FJgTlUOO/VlXkivLslzemzkYkGqd0NHWL1MMwJJIWZb/J8n/6et9iqJYlaS9r/cBAAAAABhsyrLMRx94IB+4775K8l4zfnw+P2dOhjY3V5IHAAAAAAD1oCTSjbIsO4uiuCzJf+RwMeN4RZHk50saY5O8/sgrRVFsy+ETCdYm2ZTkkSSP5vDpHvuTdOTwSQJDkoxMMiHJ2Umm5PBfHp+Vp540cOy+T/5ZjvlZmeRdZVle18PbZnDZXWN9ZL9MkYyusV5rTgAAAAAAeMKBrq5cdddd+cLmzZXkvf+88/LRadPSVBzvcQsAAAAAAAwcSiI1lGW5vyiKX03yjRw+yeN4p3bUKm2MS/KcI6+TdbynEd2VQ449QeT3yrL8+1PYl8FhW4311qIohpZlub+P5xhVY73WnAAAAAAAkCR59ODBXL5qVW7ZsaPXWU1J/m7mzLz93HN7PxgAAAAAADSApnoPMBCUZbknyYuS/EOOXwg5qjhm/cmv4hRfx8s6dq886bqja7uTXFaW5adP9n4ZVB7rwTVj+3yK2nv0ZE4AAAAAAE5za/fsySXLllVSEBnW1JQb589XEAEAAAAAYFBREumhsiw7yrK8MsnvJtmTw0WMJ5c2nqwnRY+TeZ0o84nxjrnujiTPLMvy30/5hhksHu3BNWf3+RTJOTXWlUQAAAAAAOjWd7ZtyyXLluWe/b0/HHt8a2u+u2hRXn7WWRVMBgAAAAAAjUNJ5CSVZXlNkguS/HeOXwA5nlM9ReREpZAnxslTyyEdSZYkeUZZlqtO4fYYZMqy3JvaBYyJfTlDURTDk4yscdmGvpwBAAAAAICB7ZpNm/KSFSuyo7Oz11mzhw3L/73wwlw8enQFkwEAAAAAQGNREjkFZVneV5blLyX5jSQrc+ITQ/pk+/x8OaRMcl2SOWVZfrgsy44+2puB6f4a61P6eP+e5N/fxzMAAAAAADAAdZZl3rN+AQ5rNgAAIABJREFUfd56993pfT0k+eWxY/PDxYszY/jwCtIAAAAAAKDxKIn0QlmWX0uyKMmrkvzXkR+fqDByKsWRE73/6B47k3wmyYKyLN9QluV9p3YnDHK1/r2Y2cf718rffOTEEwAAAAAAeMKujo5ctnJlPrlxYyV5V55zTr61cGHOaG2tJA8AAAAAABpRS70HGOjKsiyTfDXJV4uimJbktUl+Nckz8tQSTnnMryejeNLvdya5OcnXk3ylLMt9p5DH6WVVkld2sz67j/efVWN9VR/vDwAAAADAAPPA/v152Z13ZsWePb3OKpJ8fPr0/N7kySmKoub1AAAAAAAwkCmJVKgsy3uT/FmSPyuKYlyS5ye5KMmFSRYkOScnd3rL/iT3Jlme5PYkP0nyw7IsO6qcm0FvWY31C/t4/8U11m/v4/0BAAAAABhAfrJzZ379zjuz+dChXmeNaGrK9e3tedlZZ1UwGQAAAAAAND4lkT5SluVjSW488kqSFEXRnGRSknOTjEkyNMmwHP7ncCDJviOvR5NsPJIBvVWrJDK5KIoJZVlu6aP9L6qxriQCAAAAAECS5MtbtuSNa9dmf1dXr7MmDxmSf1+wIBeMHFnBZAAAAAAAMDAoifSjsiw7kzx45AX9oizLjUVRbEgypZvLXpDky1XvXRTFpCSzalz2g6r3BQAAAABgYCnLMn++YUM+eP/9leQ9Y9SofG3+/JwzZEgleQAAAAAAMFA01XsAoF98p8b6pX207wtrrK8ry3JDH+0NAAAAAMAAcKCrK29Yu7aygsgrx4/Pfy9apCACAAAAAMBpSUkETg8311j/9aIomvtg31fWWP92H+wJAAAAAMAAsfXgwfzy8uW5bvPmSvL+ZMqU/Ft7e4Y398VH3gAAAAAA0PiUROD08M0ke7tZn5Dap36clKIozkzy4hqX3VDlngAAAAAADByr9+zJxcuW5X927ux1VltR5J/nzMlHzj8/TUVRwXQAAAAAADAwKYnAaaAsy91Jvl7jsndWvO1bk7R1s74xyfcr3hMAAAAAgAHg29u25ZnLluW+/ft7nXVWa2v+64IL8vqzz65gMgAAAAAAGNiUROD08bka6y8timJRFRsVRTEytUsnXyjLsqxiPwAAAAAABo7PPPRQXrpiRXZ2dvY6a87w4fnx4sV5ztixFUwGAAAAAAADn5IInCbKsrw5yYpuLimSfLKi7f44SXdf2XYgyacr2gsAAAAAgAGgo6sr7163Lm9bty69r4ckl55xRn544YWZNmxYBWkAAAAAADA4KInA6eWvaqw/vyiK9/Rmg6IonpnkD2pc9vmyLB/pzT4AAAAAAAwcOzs68usrV+bvHnqokry3TpqUby5YkLGtrZXkAQAAAADAYKEkAqeX65P8tMY1f1UUxctOJbwoiplJvpqkpZvLdiVZcir5AAAAAAAMPPfv25dn3357vrVtW6+zmpJ8asaM/P3MmWlt8pgLAAAAAACO5dNzOI2UZVkmeUeSspvLWpPcUBTFm08muyiKZyf5XpJzalx6tVNEAAAAAABODz/csSMXL1uWlXv29DprZHNzvr5gQd41eXKKoqhgOgAAAAAAGHy6+7Z/IElRFM9LMusk3za7xvrIky1hHPG9sizXncL7nlCW5U+KovjLJB/o5rIhSa4tiuIVST5UluUJTx8pimJKkj9M8pbU/n/K95J88iRHBgAAAABgAPrXzZvzprVrc6Ds7nuLeuZpQ4bk3xcsyIKRIyuYDAAAAAAABi8lEajtd5K8seLMcUmuPYX3/XaSXpVEjvhQkmcneX6N616S5CVFUaxNcsuRvXcmGZHkvCQXJ7kkSU++sm1LkteWZdl5qkMDAAAAAND4yrLMhzdsyJL7768k7+JRo3LT/Pk5e8iQSvIAAAAAAGAwUxKB01BZlp1FUVyW5LtJFvXgLXOOvE7V9iQvLstyUy8yAAAAAABocPs7O/M7d92V67dsqSTvNePH55/mzMmw5uZK8gAAAAAAYLBrqvcAQH2UZbk9yYuS3NrHW23J4YLI8j7eBwAAAACAOtp88GB+6Y47KiuIfGjKlPxLe7uCCAAAAAAAnAQlETiNlWW5Nclzk/xzH23x0yRPL8vyJ32UDwAAAABAA1i5e3cuvu22/HDnzl5ntRVFrps7N1eff36aiqKC6QAAAAAA4PShJAKnubIs95dl+cYkv5bk3opidyV5X5JnlWX5YEWZAAAAAAA0oG899liedfvt2XDgQK+zxre25ruLFuWKiRMrmAwAAAAAAE4/SiJAkqQsy28mmZPk9Tl8Asip2JDkj5NMLcvyE2VZdlQ1HwAAAAAAjaUsy/zNAw/k1+68M7s6O3ud1z58eH68eHGeNWZMBdMBAAAAAMDpqaXeA0CjK8vyTUneVOcx+kVZloeSXJfkuqIozkvyK0mekaQ9yZQko5MMT3Igh08LeTjJmiTLk/xnWZZ31GNuAAAAAAD6177Ozrz5rrvyL1u2VJL34jPOyL/Nm5cxLR5dAQAAAABAb/ikHTiusiwfTLL0yAsAAAAAAJIkD+7fn99YuTK37d5dSd7bJ03KJ2fMSEtTUyV5AAAAAABwOlMSAQAAAAAAoEd+sH17XrFqVbYcOtTrrKYkn5oxI++YPLn3gwEAAAAAAEmURAAAAAAAAOiBazZtyjvXrcuhsux11qjm5ny5vT0vGTeugskAAAAAAICjlEQAAAAAAAA4oYNdXXn3+vX57KZNleRNHTo035g/P/NHjqwkDwAAAAAA+BklEQAAAAAAAI5ry8GDeeWqVbllx45K8p45enRumj8/E9raKskDAAAAAACeSkkEAAAAAACAn7Ns165ctnJlHjxwoJK835owIZ+bPTtDm5sryQMAAAAAAH6ekggAAAAAAABPcf3mzfmdu+7K/q6uSvKunjo1H5wyJUVRVJIHAAAAAAAcn5IIAAAAAAAASZLOsswH7r03f/3gg5XkDW1qyj/Nnp3fnDixkjwAAAAAAKB7SiIAAAAAAADk8UOH8to1a/If27ZVknfekCG5af78LB41qpI8AAAAAACgNiURAAAAAACA09yaPXvy8pUrs27fvkrynjtmTL4yb14mtLVVkgcAAAAAAPSMkggAAAAAAMBp7BuPPpor1qzJrs7OSvJ+d9KkfHLGjLQ1NVWSBwAAAAAA9JySCAAAAAAAwGmoLMv8xQMP5IP33ZeygrzWosinZ87MlZMmVZAGAAAAAACcCiURAAAAAACA08yezs789tq1uWHr1kryJrS25qvz5uU5Y8dWkgcAAAAAAJwaJREAAAAAAIDTyH379uWylSuzYs+eSvIWjxyZm+bPz3lDh1aSBwAAAAAAnDolEQAAAAAAgNPEdx9/PK9atSqPdXRUknfFhAm5dvbsDGturiQPAAAAAADoHSURAAAAAACAQa4sy3z6oYfynvXr01lBXlOSv5o2Le8777wURVFBIgAAAAAAUAUlEQAAAAAAgEHsQFdX3nb33fncI49Ukje2pSX/2t6eF595ZiV5AAAAAABAdZREAAAAAAAABqmHDxzI5atW5Uc7d1aSN3f48Hxt/vzMHD68kjwAAAAAAKBaSiIAAAAAAACD0E927sxvrFyZTQcPVpL36+PG5Ytz52Z0i8dLAAAAAADQqHyKDwAAAAAAMMh84ZFHctVdd+VAWVaS98EpU7Jk6tQ0FUUleQAAAAAAQN9QEgEAAAAAABgkOrq68v57780nN26sJG9EU1O+MHduXjF+fCV5AAAAAABA31ISAQAAAAAAGAQeO3Qor1m1Kv+1fXsleVOHDs3X5s/PwpEjK8kDAAAAAAD6npIIAAAAAADAAHfn7t15+cqVuW///kryfmns2Pxbe3vOamurJA8AAAAAAOgfSiIAAAAAAAAD2I1bt+YNa9ZkT1dXJXnvPvfcfGz69LQ0NVWSBwAAAAAA9B8lEQAAAAAAgAGoqyxz9f3358MbNlSS11YUuWbWrLzpnHMqyQMAAAAAAPqfkggAAAAAAMAAs6ujI69fsyZfe+yxSvLOaWvLjfPm5ZIxYyrJAwAAAAAA6kNJBAAAAAAAYABZv3dvXr5yZVbv3VtJ3sWjRuXG+fMzaciQSvIAAAAAAID6URIBAAAAAAAYIP5z27b85urV2d7RUUnem84+O5+ZOTNDm5sryQMAAAAAAOpLSQQAAAAAAKDBdZVl/mzDhiy5//6UFeQ1J/nEjBl557nnpiiKChIBAAAAAIBGoCQCAAAAAADQwLYdOpTXrVmTb23bVknemS0tuWHevPzSGWdUkgcAAAAAADQOJREAAAAAAIAGtWzXrrxi1arcv39/JXkLRozITfPnZ9qwYZXkAQAAAAAAjUVJBAAAAAAAoAH948MP5+13350DZVlJ3ivOOiufnzMnI1s8HgIAAAAAgMHKUwAAAAAAAIAGsq+zM+9Yty6fe+SRyjI/MnVq/teUKSmKorJMAAAAAACg8SiJAAAAAAAANIj79u3LK1etyrLduyvJG9XcnOvmzs2vn3VWJXkAAAAAAEBjUxIBAAAAAABoAP/vY4/ldWvW5PGOjkryZgwblq/Nn5/2ESMqyQMAAAAAABqfkggAAAAAAEAddZZlrr7//nxkw4bKMl98xhm5vr09Z7S2VpYJAAAAAAA0PiURAAAAAACAOnns0KG8dvXqfPvxxyvLfP955+Uvp01Lc1FUlgkAAAAAAAwMSiIAAAAAADDIdXaVuWfr7ty5cUfu3rwrO/YdyoGOrhzs7Epbc1OGtDRlzLDWzJo4Kgsnj8m08SPT3KRg0Nd+unNnXrlqVR44cKCSvOFNTbl29uy8duLESvIAAAAAAICBR0kEAAAAAAAGmbIs86N7t+Xm1ZuzYuP2rNq0M/sOdfb4/cPbmtN+zugsnDw2l7ZPzCXTzkzhVIrKlGWZax9+OO9cty4Hy7KSzFnDhuWr8+Zl/siRleQBAAAAAAADk5IIAAAAAAAMEjv2HcqNyzbmuh9tyD1b95xyzt6Dnbl1w+O5dcPj+dz/3Jfp40fkdZdMyeWLJ2fMsNYKJz797O3szNvuvjtf2Ly5sszLzzor/zRnTka3eOwDAAAAAACnO08LAAAAAABggNvw2J589nv35KbbN53UiSE9dc/WPbn6G6vz1/9xVy67cFLe+vzpmTJuROX7DHb37NuXV6xcmTv2nHqB58maknx02rT8/nnnOekFAAAAAABIoiQCAAAAAAADVkdnV6695b787XfuzsGOrj7fb9+hzlz/kwfz1WUP5b2XzspbnjstzU3KCT3xjUcfzevXrMmOzmpKPBNaW/Nv7e15wRlnVJIHAAAAAAAMDkoiAAAAAAAwAK3fsivvu2FF7nhwe7/vfbCjKx/91tr8x8pH8rFXLcyMCaP6fYaBorMs86H77stfPPBAZZnPHj06X543L5OGDKksEwAAAAAAGBya6j0AAAAAAADQc11dZa753j156d/9oC4FkSdb/uD2vPTvfpBrvndPurrKus7SiLYePJiXrFhRaUHk9yZPzncXLVIQAQAAAAAAjstJIgAAAAAAMEAc6uzK+2+4Izct31TvUZ5wsKMrf/mttVnz8M78zasuSGuz76dKkh/v3JlXrlqVjQcOVJI3oqkp/zhnTl4zYUIleQAAAAAAwOCkJAIAAAAAAAPA/kOdece/LMt31myp9yjHddPyTdl9oCOffu3iDG1trvc4dVOWZT6zaVN+b/36HCqrOV1lzvDh+eq8eWkfMaKSPAAAAAAAYPDydV4AAAAAANDgDnV2NXRB5KjvrNmSd/zL7TnU2VXvUepib2dn3rB2bd6+bl1lBZFXjh+fnyxerCACAAAAAAD0iJIIAAAAAAA0sK6uMu+/4Y6GL4gc9Z01m/P+G+5IV1c1JYmBYt3evblk2bJct3lzJXnNST4xfXq+3N6eUS0OhgcAAAAAAHrGUwUAAAAAAGhg195yb25avqneY5yUm5ZvSvuk0bnyedPrPUq/+Nqjj+YNa9ZkZ2dnJXlnt7Xly+3tee7YsZXkAQAAAAAApw8niQAAAAAAQINav2VXPn7z3fUe45R87Nt3Z/2WXfUeo091dHXlj+65J5etXFlZQeS5Y8Zk2UUXKYgAAAAAAACnREkEAAAAAAAaUEdnV953w4oc7Oiq9yin5GBHV37/hhXp7CrrPUqf2HzwYF60YkX+6sEHK8t83+TJ+a8LLsg5Q4ZUlgkAAAAAAJxelEQAAAAAAKAB/cMP7ssdD26v9xi9svzB7bn2lnvrPUblfrhjRxbfemu+u72afz4jm5tzQ3t7PjZjRlqbPLoBAAAAAABOnScNAAAAAADQYDY8tiefuPnueo9RiU/cfHc2PLan3mNUoizL/O+NG/O85cuz6eDBSjLnDh+eny5enFdOmFBJHgAAAAAAcHpTEgEAAAAAgAbz2e/dk4MdXfUeoxIHO7ry2e/dU+8xem1PZ2euWLMm71q/Ph1lWUnma8aPz08WL86cESMqyQMAAAAAAFASAQAAAACABrJj36HcdPumeo9RqZtu35Sd+w/Ve4xTdtfevbn4ttty/ZYtleS1FEU+NWNGrm9vz8iWlkoyAQAAAAAAEiURAAAAAABoKDcu25h9hzrrPUal9h3qzI23baz3GKfkxq1b84zbbsuqvXsryZvU1pb/XrQo75o8OUVRVJIJAAAAAABwlJIIAAAAAAA0iLIs88Ufbaj3GH3iiz/akLIs6z1Gjx3o6srvrVuXV6xalV2d1ZR2XjB2bJY9/el59pgxleQBAAAAAAAcS0kEAAAAAAAaxI/u3ZZ7t+6p9xh94p6te/Lj+7bVe4weWb93b561bFk+9dBDlWX+wXnn5eaFCzOxra2yTAAAAAAAgGMpiQAAAAAAQIO4efXmeo/QpwbC/f3r5s1ZfNttWbZ7dyV5o5qbc+O8efmr6dPT0uSxDAAAAAAA0Lda6j0AAAAAAABw2IqN2+s9Qp9q5Pvb19mZ31u/PksffriyzPkjRuSr8+Zl1vDhlWUCAAAAAAB0R0kEAAAAAAAaQGdXmVWbdtZ7jD61atPOdHaVaW4q6j3KU6zZsyevXr06K/fsqSzzigkTcs3s2RnR3FxZJgAAAAAAQC3ONQcAAAAAgAZwz9bd2Xeos95j9Km9Bztz79bd9R7jCWVZ5vMPP5yn33ZbZQWR1qLIp2fOzBfnzlUQAQAAAAAA+p2TRAAAAAAAoAHcuXFHvUfoF3c+tCMzJ46q9xjZ3dGRt61bly9u3lxZ5uQhQ3JDe3suGTOmskwAAAAAAICToSQCAAAAAAAN4O7Nu+o9Qr+4qwHuc/muXXnN6tW5e9++yjJ/eezYXN/envFtbZVlAgAAAAAAnCwlEQAAAAAAaAA79h2q9wj9Ymcd77Msy3x206a8Z/36HCjLynL/+GlPy0fOPz/NRVFZJgAAAAAAwKlQEgEAAAAAgAZwoKOr3iP0iwOH6nOf2w8dylvuvjtf2bq1sswxzc35wty5eflZZ1WWCQAAAAAA0BtKIgAAAAAA0AAOdp4mJZE63OdPdu7Ma1avzv3791eW+YxRo/Kv7e2ZNmxYZZkAAAAAAAC9pSQCAAAAAAANoK25qd4j9Ish/XifZVnmbzduzB/ee286yrKy3PdOnpy/nDYtbU2nxz8zAAAAAABg4FASAQAAAACABjCk5fQoHAxp7Z/7fPTgwbxp7dp8c9u2yjLPbGnJF+bMya+ddVZlmQAAAAAAAFVSEgEAAAAAgAYwZlhrvUfoF6P74T5v2b49v7V6dR46eLCyzOeMGZN/mTs35w0dWlkmAAAAAABA1ZREAAAAAACgAcyaOKreI/SL2X14n51lmY8+8EA+dN996aoos0jygac9LUumTk1L0+lx2gsAAAAAADBwKYkAAAAAAEADWDB5TL1H6BcLzu2b+3zkwIG8fu3afOfxxyvLnNDamuvmzs2lZ55ZWSYAAAAAAEBfUhIBAAAAAIAGMH38yAxrbc6+Q531HqXPDG9rzrTxIyvP/c62bblizZpsOXSossxfHjs2182dm7OHDKksEwAAAAAAoK85Fx0AAAAAABpAc1OReZNG13uMPjVv0ug0NxWV5XV0deVP7r03L1qxorKCSFOSPzv//PznBRcoiAAAAAAAAAOOk0QAAAAAAKBBLJw8NrdueLzeY/SZhZPHVpa1cf/+/NaaNfnBjh2VZZ7b1pbr29vz3LHVzQkAAAAAANCfnCQCAAAAAAAN4tL2ifUeoU9VdX///uijueDWWystiPzqmWdm+dOfriACAAAAAAAMaEoiAAAAAADQIC6ZdmamjR9R7zH6xPTxI3Lx+Wf2KuNgV1fet359XrZyZbZ1dFQyV0tR5OPTp+frCxbkrLa2SjIBAAAAAADqRUkEAAAAAAAaRFEUef0lU+o9Rp94/SVTUhTFKb//3n378pzbb88nNm6sbKapQ4fmfy68MO8977w09WI2AAAAAACARqEkAgAAAAAADeTyxZMzrLW53mNUalhrcy6/aPIpv/8rW7bkwltvzU937apspleOH5/bL7oovzB6dGWZAAAAAAAA9aYkAgAAAAAADWTMsNZcduGkeo9RqcsunJTRQ1tP+n37OzvztrvvzqtWr87Ozs5KZhlSFPn7mTPz5fb2jG09+ZkAAAAAAAAamZIIAAAAAAA0mLc+f3raWgbHR/htLU156/Onn/T77tq7NxcvW5bPbNpU2Syzhg3LjxYvzu+ee26KoqgsFwAAAAAAoFEMjidMAAAAAAAwiEwZNyLvvXRWvceoxHsvnZUp40ac1Hu++MgjuejWW7Niz57K5njdxIm59aKLsmjUqMoyAQAAAAAAGo2SCAAAAAAANKA3P+f8XHDe2HqP0SuLzhubtzx3Wo+v39PZmd9euzZvWLs2e7q6KplheFNT/mn27PzznDkZ1dJSSSYAAAAAAECjUhIBAAAAAIAG1NLclI+/amHaWgbmR/ltLU352KsWprmp6NH1y3btytNvuy2ff+SRymaYP2JEfnrRRXnTOeekKHo2BwAAAAAAwEA2MJ8sAQAAAADAaWDGhFF536Wz6j3GKfn9F83KjAmjal7XWZb56IYNuXjZsqzdu7ey/d9yzjn58eLFaR8xorJMAAAAAACARudcdQAAAAAAaGBvee60rHl4Z25avqneo/TYZYsm5c3PmVbzugf2788b1qzJ93bsqGzvUc3NWTprVn5z4sTKMgEAAAAAAAYKJREAAAAAAGhgTU1F/uZVF2T3gY58Z82Weo9T0wvnTszfvOqCNDUV3V53/ebN+d27786Ozs7K9l48cmT+rb09M4YPrywTAAAAAABgIGmq9wAAAAAAAED3Wpub8unXLs4L506o9yjdeuHcifn0ay9Ma/OJHz/s6OjI61avzmvXrKm0IPKuc8/N/128WEEEAAAAAAA4rSmJAAAAAADAADC0tTmfed1FuWzRpHqPclyXLZqUz7xucYa2Np/wmlu2b88FP/1pvrSluhNRxra05P+ZNy+fmjkzQ5o89gAAAAAAAE5vnpYAAAAAAEADW7JkSZYuXZrk8Ikin3j1ovzxr8xJW0tjfMTf1tKUD7x0Tj7x6kVpbW7K0qVLs2TJkqdcc6irK//r3nvzguXLs+HAgcr2fubo0Vn+9KfnsvHjK8sEAAAAAAAYyFrqPQAAAAAAAHB8S5YsydVXX/3En6+88so0NRW56vnT88tzJ+R9N6zIHQ9ur9t8i84bm4+9amFmTBiVJFm6dGmuuuqqJ9aXLFmSu/buzevWrMmtu3ZVuvcfnndePnL++Wl1eggAAAAAAMATlEQAAAAAAKABHVsQOVq+uPLKK5MkMyaMylff+sz8ww/uyyduvjsHO7r6bba2lqa879JZefNzp6W5qUjy8wWRq6++Orfu2pXvvvzl2dtV3WzjW1vzz3Pm5CXjxlWWCQAAAAAAMFgoiQAAAAAAQIM5tiBy1LFFkZbmprz1+dPzK/PPzme/d09uun1T9h3q7LO5hrU257ILJ+Wtz5+eKeNGPPHzYwsiR33zE59IHnssedObKtn/BWPH5ktz52bSkCGV5AEAAAAAAAw2SiIAAAAAANBATlQQOerYokiSTBk3In95+cL88Uvn5sbbNuaLP9qQe7buqWym6eNH5PWXTMnlF03O6KGtT1k7UUHkCV/4wuFfe1EUaU7yp1On5gNTpqS5KE45BwAAAAAAYLBTEgEAAAAAgAZRqyBy1PGKIkkyemhr3vTs8/PGZ03Nj+/blptXb86Kjduz8qGdJ3XCyPC25sybNDoLJ4/Npe0Tc/H5Z6Y4TjmjZkHkqF4URWYMG5br5s7NxaNHn/R7AQAAAAAATjdKIgAAAAAA0CAmTZrU42tPVBRJkqIocsm0cblk2rgkSWdXmXu37s6dD+3IXZt3Zee+QzlwqCsHOrsypLkpQ1qbMnpYa2ZPHJUF547JtPEj09zU/YkdPS6IHDVuXM+vPeLN55yTv50+PSNbPM4AAAAAAADoCU9VAAAAAACgQRwtfPS0fNFdUeTJmpuKzJw4KjMnjurdgEecdEHkve9NXvayHl8+rqUl186end8YP/4UpgMAAAAAADh9KYkAAAAAAEAD6auiSFX6uiDyojPOyD/NmZNJQ4acwnQAAAAAAACnNyURAAAAAABoMI1aFOnLgsiQoshfT5+ed5x7bpqK4hQnBAAAAAAAOL0piQAAAAAAQANqtKJIXxZEFo4YkS/NnZv5I0ee4nQAAAAAAAAkSiIAAAAAANCwGqUo0pcFkfdOnpw/P//8DG1uPsXpAAAAAAAAOKqp3gMAAAAAAMBgs2TJkixdurSSrCuvvDLXXHNNj6+/6qqrTnrvpUuXZsmSJcdd+8xnP9snBZFJbW25eeHCfHzGDAURAAAAAACAijhJBAAAAAAAKrRkyZJcffXVT/y5ilM9+vJEkWNPCXlyWeTPPv3pfPCd7+z5oD0siLzirLNyzezZGdfa2vNsAAAAAAAAalLL3cfdAAAgAElEQVQSAQAAAACAihxbEDmZskYtfVEUObYgcnT2P/3TP80bP/axfPEP/qDnA/agIDKyuTl/N2NG3nT22SmKoufZAAAAAAAA9IiSCAAAAAAAVODYgshRjVoUObYgctTVV1+dz373u9n8/e/3fLAeFEQuGT06182dm+nDhvU8FwAAAAAAgJOiJAIAAAAAAL10ooLIUY1WFDlRQeSoKgsizUk+OHVq/tfTnpaWpqae5wIAAAAAAHDSlEQAAAAAAKAXahVEjmqUokitgshJqVEQmTZ0aK6bOzfPHDOmmv0AAAAAAADolpIIAAAAAAD0wqRJk3p8bb2LIt///vfzpS99qdd7J6lZEPnts8/Op2bMyKgWjyIAAAAAAAD6iyczAAAAAADQC7051aO/9+6PgsgZLS25dvbsvGL8+Gr2AgAAAAAAoMeURAAAAAAAoJcGUlGk17opiLzwjDPy+Tlzcu6QIf0zCwAAAAAAAE+hJAIAAAAAABU4LYoiJyiItBVFPjptWt49eXKaiqJvZwAAAAAAAOCElEQAAAAAAKAig7oocoKCyPwRI/KluXOzcOTIvtkXAAAAAACAHlMSAQAAAACACg3KosgJCiLvPvfcfHTatAxtbq52PwAAAAAAAE5JU70HAAAAAACAwebKK6/MNddc0+Prr7rqqixdurSyva+44opKspIctyBydltb/nPhwnxy5kwFEQAAAAAAgAbiJBEAAAAAAOgD9TpRZOnSpfnSl77Uq4wnHKcgctlZZ+XaWbNyVltbNXsAAAAAAABQmf+fvTsNt7Ou74X/vdfeO3NCBjKQ7IFMIA4I2KKtWvVUqvWcnqpPaetUtY8mqKgUwQFRcUZAnIdE6nCs1mrtwdrnqI+2to/VKqAIKmPmvbMzh8zDHtb9vJBYi0B2kn2vtXf253Nd6+K6cv/X7/tbL/JmLb75K4kAAAAAAEBFGl0UWbly5ZCzjuoBBZHJtVo+tHRp/nLevBRFMTwZAAAAAAAADCslEQAAAAAAqFCjiiIrVqzIRRdddGzLPZQHFETOnzo1f3PWWVk6adLwzAcAAAAAAKASSiIAAAAAAFCxqosi133847n8Va86vuUeRi3Jm7u68paurrTVasM+HwAAAAAAgOGlJAIAAAAAAA1QVVFk+XXXZeXll5/Ycg90/fWZ1daWr73pTXniKacM72wAAAAAAAAq45/9AgAAAACABlm2bFlWrFgx5PPLly/PypUrH/TZ9r6+/PZVVw1/QeR+O973vvzi7/6uktkAAAAAAABUw00iAAAAAADQQMNxo8iN27blL669NnuvvXb4FzxKNgAAAAAAACOXkggAAAAAADTY8RZF/uSlL81r7r03X/jrv06uv76y/R4sW1EEAAAAAABg5FMSAQAAAACAJjieosjlq1dnz8BAwwoiv56dKIoAAAAAAACMdEoiAAAAAADQJMdaFNlzzTXDF37ppTl/6tTc9Pa3D+m4oggAAAAAAMDIpyQCAAAAAABNdKxFkeEw5fLL87nLL89zZ8/Oyvnzj+k2k0RRBAAAAAAAYKRSEgEAAAAAgCZrZFHkcW97W75xxRWZPW7ccWUrigAAAAAAAIxcSiIAAAAAADACNKIo8vJrr83Kyy474WxFEQAAAAAAgJGp1uwFAAAAAACAZN/AQG596lOTSy+tZP61H/vYgxZEjli2bFlWrFgx5HnLly/PypUrh2M1AAAAAAAAhombRAAAAAAAoMn+9b778tK77866Q4eSP/qjX/7h9dcP2/xPfvKTQ7olxI0iAAAAAAAAo5uSCAAAAAAANMn+wcG8ac2afGTjxsoyVqxYcUwlDkURAAAAAACA0UtJBAAAAAAAmuDfd+3KS+66K6sPHfqvD77+9WG7ReRYCyJHKIoAAAAAAACMTkoiAAAAAADQQAcHB/PmtWvzwZ6elA98OAIKIkcoigAAAAAAAIw+SiIAAAAAANAg/7F7d15y11255+DB33w4jAWRF7zgBcNS1lAUAQAAAAAAGF1qzV4AAAAAAABOdgcHB/OG1avzpFtvrbwgkiRf+MIXsnLlymGZtWzZsqxYsWLI55cvXz5s2QAAAAAAABwbN4kAAAAAAECFvnvffVl2zz1Z9WDlkGTYCyJHDOetHm4UAQAAAAAAGB2URAAAAAAAoAL39ffn8tWr89ebNz/0oYoKIkcoigAAAAAAAIwtSiIAAAAAADCMyrLM32/bllffe2+29Pc/9MGKCyJHKIoAAAAAAACMHUoiAAAAAAAwTHoOHcqr7r03/7hjx8MfbFBB5AhFEQAAAAAAgLGh1uwFAAAAAABgtKuXZT6+cWMeefPNDS2ITHrkU4d8dvny5Vm5cuWw5C5btiwrVqxoSjYAAAAAAAAPzU0iAAAAAABwAu7Yvz8vv/vu/GDPnqMfHsaCyMxnXJyp5zwzezsenZ3f+uiQ3rN8+fLU62Uuumhot4A8nGO9UaS3t/eEMwEAAAAAAHh4SiIAAAAAAHAcDtfruXrDhrx7/fr0l+XR31BBQSTJr/471KLIK15xUbbvO5wrL3vNCe8x1KLI2972tlx11VUnnAcAAAAAAMDDqzV7AQAAAAAAGG1+sHt3zr3llly1bl0lBZHxZ5z/kM9+vSByxNRznpmZz7h4yPPfcvlr88LL3p16fQi7H8WyZcuyYsWKh3yuIAIAAAAAANA4SiIAAAAAADBEewYG8qp77smTbr01dx44MLQ3HWNBZOYzL86857w1pzzxeb/57EEKIkcca1HkC++/Mhcsf0v6B+tDfs9DeaiiiIIIAAAAAABAY7U2ewEAAAAAABgN/nH79rzynnuysa9v6G861oLIMy7O1Mf+sgQy/UkvSJLs/v7f/uezhyiIHHHk+c5vfXRIef9yw7vztIF6vrPynZnQ1jLkPR/MsmXLkiTLly9PoiACAAAAAADQDEoiAAAAAADwMDYfPpzXrFqVr2zbdmxvPJ6CyANKIEeKIi1TZh21IHLEsRZFvv/Z9+bpSb57w7vS1nJiF5AfKYr09vYqiAAAAAAAADSBkggAAAAAADyIsizzmc2b87rVq7NrYODY3jwMBZEjjhRFjsXxFEWe2VrLt1e8M7Vaccx5v+5IUQQAAAAAAIDGO7F/EgwAAAAAAE5C9x44kN+/7bb833ff3dSCyImYes4zM/MZFw/5/L/c8O78xevfM+x7AAAAAAAA0DhKIgAAAAAAcL/+ej1Xr1+fs2+5Jd/dtevYB4yQgsgRx1oU+cL7r8y7rvtwZfsAAAAAAABQrdZmLwAAAAAAACPBLXv25GV3353b9u8/vgEjrCByxJGMnd/66JDOv+Xy1+bUKeNz0UXLq1wLAAAAAACACiiJAAAAAAAwpu0fHMxb167NB3t6Uj/eISO0IHLEsRZFXvGKi1KrFVm2bFmVawEAAAAAADDMlEQAAAAAABizvrVzZy66556sO3To+IeM8ILIEcdaFFm+/Jc3iSiKAAAAAAAAjB5KIgAAAAAAjDnb+/py6erV+fyWLSc+bMeOIR9tVkHkiGMtivT29la5DgAAAAAAAMNMSQQAAAAAgDGjLMt8cevWXLJqVbb39w/P0Je85Jf//dznHvZYswsiRwy1KDLryS/IpW98cyNWAgAAAAAAYJjUmr0AAAAAAAA0wrqDB/OHt9+eF9555/AVRO43/iUvzYRnveAhn4+UgsgRU895ZmY+4+KHfH7KE5+XKb/7vPzDj3sauBUAAAAAAAAnSkkEAAAAAICT2mBZ5gPd3XnUzTfnW/fdN+zz/8fMmTnv9jJzH/O8nPLE5/3G85FWEDnioYoipzzxeZn+pF8WXj7/w/Upy7LRqwEAAAAAAHCcWpu9AAAAAAAAVOW2ffvy8rvvzs179w777Dltbfnw0qXp2FPL83u7k+RX5Yrd3//bJCO3IHLEkd12fuujSf5rQSRJVm/bnx+t3ZknLJrVlP0AAAAAAAA4NkoiAAAAAACcdA4ODuad69fn2u7uDFRwE8ZL583LdYsXZ2ZbW97xozv+y7MjJYuWKbNGdEHkiCM7Du7b8V8KIkd8+44tSiIAAAAAAACjhJIIAAAAAAAnlW/u2JFXr1qVVQcPDvvsxRMmZMWZZ+b3Z8z41Z/d3rPrN849WNliJHu4MsuDfT4AAAAAAABGJiURAAAAAABOCt2HDuWvVq3KV7dvH/bZLUle19GRt51+eia1tPzqzwfrZX7Ru2fY80aSX/TuyWC9TEutaPYqAAAAAAAAHIWSCAAAAAAAo1p/vZ4P9vTk7evWZX+9Puzzz5syJTeceWbOnTr1N56t3rYvB/sHhz1zJDnQN5g12/Zl6dzf/PwAAAAAAACMLEoiAAAAAACMWv+2a1deec89uePAgWGfPbFWyzsXLsxrFyxIa632oGd+1rN72HNHop9t3K0kAgAAAAAAMAooiQAAAAAAMOpsPnw4l69Zk7/ZsqWS+RfMmJFPnnFGFk2c+LDn7tmyt5L8kebuMfI5AQAAAAAARjslEQAAAAAARo2Bej2f6O3NlWvXZs/g4LDPn9namg8sWZIXzZ2boiiOen73wf5h32Ek2jNGPicAAAAAAMBopyQCAAAAAMCo8MPdu/PKe+/Nrfv2VTL/+XPm5ANLlmTOuHFDfs/hgXolu4w0h/vHxucEAAAAAAAY7ZREAAAAAAAY0Xb09+dNa9bkU5s2VTK/c/z4fOKMM/KsWbOO+b19g2OjPHF4jHxOAAAAAACA0U5JBAAAAACAEalelvn0pk1545o12TEwMOzziySvWbAg71q4MFNaj+/r8nEtteFdaoQaP0Y+JwAAAAAAwGinJAIAAAAAwIjz071784p7780P9+ypZP6jJ0/ODWeemcdPm3ZCc8a3jo3yxPi2sfE5AQAAAAAARjslEQAAAAAARozdAwN5y9q1+djGjalXMH98UeTKrq68vrMz42onXnw4ZWLbMGw18k0bI58TAAAAAABgtFMSAQAAAACg6cqyzBe3bs3rVq3Klv7+SjKeNXNmPrx0aRZPnDhsM8+YO3XYZo1kZ46RzwkAAAAAADDaKYkAAAAAANBUd+zfn1fde2/+ddeuSuZ3jh+fDy1Zkj8+9dQURTGssx/TfsqwzhupHrNgbHxOAAAAAACA0U5JBAAAAACAptg3MJB3rl+f63t6MlCWwz6/rSjyuo6OXNnVlcktLcM+P0kWz56SiW0tOdg/WMn8kWDSuJYsmj2l2WsAAAAAAAAwBEoiAAAAAAA0VFmW+d/bt+eSVavSffhwJRn/bfr0fGzp0jxi8uRK5h/RUivyqPnTcsv6+yrNaaZHzZ+Wltrw3sACAAAAAABANZREAAAAAABomFUHDuTVq1blmzt3VjJ/3rhxuX7x4vz5nDkpisYUG85un35Sl0TObp/e7BUAAAAAAAAYolqzFwAAAAAA4OR3cHAwV61dm0fffHMlBZFaktcuWJC7zj8/z5s7t2EFkSS54JFzG5bVDCf75wMAAAAAADiZuEkEAAAAAIBKfWPHjlx8771Zc+hQJfN/d9q0fPyMM/LYKVMqmX80T1g0M4tmT86abfubkl+lxbMn5/ELZzZ7DQAAAAAAAIbITSIAAAAAAFRiw6FDee7Pf55n/exnlRRETm1ry1+feWa+d+65TSuIJElRFHnRE7qall+lFz2hq6G3sgAAAAAAAHBilEQAAAAAABhWffV63rdhQ8666ab87+3bh31+kWT5aafl7vPPz1+edlpqI6DE8Nzz2jOxraXZawyriW0tee7j2pu9BgAAAAAAAMegtdkLAAAAAABw8vjuffflVffemzsPHKhk/nlTpuQTZ5yR86dNq2T+8TplYluefe78/O1N3c1eZdg8+9z5mTahrdlrAAAAAAAAcAzcJAIAAAAAwAnbdPhwXnDHHflvt91WSUHklJaWfGzp0tz0uMeNuILIERc9ZXHGtZ4cX7uPa63loqcsbvYaAAAAAAAAHKOT49cqAAAAAACaoq9ez/Xd3XnETTfli1u3VpLxF3Pn5u7HPz6vXLAgLUVRScZw6Jo1OZdecEaz1xgWl15wRrpmTW72GgAAAAAAAByj1mYvAAAAAADA6PR/duzIX61alXsOHqxk/qMnT87Hly7Nk6dPr2R+FV72pIX5xs8357buXc1e5bid0zE9L3/yomavAQAAAAAAwHFwkwgAAAAAAMfkzv3784e3357//rOfVVIQmdLSkusWL85PHve4UVUQSZLWllref+HZGdc6Or9+H9day3UXnp2W2si9sQUAAAAAAICHNjp/pQIAAAAAoOHu6+/PJffem8fcfHO+uXNnJRl/Ont27jr//LyuoyNttdH5FfaSOVPzugvOaPYax+WyPzgjS+ZMbfYaAAAAAAAAHKfWZi8AAAAAAMDINlCvZ+WmTXnr2rXZMTBQScbSiRPz0aVL8wczZ1Yyv9Fe/uRFuXPTntz4095mrzJkzz5nfl72pEXNXgMAAAAAAIAToCQCAAAAAMBD+uf77sslq1bl5/v3VzJ/Qq2WN3d25vLOzowfpTeHPJharci1Fz42+w4P5Dt3bm32Okf19LPm5toLH5tarWj2KgAAAAAAAJwAJREYg4qiKJu8wgVlWX6nyTsAAAAA8DBWHzyYy1avzo3bt1eW8UezZuVDS5Zk4cSJlWU0U1tLLR99/nm5+Is/GdFFkaefNTcfff65aWs5eUo6AAAAAAAAY5VffAAAAAAA+JW9AwN54+rVeeRNN1VWEOkaPz5fe/Sj84+PecxJWxA5YkJbSz7xwsfl2efMb/YqD+rZ58zPJ154Xia0tTR7FQAAAAAAAIaBm0QAAAAAAEi9LPPZzZtzxZo12dLfX0lGW1Hk9R0duaKrK5Naxk4poa2lluv/9Jycddq0vP/b96RvoN7slTKutZbL/uCMvOxJi1KrFc1eBwAAAAAAgGGiJAIAAAAAMMZ9f/fuvPbee/Pjffsqy3j6jBn56NKlOXPSpMoyRrJarcjypyzO7581J6/7yu25rXtX03Y5p2N6rrvw7CyZM7VpOwAAAAAAAFANJREAAAAAgDFqw6FDecOaNfnS1q2VZcwfNy4fWLIkF86enaJwY8WSOVPz1Yt+Jzf8+9pc3+BbRca11vK6C87Iy568KC1uDwEAAAAAADgpKYkAAAAAAIwxBwYHc82GDbmmuzsH69WUFMYVRS7t6MgVnZ2Z2uqr6F/X2lLLRU9ZnD989Lx88t9W58Zbe3Owf7CyvIltLXn2ufNz0VMWp2vW5MpyAAAAAAAAaD6/zAEP9PUk/1hxxh0VzwcAAADgQZRlmS9t3ZrXr1mTnsOHK8t5zqmn5rrFi7No4sTKMk4GXbMm573PPTtvetZZ+Ycf9+TzP1yf1dv2D9v8xbMn50VP6MpzH9eeaRPahm0uAAAAAAAAI5eSCPBAPynL8oZmLwEAAADA8Lplz568dtWq/GDPnsoyHjN5cj60ZEmeNmNGZRkno2kT2vKSJy7Mi3/39Pxo7c58+44tub1nV36+cc8x3TAyaVxLHjV/Ws5un54LHjk3j184M0VRVLg5AAAAAAAAI42SCAAAAADASWzT4cO5Yu3afHbz5soyZrW25l0LF+Zlp52W1lqtspyTXVEUecKiWXnCollJksF6mTXb9uVnG3fn7i17s+dgfw7313N4sJ7xLbWMb6tl2sS2nDl3ah6z4JQsmj0lLTWlEAAAAAAAgLFMSQQAAAAA4CR0aHAwH+zpybs3bMi+waHfRnEsWosiFy9YkLd2dWVGW1slGWNZS63I0rlTs3Tu1GavAgAAAAAAwCihJAIAAAAAcBIpyzI3bt+ey1avzppDhyrL+cOZM3P94sV5xOTJlWUAAAAAAAAAx0ZJBAAAAADgJHH7vn25ZNWqfHfXrsoyzpw4MdcvWZJnzZpVWQYAAAAAAABwfJREAAAAAABGue19fXnLunVZ2dubekUZp7S05KrTT8+rFixIW61WUQoAAAAAAABwIpREAAAAAABGqf56PR/buDFvX78+uwYGKsmoJVk2f37ecfrpmT1uXCUZAAAAAAAAwPBQEgEAAAAAGIW+sWNHLl29OncdOFBZxtOmT88HlyzJ2VOmVJYBAAAAAAAADB8lEQAAAACAUeQX+/fn8tWr842dOyvLWDhhQq5bvDjPOfXUFEVRWQ4AAAAAAAAwvJREAAAAAABGgY2HD+dta9fmM5s3p15RxuRaLVd2deWS9vZMaGmpKAUAAAAAAACoipIIAAAAAMAItmdgINds2JDre3pysF5VPSR5ybx5ec/ChTlt/PjKMgAAAAAAAIBqKYkAAAAAAIxAffV6Vvb25u3r12d7f39lOb8zbVo+tGRJfnvatMoyAAAAAAAAgMZQEgEAAAAAGEHKssxXt23Lm9auzaqDByvLaR8/Pu9btCjPmzMnRVFUlgMAAAAAAAA0jpII8JCKomhLsjhJZ5KZSSYk6U9yMMmuJD1JusuyrO7/VgAAAAAYQ763a1cuX706P9q7t7KMCbVaXt/Rkdd3dmZyS0tlOQAAAAAAAEDjKYkAD/TIoiiuSfK0JI9JMv4o5+tFUdyT5JYk30nyjbIst1a8IwAAAMBJ5c79+/OmNWvytR07Ks358zlz8r5Fi9I5YUKlOQAAAAAAAEBzKIkAD3ThMZ6vJXnE/a8X5pelkW8m+WSSfyrLshzm/QAAAABOGpsOH85V69blhk2bUq8w57wpU/LBJUvy5OnTK0wBAAAAAAAAmk1JBBhutSTPuv/1k6Io3lCW5XeavBMAAADAiLJ3YCDXdXfnuu7uHKhXVw+Z09aW9y5alBfPm5eWoqgsBwAAAAAAABgZlESAKp2X5NtFUXwmySVlWe5p9kIAAAAAzdRfr+eGTZty1bp12drfX1lOW1Hkr9rb8+aurkxr9TUwAAAAAAAAjBV+HQQa4aVJnlAUxR+VZbm62csAAAAANFpZlrlx+/a8cc2a3HPwYKVZfzxrVq5bvDhLJk2qNAcAAAAAAAAYeZREgEY5K8kPi6J4almWv2j2MkdTFMWrkryyAVGLG5ABAAAANNEPdu/O5atX5wd7qr1k9ZwpU3LtokV5+syZleYAAAAAAAAAI5eSCPDrfp7kx0l+dv+rO8nu+199SWYmmZVkTpInJPm9JE9MMm2I809N8u2iKJ5YluXa4V192M1O8shmLwEAAACMXvccOJA3rVmTf9i+vdKczvHj8+6FC/P8uXNTK4pKswAAAAAAAICRTUkExrbBJN9M8k9J/p+yLLuPcn7L/a87kvxrkquLopiQ5CVJLsvQbsU4LclXi6L43bIsDx3n3gAAAAAj1pa+vrxj3bqs6O3NYIU501tbc2VXV141f34mtLRUmAQAAAAAAACMFkoiMDZtSnJDkhVlWW48kUH3Fz0+WRTFyiSvSXJNkrajvO3cJO9JcumJZAMAAACMJPsHB3N9d3eu6e7OvsHq6iHjiiKvXrAgV3R1ZWbb0b6GAQAAAAAAAMYSJREYmzrLshwYzoFlWdaTfLAoih8k+XKSrqO85dVFUXymLMufDeceAAAAAI02UK/n05s3523r1mVzX1+lWS+cOzfvPP30nD5xYqU5AAAAAAAAwOikJAJj0HAXRB4w+6aiKH4vyfeSdD7M0dYk70jynKp2AQAAAKhSWZb5+o4decOaNbnrwIFKs35/+vRcs3hxzps6tdIcAAAAAAAAYHRTEgGGXVmWG4qieE6S7yeZ8DBH/2dRFEvLsry3Qasdi21J7mhAzuIk4xuQAwAAAAyjH+3Zk8tXr873du+uNOfsyZNzzeLF+YMZM1IURaVZAAAAAAAAwOinJAJUoizLnxRF8Z788raQh1JL8sIkb2vMVkNXluXHknys6pyiKH6R5JFV5wAAAADDY9WBA7li7dp8Zdu2SnPax4/PuxYuzAvnzk2LcggAAAAAAAAwRLVmLwCc1K5NsuUoZ/6kEYsAAAAAnIhtfX15zb335qybb660IDKtpSVXL1qUe84/Py+eN09BBAAAAAAAADgmbhIBKlOW5aGiKFYkeevDHHtkURRzyrLc2qi9AAAAAIZq38BAPrRxY963YUP2Dg5WltNWFHnVggV5c2dnTh03rrIcAAAAAAAA4OSmJAJU7ct5+JJIkvxOkq81YBcAAACAITk4OJhP9PbmvRs2ZHt/f6VZz5szJ+9auDCLJk6sNAcAAAAAAAA4+SmJAJUqy/IXRVFsTTLnYY49IkoiAAAAwAjQV6/n05s25Z3r16e3r6/SrKdOn55rFy3Kb02bVmkOAAAAAAAAMHYoiQCNcGuSZzzM89MbtAcAAADAgxosy3xhy5ZctW5d1h46VGnWoyZNyjWLF+cPZ85MURSVZgEAAAAAAABji5II0AjrjvL84W4ZAQAAAKhMvSzz1W3b8tZ163LXgQOVZs0fNy7vXLgwL543Ly3KIQAAAAAAAEAFlESARth9lOeTGrIFAAAAwP3Kssz/2bkzb1m7Nrfu21dp1tSWlryxszOXtLdnUktLpVkAAAAAAADA2KYkAjRC31GetzVkCwAAAIAk373vvrx57dr8x549lea0FkVeMX9+3tLVldnjxlWaBQAAAAAAAJAoiQCNMfEozw82ZAsAAABgTPvh7t25cu3a/POuXZVnXTh7dt6zcGGWTHKBKgAAAAAAANA4SiJAI8w7yvN9DdkCAAAAGJNu27cvV65dm3/asaPyrCefckquXbw4j582rfIsAAAAAAAAgAdSEgEaYclRnm9syBYAAADAmHLX/v1527p1+fK2bZVnnTVpUt63aFH+x6xZKYqi8jwAAAAAAACAB6MkAlSqKIrxSc45yrG1jdgFAAAAGBvWHTyYt69fn/+1eXPqFWfNGzcu7zj99Lx03ry01moVpwEAAAAAAAA8PCURoGq/n2T8Uc7c3ohFAAAAgJNb7+HDeff69fnUpk3pL8tKs6a1tOSyjo5c2tGRyS0tlWYBAAAAAAAADJWSCFC1vzjK8/4kNwO8gr8AACAASURBVDdiEQAAAODktL2vL1dv2JCP9fbmUL3au0Mm1Wp5TXt7Lu/oyMy2tkqzAAAAAAAAAI6VkghQmaIolib5k6Mc+//KsjzUiH0AAACAk8vugYG8v7s7H+jpyb7BwUqzxhVFLpo/P2/q7My88Ue7NBUAAAAAAACgOZREgCp9OEnLUc58uRGLAAAAACeP/YOD+UhPT67p7s59AwOVZrUkeelpp+UtXV3pnDCh0iwAAAAAAACAE6UkAlSiKIrLkjzzKMf2JPm7BqwDAAAAnAQODQ5mxaZNec/69dna319pVpHk+XPm5KrTT8+SSZMqzQIAAAAAAAAYLkoiMEYURXFekjvLsjzYgKwXJ3nfEI5+vCzL3VXvAwAAAIxu/fV6Prt5c965fn26Dx+uPO85p56ad5x+eh49ZUrlWQAAAAAAAADDSUkExo6/SPKnRVFcneSvy7LcP9wBRVGMS3JNktcO4fiWDK1IAgAAAIxRg2WZL23dmretXZvVhw5VnveMGTPyroUL81vTplWeBQAAAAAAAFAFJREYW05L8qEkVxVF8bkkny3L8rbhGFwUxVPzy4LIbw/xLa8py3LXcGQDAAAAJ5eyLHPj9u15y9q1+cWBA5XnPfmUU/LuhQvz5OnTK88CAAAAAAAAqJKSCIxNM5JckuSSoijuSfJPSf4lyX+UZblzqEOKopiX5OlJXp3k/GPI/0hZll8+hvMAAADAGFCWZb6xc2feunZtfrxvX+V5vzV1at61cGH+YMaMFEVReR4AAAAAAABA1ZREgDOSXHr/qyyKojvJXUnWJdmc5L4kh+8/OyPJrCRzkjw+ydLjyLvx/iwAAACAJL8sh3x9x468Y926hpRDHj15ct55+un541NPVQ4BAAAAAAAATipKIsCvK5J03v+qwt8leVFZlgMVzQcAAABGkXpZ5sbt2/PO9evz0waUQ5ZMnJi3n356/mzOnLQohwAAAAAAAAAnISURoBEGk1xZluXVzV4EAAAAaL56Wear27blnevX52f791ee1zF+fN7a1ZUXz5uXtlqt8jwAAAAAAACAZlESAap2c5JlZVn+tNmLAAAAAM01WJb58tatedf69bnjwIHK8+a2teWKrq4snz8/45VDAAAAAAAAgDFASQTGjluTrEmyqEF5P0nyniT/UJZl2aBMAAAAYAQaqNfzpfvLIXcfPFh53ozW1ryhszMXL1iQyS0tlecBAAAAAAAAjBRKIjBGlGX5uSSfK4qiM8nTkvxekt9KclaStmGKWZXkn5L8TVmWPx6mmQAAAMAo1V+v5wtbtuTdGzZkVQPKIVNaWnJpe3su7ejIKa2++gQAAAAAAADGHr+UwhhTluWGJJ+7/5WiKMYleXSSs5MsTNJx/2tBkmlJJiaZlGR8kr4kh5LsTrIpSU+Su5LcnuSH988GAAAAxri+ej2f37Il71m/PmsOHao8b0KtlosXLMgbOjpy6rhxlecBAAAAAAAAjFRKIjDGlWXZl+Qn978AAAAAjtvhej2f3bw5712/PusPH648r60osuy003JFV1fmjx9feR4AAAAAAADASKckAgAAAACckEODg/n05s25esOGdDegHFJL8uJ58/LWrq6cPnFi5XkAAAAAAAAAo4WSCAAAAABwXA4ODuZTmzblfRs2pLevryGZfzZ7dt6+cGHOnDSpIXkAAAAAAAAAo4mSCAAAAABwTA4MDuaTvb25ZsOGbOnvb0jm/5w1K+9YuDCPnTKlIXkAAAAAAAAAo5GSCAAAAAAwJPsGBvKJ3t5c192drQ0qhzz31FNzZVdXzp06tSF5AAAAAAAAAKOZkggAAAAA8LD2DgzkYxs35v09PdnegHJIkeTC2bNzZVdXHuPmEAAAAAAAAIAhUxIBAAAAAB7U7oGBfKSnJx/o6cnOgYHK84okfz5nTt7c1ZVHTZ5ceR4AAAAAAADAyUZJBAAAAAD4L+7r78+HN27MB3t6sqsB5ZBakhfMnZsrOjvzCOUQAAAAAAAAgOOmJAIAAAAAJEl29Pfngz09+XBPT/YMDlae15LkRfPm5YrOziydNKnyPAAAAAAAAICTnZIIAAAAAIxx2/r6cn1PTz66cWP2NaAc0loUefHcubmiqyuLJk6sPA8AAAAAAABgrFASAQAAAIAxatPhw/lAT08+vnFj9tfrlee1FUX+ct68vLGzM6crhwAAAAAAAAAMOyURAAAAABhjVh04kGu7u/PZzZvTV5aV540rirz8tNPyhs7OdEyYUHkeAAAAAAAAwFilJAIAAAAAY8Ste/fm6g0b8vfbtqX6e0OSCbValp12Wl7f2ZkF48c3IBEAAAAAAABgbFMSAQAAAICTWFmW+bddu3L1hg351n33NSRzYq2WV8yfn8s6OnKacggAAAAAAABAwyiJAAAAAMBJqF6W+cft23P1hg350d69DcmcVKvlVQsW5LKOjswZN64hmQAAAAAAAAD8JyURAAAAADiJ9NXr+eKWLXlfd3fuOnCgIZlTWlry6gUL8lft7ZmtHAIAAAAAAADQNEoiAAAAAHAS2DcwkBs2bcr7e3rSc/hwQzKntbTkte3tuaS9PTPb2hqSCQAAAAAAAMBDUxIBAAAAgFFsR39/PtLTk49s3JidAwMNyZze2ppL2tvzmgULMkM5BAAAAAAAAGDEUBIBAAAAgFGo+9ChXN/Tk5W9vTlQrzckc2Zray7t6MjFCxbklFZfLQIAAAAAAACMNH7JBQAAAIBR5M79+3NNd3f+ZsuWDJRlQzJntbbmso6OvGrBgkxVDgEAAAAAAAAYsfyiCwAAAACjwI/27MnVGzbkxu3bG5Y5p60tl3d05KL58zNFOQQAAAAAAABgxPPLLgAAAACMUGVZ5v+9775cvWFD/nXXroblzhs3Lq/v6Mjy+fMzqaWlYbkAAAAAAAAAnBglEQAAAAAYYQbLMl/dti1Xb9iQW/fta1jukokT8/qOjrxo7txMUA4BAAAAAAAAGHWURAAAAABghDg0OJj/tWVLrtmwIasPHWpY7rlTpuSNnZ35v2bPTktRNCwXAAAAAAAAgOGlJAIAAAAATbZnYCCf7O3NB3p6srmvr2G5T5s+PW/s7MwFM2akUA4BAAAAAAAAGPWURAAAAACgSbb09eVDPT35+MaN2T042LDc55x6at7Q2ZnHT5vWsEwAAAAAAAAAqqckAgAAAAANtubgwVzX3Z1Pb9qUw2XZkMzWosiL5s7N5R0dOWvy5IZkAgAAAAAAANBYSiIAAAAA0CC37duXazZsyJe2bk29QZmTarUsmz8/l7a3p2PChAalAgAAAAAAANAMSiIAAAAAUKF6WeabO3fm+u7u/POuXQ3Lndnamte0t+fiBQsyq62tYbkAAAAAAAAANI+SCAAAAABU4NDgYD6/ZUs+0NOTOw8caFhu+/jxuayjIy877bRMbmlpWC4AAAAAAAAAzackAgAAAADDaGtfXz6+cWM+3tubbf39Dcs9a9KkvKGzM8+bMyfjarWG5QIAAAAAAAAwciiJAAAAAMAwuHP//lzf05PPb96cw2XZsNzHT52aN3V15Y9mzUqtKBqWCwAAAAAAAMDIoyQCAAAAAMepLMv8y65deX93d76xc2dDs58xY0be2NmZp0yfnkI5BAAAAAAAAIAoiQAAAADAMeur1/OlrVtzfXd3btu/v2G5tSQXzp6dN3R25typUxuWCwAAAAAAAMDooCQCAAAAAEO0s78/K3p785GNG7Opr69hueOKIi+dNy+XdXRkyaRJDcsFAAAAAAAAYHRREgEAAACAo1h14EA+2NOTz2zenAP1esNyp7a05JXz5+e17e05bfz4huUCAAAAAAAAMDopiQAAAMAwG6yXWb1tX37Wszv3bNmb3Qf7c3ignr7Besa11DK+tZZTJrbljLlTc3b7KVk0e0paakWz1wYeoCzL/Pvu3bm+pydf2749ZQOz57S15a/a23PR/PmZ3tbWwGQAAAAAAAAARjMlEQAAADhBZVnmh2t25tt3bMntPbvyi949Odg/OOT3TxrXkkeeNi1nt0/PBY+cmycsmpmiUBqBZhmo1/P327bl/T09uWXv3oZmL5wwIZd3dOQl8+ZlYktLQ7MBAAAAAAAAGP2URAAAAOA47T7Yn3/4SU/+5ofrs3rb/uOec6BvMLesvy+3rL8vn/7+2iyePTkvfEJXnntee06Z6AYBaJTdAwO5YdOmfLinJxsOH25o9tmTJ+eNnZ25cPbstNZqDc0GAAAAAAAA4OShJAIAAADHaP2O/fnkv63Ojbf2HtONIUO1etv+vP3rd+Sab96dZ587Pxc9ZXG6Zk0e9hzgl9YfOpQP9fTkhk2bsndw+P9OP5wLZszIpe3tecZMNwgBAAAAAAAAcOKURAAAAGCIBgbr+dT31uYD37knfQP1yvMO9g/mb2/qzld/sjGXXnBGXv7kRWmp+Z/IYbjctGdP3t/dnb/fti3V/43+T21FkRfMnZtL29vzmClTGpgMAAAAAAAAwMlOSQQAAACGYNXWvXndV27Pbd27Gp7dN1DP1d+4K9/8+eZcd+HZWTJnasN3gJPFYFnma9u35/ru7nx/z56GZs9sbc0rFyzIK+fPz2njxzc0GwAAAAAAAICxQUkEAAAAHka9XuZT31uT93+7MbeHPJyfdu/Ksz7873nd/beK1NwqAkO2b2Agn9m8OR/s6cmaQ4camr104sT8VXt7XjxvXia1tDQ0GwAAAAAAAICxRUkEAAAAHkL/YD2Xf+W23PjT3mav8it9A/W89xt35c5Ne3LthY9NW0ut2SvBiLbx8OF8pKcnKzZtyq6BgYZmP+WUU/K6jo7891mzUiuUugAAAAAAAAConpIIAAAAPIhD/YO5+Is/yXfu3NrsVR7UjT/tzb7DA/no88/LhDY3E8CvK8syP9qzJx/ZuDFf3rYtA2XZsOyWJH82Z04u7ejI46ZObVguAAAAAAAAACRKIgAAAPAb+gfrI7ogcsR37tyai794az7xwvPcKAJJDtfr+fLWrfnwxo25Ze/ehmaf0tKSZfPn59ULFqRjwoSGZgMAAAAAAADAEUoiAAAA8Gvq9TKXf+W2EV8QOeI7d27J5V+5Ldf/6Tmp1YpmrwNNsfHw4Xyytzcre3uztb+/odmnT5iQS9rb85fz5mVqq6/aAAAAAAAAAGguv1wDAADAr/nU99bkxp/2NnuNY3LjT3vzyPnTsuz3Fjd7FWiYsizzH3v25MM9Pfnq9u0ZKMuG5v/OtGm5tL09zz711LTW3OQDAAAAAAAAwMjw/7N371Ga1YWZ75/9Vlf1vbrp6nrr0m0QUBIh4m0SGaMh5oiJHEkQRWm837hkojGYnDM5ayZCzspKJkZyJmbCzeh4oRslIonxMkGdGHVCTLyAgooCYaCr+32r+n6p7rrt84dUxyDQVdVv1a7u9/NZi6Xw7tq/ZzcNi2bVly0SAQAAgEf8oLkv77n93qpnzMkf/+29+cWfqucp9dVVT4F5dWhyMjc3m3nv1q35+v79C3p2LcmFvb25cuPG/Ps1axb0bAAAAAAAAACYCZEIAAAAJJmYnMo7b7krYxNTVU+Zk7GJqfzWLXfl41c8Lx21ouo50HIPHzqUa4eGcsO2bRkZH1/Qs1d1dOTN/f15+8aNOXX58gU9GwAAAAAAAABmQyQCAAAASd735Qdy50O7q55xTL750O7c+KX7c/k5p1U9BVqiLMt8ec+evHfr1tw6PJzJBT5/49KlefuGDXnrwEDWdnYu8OkAAAAAAAAAMHsiEQAAANregzsO5Jrb7616Rktcc/u9eclP9+fknpVVT4E5G52czJZmM+/dujXf3L9/wc9/9qpVeeeTnpSLenvTWast+PkAAAAAAAAAMFciEQAAANredV+8L2MTU1XPaImxialc98X78gcXnlX1FJi1/33oUK4dGsqNQ0PZMTGxoGcXSc7v6cmVT3pSfn7NmhRFsaDnAwAAAAAAAEAriEQAAABoa3tGx3PbN4aqntFSt31jKL9z3tPSvayz6ilwVGVZ5u/37Ml7H344nxgZyULnWstrtbyhvz/v2Lgxp69YscCnAwAAAAAAAEBriUQAAABoa7d+/eGMjk9WPaOlRscnc+vXHs4bfu6UqqfA4zo4OZnNjUbeu3Vr7jpwYMHP7+vszNs2bsxlAwNZ39W14OcDAAAAAAAAwHwQiQAAANC2yrLMh+94sOoZ8+LDdzyY1z/vySmKouop8G/8y+ho/nxoKO/bti27JiYW/PxnrFyZ39i4MZf09WVprbbg5wMAAAAAAADAfBKJAAAA0LbuuH9n7h9e+DcYLIT7hg/kHx/YmbNP7al6CqQsy/zd7t35061b89cjI5la4PM7krystzdv37Ahz1+zRjwFAAAAAAAAwAlLJAIAAEDbuv2eRtUT5tXt9zREIlTqwORkPtJo5M+2bs23Dyx8kNWzZEkuHRzMFYODedKyZQt+PgAAAAAAAAAsNJEIAAAAbeuuh3dXPWFenejPx+L1wOho/tvWrfmL7duze2Jiwc9/1qpVefuGDbm4Xs+yjo4FPx8AAAAAAAAAqiISAQAAoC1NTpW5e2hv1TPm1d1DezM5VaajVlQ9hTZQlmU+v2tX3rt1az65Y0fKBT6/I8nLe3vz9o0b87zu7hSFn/cAAAAAAAAAtB+RCAAAAG3pvuH9GR2frHrGvDo4Npn7h/fnqX2rq57CCWzn+Hj++/btuX5oKPeOji74+b2dnblscDCXDw5mw9KlC34+AAAAAAAAACwmIhEAAADa0rce3lP1hAXxra17RCK0XFmW+eq+fbl269Z8dHg4h6amFnzDc1atyts3bswre3uzrKNjwc8HAAAAAAAAgMVIJAIAAEBburexr+oJC+J7bfKcLIwDk5PZ3Gjk2qGhfGP//gU/f0lR5KLe3rxtw4ac3d2doigWfAMAAAAAAAAALGYiEQAAANrSntHxqicsiL1t8pzMr7sPHMi1W7fmw41G9k5OLvj5fZ2duWxwMJcNDmZw6dIFPx8AAAAAAAAAjhciEQAAANrS4YmpqicsiMPj7fGctN7hqancOjyca4eG8qU9eyrZ8LOrV+dtGzbkono9S2u1SjYAAAAAAAAAwPFEJAIAAEBbGptsj3jicJs8J63zwOhorh8ayvu3b8/w+MK/iaazKPLK3t68bePGPLe7e8HPBwAAAAAAAIDjmUgEAACAttTV0R5vJVjaJs/JsZksy3x6x45cOzSUz+7cmbKCDf1dXbl8cDCXDQykf+nSChYAAAAAAAAAwPFPJAIAAEBbWrqkPeKJpZ3t8ZzMzfbDh/O+bdtyw7Zteejw4Uo2nN3dnbdv2JCX9/amq+bnKwAAAAAAAAAcC5EIAAAAbWnN8s6qJyyI7jZ5TmauLMv83e7duXZoKJ8YGclEufDvDekqilxcr+dtGzbk33V3L/j5AAAAAAAAAHCiEokAAADQlk7vW131hAXxk23ynBzdrvHxfHD79lw3NJTvjY5WsmGwqytXDA7m0sHB1Lu6KtkAAAAAAAAAACcykQgAAABt6ekb11Q9YUE8fUN7PCeP75/27s21Q0O5udnM6NRUJRt+rrs7b9u4MReuX5/OWq2SDQAAAAAAAADQDkQiAAAAtKXTeldleWdHRscnq54yb1Z0deTU3lVVz6ACByYns6XRyHVDQ/na/v2VbFheq+WSej1XbNiQ56z2RhsAAAAAAAAAWAgiEQAAANpSR63ImYPd+ecHd1U9Zd6cOdidjlpR9QwW0D0HDuS6oaF8aPv27JmsJoB62ooVuXxwMK/r68vazs5KNgAAAAAAAABAuxKJAAAA0LbO2rj2hI5Eztq4tuoJLICxqal8YmQk127dmi/u2VPJhs6iyIXr1+eKDRvy82vWpCjESQAAAAAAAABQBZEIAAAAbevcM/ry/q88UPWMeXPuGX1VT2Ae/cvoaG7Yti1/sW1bmuPjlWw4eenSXDo4mDcPDKSvq6uSDQAAAAAAAADAvxKJAAAA0LbOPnVdTu1dmfuHD1Q9peVO612Z556yruoZtNjY1FT+emQkN27bltt37UpZwYYiyXnr1uWKDRvyy+vWpcNbQwAAAAAAAABg0RCJAAAA0LaKoshrzz45V3/ynqqntNxrzz45hW/eP2F87+DBvG/btnxw+/YMV/TWkHpnZ948MJBLBwby5OXLK9kAAAAAAAAAADwxkQgAAABt7cJnb8wfffZ7GR2frHpKyyzv7MiFz9lY9QyO0ejkZD4+PJwbt23L3+/ZU9mOc9asyRUbNuRl69enq1arbAcAAAAAAAAAcHQiEQAAANramuWdueBZg9ny1YeqntIyFzxrMN3LOquewRzdtX9/bty2LR9pNLJ7YqKSDd0dHXl9f38uHxzMGStXVrIBAAAAAAAAAJg9kQgAAABt7/JzTsvHv741YxNTVU85Zl1Larn8nNOqnsEs7ZuYyM3NZt63bVu+um9fZTues2pVrtiwIRfX61nZ0VHZDgAAAAAAAABgbkQiAAAAtL2Te1bmynNPzx9+5rtVTzlmV557ek7u8eaH40FZlvmnffty47ZtubnZzP7JyUp2LK/VcnG9nisGB/Mz3d2VbAAAAAAAAAAAWkMkAgAAAEne8vxT8plvb8+dD+2uesqcPfNJa/PWF5xa9QyOYtf4eD7SaOTGbdvyrQMHKtvxk8uX54oNG/K6vr6c1NlZ2Q4AAAAAAAAAoHVEIgAAAJBkSUct77norJz3p1/O2MRU1XNmrWtJLX980VnpqBVVT+ExlGWZL+3Zkxu3bctfDg/n0FQ1P8eWFEVetn59rhgczC+sXZui8PMFAAAAAAAAAE4kIhEAAAB4xFPqq/POc0/PH3zmu1VPmbXfevHpeUp9ddUzeJTm2Fg+uH173rdtW+4dHa1sx08sXZpLBwfz5v7+9C9dWtkOAAAAAAAAAGB+iUQAAADgR7z1BafmO9v25rZvDlU9ZcYueOZg3vL8U6uewSOmyjK379qV923blr8aGcl4WVayo0jyknXrcvngYM7r6UmHt4YAAAAAAAAAwAlPJAIAAAA/olYr8u6LnpH9hyfyue80q55zVC96Wl/efdEzUqu1NgC46qqrMjg4mEsvvbSl950vN9xwQ4aGhnLVVVdVtuHhQ4fyge3b8xfbtuXBw4cr29Hb2Zk3Dwzk0oGBnLJ8eWU7AAAAAAAAAICFJxIBAACAR+nsqOXPLnl2fn3z1xd1KPKip/Xlzy55Vjo7ai2971VXXZWrr776yO8v9lDkhhtuyGWXXXbk9xcyFJmYmsqndu7M+7Zty6d37MjUgp384164dm3eOjCQC3t7s7TW2p8TAAAAAAAAAMDxQSQCAAAAj2FZZ0eufc1z8tu33JnbvjlU9Zwfc8EzB/Pui54x74HIdHyxWEORRwci09vnOxS5f3Q0f7FtWz6wfXu2jY3N61lPpK+zM2/o78+bBwby1BUrKtsBAAAAAAAAACwOIhEAAAB4HJ0dtVzzymfmaQPdec/t92Zsosr3RPxQ15JafuvFp+ctzz81tVrR0ns/OhCZtlhDkUcHItPmKxQ5PDWV20ZGcuPQUD6/e3dL7z0bRZJfXrcubx0YyEt7etLprSEAAAAAAAAAwCNEIgAAAPAEarUil51zWv6Pp9Xzzlvuyp0PVRcHPPNJa/PHF52Vp9RXt/zejxeITFtsocjjBSLTWhmK3LV/fz6wfXs+0mhkZHz8mO83V09aujRv6u/PmwYG8hPLllW2AwAAAAAAAABYvEQiAAAAMANPqa/Oxy//93nflx/INQv8VpGuJbW889zT85YXnJqOFr89JDl6IDJtsYQiRwtEph1LKLJzfDxbms18YNu2fG3//ll/fat0JPmV9evzloGB/NK6dekoWv/nHwAAAAAAAAA4cYhEAAAAYIaWdNRy+Tmn5SU/3Z/rvnhfbvvGUEbHJ+ftvOWdHbngWYO5/JzTcnLPynk7Z3BwcMbXVh2KzDQQmTabZ5ssy3xu1658YNu2fGJkJGNlOZeJLXHasmV5y8BA3tDfn/6lSyvbAQAAAAAAAAAcX0QiAAAAMEsn96zMH1x4Vn7nvKfl1q89nA/f8WDuGz7Qsvuf1rsyrz375Fz4nI3pXtbZsvs+nungY6bxRVWhyGwDkeuvv35GG39w8GD++/bt+WCjkYcPHz6Wicekqyjy8t7evGVgIL+wdm1q3hoCAAAAAAAAAMySSAQAAADmqHtZZ97wc6fk9c97cv7xgZ25/Z5G7np4d769de+s3jCyoqsjZw5256yNa3PuGX157inrUixwILDYQ5FWByL7Jybyl8PDef/27fnSnj2tmDhnZ6xYkbcODOS1/f3p6Zz/KAgAAAAAAAAAOHGJRAAAAOAYFUWRs0/tydmn9iRJJqfK3D+8P9/auiffa+zL3tHxHB6fyuHJqSztqGVpZy3dyzvzk32r8/QNa3Jq76p01Kp/a8RiDUVaFYiUZZmv7NmT92/fno81mzkwNdXKmbOyolbLq+r1vHVgIGd3dy94FAQAAAAAAAAAnJhEIgAAANBiHbUiT+1bnaf2ra56yqwttlCkFYHI1sOH86Ht2/OB7dvz/dHRVk+clWevWpW3DgxkU19f1izxr2UAAAAAAAAAgNby3QgAAADAv7FYQpFjCUQOT03lr0ZG8oHt2/O3O3emuneGJN0dHXl1X1/eMjCQZ68+/sIhAAAAAAAAAOD4IRIBAAAAfkzVochcA5Fv7NuX92/fns2NRnZOTLRky1w9r7s7bx0YyEX1elZ2dFS6BQAAAAAAAABoDyIRAAAA4DFVFYrMNhB5z3/7bxk977w885/+KXceOHBMZx+rniVL8rr+/rx5YCBnrlxZ6RYAAAAAAAAAoP2IRAAAAIDHtdChyGwDkWf97u/mP555ZsZ/8IM5ndcqv7h2bd46MJCX9fZmaa1W6RYAAAAAAAAAoH2JRAAAAIAntFChyGwDkVx5fvsJOgAAIABJREFUZb7xwhcmZTmrc1qlv6srb+jvz5v7+/OUFSsq2QAAAAAAAAAA8KNEIgAAAMBRzXcoMpdAJOefP/PrW2RJUeT8np68sb8/v7xuXTq9NQQAAAAAAAAAWEREIgAAAMCMzFcocjwEIk9fuTJv6u/Pq/v60tvVtaBnAwAAAAAAAADMlEgEAAAAmLFWhyKLORBZu2RJXl2v540DA3n2qlUpimJBzgUAAAAAAAAAmCuRCAAAADArrQpFFmMgUiR58Ukn5Y0DA/nVnp4s6+iY1/MAAAAAAAAAAFpJJAIAAADM2rGGItded11+7YorZn7gPAcipy1bljcODOR1fX150rJl83YOAAAAAAAAAMB8EokAAAAAczKXUOThQ4dyx969uf0//+eZHzRPgcjKWi0X1et5U39/nr9mTYqiaPkZAAAAAAAAAAALSSQCAAAAzNlsQ5H/9zd+Y3YHzEMg8vw1a/Km/v68orc3q5f4VyMAAAAAAAAAwInDd0IAAAAAx2S2ociMtTAQ2dDVldf39+cN/f156ooVLbknAAAAAAAAAMBiIxIBAACAH3HVVVdlcHDwSPiw2N1www0ZGhrKVVddVemOSy+9NGVZ5vLLL2/NDVsQiHQVRS5Yvz5v7O/PuevWpaMoWrMNAAAAAAAAAGCREokAAADAI6666qpcffXVR35/sYciN9xww795e0dVocgDo6P5cKORDz3jGT+MO6655thueIyByLNXrcob+/tzSV9f1nV2HtsWAAAAAAAAAIDjiEgEAAAA8uOByHR8sVhDkUcHItPbFyoU2TsxkVuGh/Oh7dvz93v2/OsH03HHXEOROQYiPUuW5DV9fXnjwECesWrV3M4GAAAAAAAAADjOiUQAAABoe48ORKYt1lDk0YHItPkORSbLMrfv3JkPNRr5xMhIDk1NPfaFcw1FZhmI1JK8ZN26vGlgIC/t6UlXrTa78wAAAAAAAAAATjAiEQAAANra4wUi0xZbKPJ4gci0+QhFvr1/fz7YaOSmRiPbxsZadt+5+snly/OmgYG8tq8vA0uXVj0HAAAAAAAAAGDREIkAAADQto4WiExbLKHI0QKRaa0IRZpjY9nSbOaD27fnG/v3z+6LP/nJ2b9FJPnXr3mMt4ms7ujIxfV63tjfn7O7u1MUxezvDwAAAAAAAABwghOJAAAA0LYGBwdnfG3VochMA5Fps3m2aYcmJ/M3O3bkg41GPrNjRyZnfYfMPRCZ9iOhSC3JuSedlNf39+dX16/Pio6Oud8XAAAAAAAAAKANiEQAAABoW9PBx0zji6pCkdkGItdff/2MN5ZlmTv27s2HGo3c3Gxm98TEXGceeyAy7ZprcmFvb977m7+ZwaVLj/1+AAAAAAAAAABtQiQCAABAW1vsoch8BSL3HjyYmxqNfKTRyP2HDh3LxB9qVSDyiFt/53fyS+vWVfbmFgAAAAAAAACA45FIBAAAgLa3WEORVgciw2NjubnZzEcajXx1375WTPyhFgci06p6cwsAAAAAAAAAwPFKJAIAAABZfKFIqwKRg5OT+euRkXyk0chnd+7MZCtHJrMPRK68MqcsX54Hfv/3Z3S5UAQAAAAAAAAAYOZEIgAAAPCIxRKKHGsgMlmW+Z+7duUjjUY+PjKS/ZMtT0N+aJaByHm///v5k3e8I6evWJEbfuInKv9xBgAAAAAAAAA40YhEAAAA4EdUHYrMNRApyzJ37t+fjzQa2dxsZtvYWEv2PK5ZBiLXXnddLv+R56r6xxkAAAAAAAAA4EQkEgEAAIBHqSpgmEsg8suve13+8MEH85FGI3cfPHhM58/YLAORR7/pZJpQBAAAAAAAAACgtUQiAAAA8BgWOmCYbSDy2j/6o2z52Z/NZXfcMafz5qxFgcg0oQgAAAAAAAAAQOuIRAAAAOBxLFTAMNtAZMk735kP/8zPJLt3z+qcY9biQGSaUAQAAAAAAAAAoDVqVQ8AAACAxezSSy/N9ddfP+PrL7vsstxwww0zvn62gUiuvDITL33pzK9vlXkKRKbN948zAAAAAAAAAEA7EIkAAADAUcxXwDCXQCTnnz/z61tlngORaUIRAAAAAAAAAIBjIxIBAACAGWh1wHA8BCJPWro0L/nKVxYkEJkmFAEAAAAAAAAAmLslVQ8AAACA48V0/DDTuGP6ukdHE4s5EFnV0ZEL16/P6/v7c+/HPpYr/tN/mvHXHmsgMq1VP84AAAAAAAAAAO1GJAIAAACzcKwBw7XXXZdfu+KKmR+4AIFIR5JfXrcur+nry6+sX58VHR254YYbcsXll8/4Hq0KRKYJRQAAAAAAAAAAZk8kAgAAALM0l4DhgdHRfHXv3nzhd3935gfNcyDy3NWr85q+vryyXk+9q+vIH5/tm05aHYhME4oAAAAAAAAAAMyOSAQAAADmYLYBwx++4x2zO2CeApHTli3La/r68uq+vjx1xYof+3yxBCLThCIAAAAAAAAAADMnEgEAAIA5mm3AMGMtDkR6lizJq+r1vLavL8/t7k5RFI953WILRKYJRQAAAAAAAAAAZkYkAgAAAMfg0ksvzYHJyVz5a7/Wmhu2KBBZVqvlV3p68pq+vvzSunXpqtWe8PrFGohME4oAAAAAAAAAABydSAQAAADmYHRyMn+zY0c2N5v59Bln/DDuuOaaY7vpMQYiRZIXrl2b1/T15cLe3qxZMrNf9i/2QGSaUAQAAAAAAAAA4ImJRAAAAGCGJqam8oXdu7O50citIyPZNzn5rx9Oxx1zDUWOIRB5+sqVeW1fXzbV69m4bNmsv35oaGjG11YViEybbSgym2cDAAAAAAAAADjeiUQAAADgCZRlma/u25fNjUY+2mymMT7++BfPNRSZQyCyoasrl/T15TV9fTlr1arZnfcoV111VZLk6quvfsLrqg5Eps00FHnXu9515NkAAAAAAAAAANqBSAQAAAAew3cPHMjmZjObG43cd+hQ1XOSJKs7OvKK3t68pq8v56xdm46iaNm9jxaKLJZAZNrRQhGBCAAAAAAAAADQjkQiAAAA8Iithw/n5kfCkK/v3z/7G3zyk7N/i0jyr1/zGG8TWVIUecm6dXlNX1/O7+nJ8o6O2d9/hh4vFFlsgci0xwtFBCIAAAAAAAAAQLsSiQAAANDWdo2P5+PDw9ncbObvdu9OOdcbzTUQmfaoUOTfd3fnNX19eWVvb9Z3dc39vrP06FBksQYi0x4dighEAAAAAAAAAIB2JhIBAACg7YxOTuZvduzI5mYzn96xI2PlnNOQHzrWQGTaNdfkpT09+ZN3vCNPWbHi2O83R9ORxeDg4KIORKZNbxwaGhKIAAAAAAAAAABtrSiP9RthAJizoijuTnLGo//4GWeckbvvvruCRQAAJ66Jqal8YffubG40cuvISPZNTrbmxq0KRH7EYn97BwAAAAAAAADAYnPmmWfmnnvueayP7inL8syF3lMVbxIBAADghFWWZb66b182Nxr5aLOZxvh4aw+Yh0AkSS677LIkEYoAAAAAAAAAADArIhEAAABOOHcfOJAtjUa2NJu5/9Ch+TlkloFI7Z3vzE+vXJm7fu/3ZnS9UAQAAAAAAAAAgNkSiQAAAHBCeGB0NDc3m9nSbOZbBw7M72GzDERe/V/+S/7rb/5mejo7c8OGDUcCkKMRigAAAAAAAAAAMBsiEQAAAI5bjbGxfOyRMOQf9u5dmENnGYhcf/31/ybymP7/QhEAAAAAAAAAAFpNJAIAAMBxZff4eG4dGcmWZjNf2LUrUwt5+DEGItOEIgAAAAAAAAAAzAeRCAAAAIvewcnJ/M2OHdnSbObTO3ZkrCwXfkSLApFpQhEAAAAAAAAAAFpNJAIAAMCiND41ldt37crmRiN/tWNH9k9OVjemxYHINKEIAAAAAAAAAACtJBIBAABg0Zgqy3xpz55saTTyl8PD2TExUfWkeQtEpglFAAAAAAAAAABoFZEIAAAAlSrLMl/fvz+bG418tNnM1rGxqicd8dTPfS7fn8dAZJpQBAAAAAAAAACAVhCJAAAAUInvHjiQLc1mtjSb+f7oaNVzjnjmqlW5pF7P5Cc/md/5/d+f8dfNNRCZJhQBAAAAAAAAAOBYiUQAAABYMP/70KHc/EgY8s39+6uec8Qpy5blkno9l/T15YyVK3PDDTfksl//9Rl//bEGItOEIgAAAAAAAAAAHAuRCAAAAPNqeGwstwwPZ0uzmS/v2VP1nCN6Ozvzqno9r67X89zu7hRFkSQ/DERmGGkkrQtEpglFAAAAAAAAAACYK5EIAAAALbd3YiK3jYxkS7OZ23fuzGTVgx6xqqMjF6xfn1fX63nRSSdlSa32bz6vOhCZJhQBAAAAAAAAAGAuRCIAAAC0xOjkZD69c2e2NBr51M6dOTQ1VfWkJMnSosh5PT3ZVK/npT09Wd7R8ZjXLZZAZJpQBAAAAAAAAACA2RKJAAAAMGfjU1P53K5dubnZzCdGRrJvcnG8M6SW5EUnnZRN9Xpe1tubNUue+Je/iy0QmSYUAQAAAAAAAABgNkQiAAAAzMpUWeZLe/bk5mYzfzk8nJHx8aonHfG87u5sqtdzUb2evq6uGX3NYg1EpglFAAAAAAAAAACYKZEIAAAAR1WWZb62b1+2NJv5aLOZrWNjVU864qyVK3NJX19e1dubJy9fPquvXeyByDShCAAAAAAAAAAAMyESAQAA4HHdfeBAbm42c3OzmR+MjlY954jTli3Lpr6+bKrXc8bKlXO+z9DQ0IyvrSoQmTbbUGQ2zzZfJqfK3De8P996eE/ubezLntHxHJ6YytjkVLo6alm6pJY1yztzet/qnLVxTU7tXZWOWlH1bAAAAAAAAACA45ZIBAAAgH/j/tHRfLTZzJZmM986cKDqOUcMdHXl4no9m+r1/LvVq1MUxx4TXHXVVUmSq6+++gmvqzoQmTbTUORd73rXkWdbSGVZ5o77d+b2exq56+HduXtob0bHJ2f89Su6OnLGQHfO2rg2557Rl7NPXdeSP88AAAAAAAAAAO1CJAIAAEC2HT6cjw0PZ0ujkX/ct6/qOUectGRJXtHbm031en5+7dp0zEMwcLRQZLEEItOOFopUEYjsGR3PrV9/OB+548HcNzz3sOjg2GT++cFd+ecHd+X9X3kgp/WuzGvOPjkXPntj1izvbOFiAAAAAAAAAIATk0gEAACgTe0YH8+tw8PZ0mzm73bvTln1oEesqNXyq+vX55J6PS9ety5dtdq8n/l4ochiC0SmPV4ostCByIM7DuS6L96X274xNKs3hszUfcMHcvUn78kfffZ7ueBZg7n8nNNycs/Klp8DAAAAAAAAAHCiEIkAAAC0kX0TE/nrHTuypdHI/9i1KxPl4khDOosiL1m3Lpvq9Zy/fn1WdnQs+IZHhyKLNRCZ9uhQZCEDkYnJqdz4pQfyJ5+7N2MTU/N+3uj4ZLZ89aF8/Otbc+W5p+etLzg1HbXWv1UGAAAAAAAAAOB4JxIBAAA4wR2anMxndu7MlmYzf7NjR0an5v+b+meiSPLCtWuzqV7Py3t7c1JnZ9WTjkQWg4ODizoQmTa9cWhoaMECkR809+Wdt9yVOx/avSDn/aixian84We+m89+e3v++KKz8pT66gXfAAAAAAAAAACwmBXlIvmvxgK0o6Io7k5yxqP/+BlnnJG77767gkUAwIliYmoqn9+9O1sajXxiZCR7JyernnTEc1evzqa+vryytzcDS5dWPYcZmpoqc+OX7s97bl+Yt4ccTdeSWt75yFtFat4qAgAAAAAAAABt78wzz8w999zzWB/dU5blmQu9pyreJAIAAHCCmCrLfGXPnmxpNnPL8HBGxsernnTEmStWZFNfXy6u13Pa8uVVz2GWxien8tu33JnbvjlU9ZQjxiam8gef+W6+s21v3n3RM9LZUat6EgAAAAAAAABA5UQiAAAAx7GyLPP1/fuzpdHIR4eH8/Dhw1VPOuKUZctycb2eTfV6nr5qVdVzmKND45P59c1fz+e+06x6ymO67ZtD2X94In92ybOzrLOj6jkAAAAAAAAAAJUSiQAAAByHvnPgQLY0m7m52cz3R0ernnNEf1dXXtXbm019ffnZ1atTFEXVkzgG45NTizoQmfa57zTz65u/kWtf82xvFAEAAAAAAAAA2ppIBAAA4DjxL6OjufmRMOTOAweqnnPESUuW5BW9vdlUr+fn165NhzDkhDA1Vea3b7lz0Qci0z73nUZ++5Y7c80rn5lazc9BAAAAAAAAAKA9iUQAAAAWscbYWD7WbGZLs5l/2Lu36jlHrKzVcsH69dnU15dzTzopXTVvbzjR3Pil+3PbN4eqnjErt31zKGcMdufSnz+t6ikAAAAAAAAAAJUQiQAAACwyu8bHc+vISLY0Gvmfu3dnqupBj1haFDmvpyeb6vX8nz09WdHRUfUk5skPmvvyntvvrXrGnPzx396bX/ypep5SX131FAAAAAAAAACABScSAQAAWAQOTE7mkyMj2dJs5jM7d2a8LKuelCTpSPKik07Kpr6+XLB+fdYs8cvIE93E5FTeectdGZtYLHnS7IxNTOW3brkrH7/ieemoFVXPAQAAAAAAAABYUL67BwAAoCKHp6byP3buzJZmM389MpKDU4vnm/JfsGZNNtXreUVvb3q7uqqewwJ635cfyJ0P7a56xjH55kO7c+OX7s/l55xW9RQAAAAAAAAAgAUlEgEAAFhAk2WZ/7lrV7Y0m7l1ZCS7JyaqnnTEc1atyqa+vryytzdPWras6jlU4MEdB3LN7fdWPaMlrrn93rzkp/tzcs/KqqcAAAAAAAAAACwYkQgAAMA8K8syd+zdmy3NZj7WbKYxPl71pCOetmJFNtXrubhez1NXrKh6DhW77ov3ZWxi8bzR5liMTUzlui/elz+48KyqpwAAAAAAAAAALBiRCAAAwDwoyzJ3HTiQLY1Gbm428+Dhw1VPOuLJy5bl4no9m+r1PH3lyhRFUfUkFoE9o+O57RtDVc9oqdu+MZTfOe9p6V7WWfUUAAAAAAAAAIAFIRIBAABooe8fPJgtzWZubjbznYMHq55zRH9XV17Z25tN9Xqe290tDOHH3Pr1hzM6Pln1jJYaHZ/MrV97OG/4uVOqngIAAAAAAAAAsCBEIgAAAMfooUOH8rHh4WxpNPK1/furnnPESUuW5OWPhCHnrF2bDmEIj6Msy3z4jgernjEvPnzHg3n9854sjAIAAAAAAAAA2oJIBAAAYA6Gx8byl8PD2dJs5kt79lQ954iVtVp+df36bKrX8+J169JVq1U9iePAHffvzP3DB6qeMS/uGz6Qf3xgZ84+tafqKQAAAAAAAAAA804kAgAAMEN7JybyiZGR3Nxs5vadOzNZ9aBHdBVFzuvpycX1es7v6cmKjo6qJ3Gcuf2eRtUT5tXt9zREIgAAAAAAAABAWxCJAAAAPIFDk5P51M6d2dJo5G927Mjhsqx6UpKkluRFJ52Ui+v1vGz9+qzt7Kx6Esexux7eXfWEeXWiPx8AAAAAAAAAwDSRCDAjRVEsTXJ6ko1JVidZkeRgkn1JHk7yvbIsx6pbCADQOhNTU/nC7t3Z3GjkEyMj2Tu5WN4Zkvxcd3c29fXlot7e1Lu6qp7DCWByqszdQ3urnjGv7h7am8mpMh21ouopAAAAAAAAAADzSiQCPK6iKM5OckGSlyQ5M0nHE1w+WRTF3Uk+neSvyrK8YwEmAgC0TFmW+Ye9e7Ol2czHms00x8ernnTEs1atyqZ6Pa+s13PysmVVz+EEc9/w/oyOL54Qaj4cHJvM/cP789S+1VVPAQAAAAAAAACYVyIR4McURfGqJP9XkmfP4ss6kpz1yG//sSiKryV5d1mWH52HiQAALfOt/fuzudnMzc1m/uXQoarnHHH68uXZVK/n4no9P7VyZdVzOIF96+E9VU9YEN/aukckAgAAAAAAAACc8EQiwBFFUfxUkuuSnNOC2z0nyc1FUVye5PKyLL/XgnsCALTEA6Oj2dJsZnOjkbsPHqx6zhFPWro0F9fr2VSv55mrVqUoiqon0QbubeyresKC+F6bPCcAAAAAAAAA0N5EIkCSpCiKC5N8MMmqFt/6F5L8c1EUryvL8hMtvjcAwIw1xsbysWYzm5vN3LF3b9Vzjujt7Mwre3tzcb2e561Zk5owhAW2Z3S86gkLYm+bPCcAAAAAAAAA0N5EIkCKovgPSd6bZL6+I3FVko8XRfHrZVn++TydAQDwY/ZMTOTW4eFsaTbz+V27MlX1oEd0d3Tkwt7ebKrX84tr12ZJrVb1JNrY4YnF8lfG/Do83h7PCQAAAAAAAAC0N5EItLmiKF6f+Q1EjhyV5M+KothfluWH5vksAKCNjU5O5lM7dmRLs5lP7diRw2VZ9aQkyfJaLef39GRTvZ5fXrcuyzo6qp4ESZKxyfaIJw63yXMCAAAAAAAAAO1NJAJtrCiKn0lyY2YWiPyvJJsf+d9/SbIvyeokpyZ5XpJLkpx9tCOT3FgUxXfKsvynOc4GAPgxE1NT+fzu3dncaOQTIyPZNzlZ9aQkyZKiyC+ddFI29fXlV3p6snqJX4Kx+HR1tMebbJa2yXMCAAAAAAAAAO3NdyhBmyqKojvJR5N0HuXS7ye5oizLzz/GZ7uSfO2R395bFMWLk/x5ktOe4H5dST5aFMUzy7LcO/vlAAA/NFWW+Ye9e7Ol0cjHhoczPD5e9aQkP6xif2Ht2myq1/Py3t6s6zzaP25BtZYuaY94YmlnezwnAAAAAAAAANDeRCLQvn4vySlHueZzSV5RluWemdywLMu/LYri3yW5NckLn+DSU5JcleTKmdwXAGBaWZb51oED2dxo5OZmMw8ePlz1pCOeu3p1Lq7X88p6PYNLl1Y9B2ZszfL2CJm62+Q5AQAAAAAAAID2JhKBNlQUxRlJ/sNRLvuHJL9aluXB2dy7LMvdRVGcn+QLSX72CS59W1EUN5Zl+Z3Z3B8AaE/3j45mS7OZzY1G7jk4q388mVc/vXJlNtXrubhez6nLl1c9B+bk9L7VVU9YED/ZJs8JAAAAAAAAALQ3kQi0p3flif/635nkVbMNRKaVZXmgKIpXJvlmkrWPc9mSJL+bZNNczgAATnzbDx/OR4eHs6XRyD/u21f1nCOevGxZLqnXs6lez0+vWlX1HDhmT9+4puoJC+LpG9rjOQEAAAAAAACA9iYSgTZTFMWpSV5+lMv+U1mWDx3LOWVZPlgUxbuS/NcnuOyioij+n7IsHziWswCAE8feiYncOjycm5rNfGHXrkxVPegR9c7OvKpezyX1ep7b3Z2iKKqeBC1zWu+qLO/syOj4ZNVT5s2Kro6c2ivqAgAAAAAAAABOfCIRaD//IUnHE3z+/SQ3tOisP0/yG0lOfZzPO5L8WpLfbtF5AMBxaGxqKp/duTMfaTTyyR07cmhqcaQh3R0dubC3N5fU63nh2rVZUqtVPQnmRUetyJmD3fnnB3dVPWXenDnYnY6auAsAAAAAAAAAOPGJRKCNFEXRkWTTUS77k7IsW/KfEC7LcqIoij9N8v89wWWXFEXxf5dluTi+GxQAWBBTZZmv7NmTmxqN3DI8nJ0TE1VPSpIsLYqcv359NtXrOW/duizreKK2Fk4cZ21ce0JHImdtXFv1BAAAAAAAAACABSESgfbyi0kGnuDzQ0k+0uIzP5jkj5J0Pc7ng0l+IckXWnwuALAIfXv//tzUbGZzo5H/ffhw1XOS/PDVZi866aRs6uvLy9avT/cSv0yi/Zx7Rl/e/5UHqp4xb849o6/qCQAAAAAAAAAAC8J3P0F7Of8on3+qLMt9rTywLMvdRVF8JsmvPsFl50ckAgAnrIcOHcqWZjM3NRq568CBqucc8bzu7lzS15eLentT73q8nhXaw9mnrsupvStz//Di+Wu0VU7rXZnnnrKu6hkAAAAAAAAAAAtCJALt5UVH+fxT83Tup/LEkci583QuAFCRXePj+cvh4dzUaOTv9+xJWfWgR5y1cmU21eu5uF7Pk5cvr3oOLBpFUeS1Z5+cqz95T9VTWu61Z5+coiiqngEAAAAAAAAAsCBEItAmiqIYSPK0o1z2uXk6/vajfH5mURT9ZVlun6fzAYAFcGhyMp/auTM3NRr51I4dGSsXRxpyyrJluaRez6a+vpy5cmXVc2DRuvDZG/NHn/1eRscnq57SMss7O3LhczZWPQMAAAAAAAAAYMGIRKB9/OxRPn+oLMuH5uPgsiz/pSiKbUkGnuCyn0nyyfk4HwCYP5NlmS/u3p2bGo18fHg4eyYXxzeX93V25lX1ejbV63lud7e3CMAMrFnemQueNZgtX52XXxZU4oJnDaZ7WWfVMwAAAAAAAAAAFoxIBNrHs4/y+dfn+fx/TnL+E3z+rIhEAOC4UJZlvrl/f25qNLKl2czQ2FjVk5Ikazo6cmFvby6p1/MLa9dmSa1W9SQ47lx+zmn5+Ne3Zmxiquopx6xrSS2Xn3Na1TMAAAAAAAAAABaUSATaxzOP8vld83z+nTl6JAIALGIPjI5mc7OZmxqNfOfgwarnJEmW1Wp5aU9PLqnX85J167Kso6PqSXBcO7lnZa489/T84We+W/WUY3bluafn5J6VVc8AAAAAAAAAAFhQIhFoH6cf5fPvz/P59x3l86fO8/kAwByMjI3lY8PDuanRyP/au7fqOUmSjiTnrluXTfV6Lli/Pt1L/LIGWuktzz8ln/n29tz50O6qp8zZM5+0Nm99walVzwAAAAAAAAAAWHC+mwrax8lH+fwH83z+0e5/yjyfDwDM0MHJyfz1yEhuajbz2Z07M1GWVU9Kkjyvuzuv7uvLK3p7U+/qqnoOnLCWdNTynovOynl/+uWMTUxVPWfWupbU8scXnZWOWlH1FAAAAAAAAACABScSgTZQFEV/kuVHuWxonmdsPcrnK4qiqJdl2ZznHQDAY5iYmsrnd+/OTY1GPjEykv3KNkpJAAAgAElEQVSTk1VPSpKcsWJFXt3Xl0vq9Tx5+dH+cQZolafUV+ed556eP/jMd6ueMmu/9eLT85T66qpnAAAAAAAAAABUQiQC7WFwBtdsn+cNM7n/YBKRCAAskLIs8439+/PhRiNbGo00xsernpQk2dDVlU19fXl1vZ5nrFqVovA2AKjCW19war6zbW9u++Z89+Stc8EzB/OW559a9QwAAAAAAAAAgMqIRKA99Bzl871lWR6ezwFlWY4WRbE/yaonuOxoOwGAFnj40KHc1GzmQ9u3556DB6uekyRZ09GRV/T25tV9ffn5tWvTIQyBytVqRd590TOy//BEPvedxd9yv+hpfXn3Rc9IrebvHwAAAAAAAMD/z96dh9d1F3b+/xzJklfZsWTpSrKcnbQECEtpSWEY5mlLWVpafrS0TEJC0oaEsPygbP3R6RLK8GMphYYuYUlJmgAdGpZM2+lCOm0ZaEs7LAk0oWRIHDuydCXvi2xZsu6ZP8BQSGJJtu49svR6PU/+iM+95/u5/9jy89y3D8DyJRKB5aF7lusHWrLim+ecKBKZbScAcJIOHjuWT+7alVvq9fzdvn0pqx6UpLMo8pM9Pbm0Vstzu7uzqr296knA9+hob8vvXfKkvPKjX1rUociPPbqW37vkielob6t6CgAAAAAAAABApUQisDxsnOV6KyORwRNcXzSRSFEUr0jy8hYcdV4LzgBgmTrWaORv9u7NrWNj+dSuXTnSaFQ9KUWS/3TGGbm0VsvPbNqUMzo6qp4EzGJVR3tuePEP5A233ZXb7xypes5DPP8Jg/mtFz5eIAIAAAAAAAAAEJEILBerZrl+uCUrkolZrs+2s5V6k1xY9QgAOBl3HTqUW+r1fHR8PPWpqarnJEmesG5dLu3ry4v6+jK0ajH9kQ/MRUd7W979c0/IowfW57fvuDdTx6qPzjpXtOX1P35BrvoP56atrah6DgAAAAAAAADAoiASgeWhc5brx1qyYvZzZtsJADyCkaNH85Gxsdw6NpavTszWZbbG2atW5ZK+vlxaq+XCtWurngOcora2Itc847z86KP78rrbvpK7HtxX2ZYnbDkj73rhRTm/r6uyDQAAAAAAAAAAi5FIBJYHkQgALEGHjh3Lp3btyq1jY/mfe/em+n/XP+lesSI/19eXF9dqeer69SkK/7o/LDXn93XlEy/74dz4ua15d4ufKtK5oi2ve+YFuerp56bd00MAAAAAAAAAAB5CJALLQ9ss12dasmL2c9pbsgIATmMzZZm/3bs3t46N5ZM7d2aiUX0asrqtLT/V05NLa7U8q7s7nW2z/egBnO5WtLflZc84L895bH/e95n7cvuXR3Jkunl/rVjd0Z7nP3EwL3vGeTmrx5OJAAAAAAAAAAAeiUgElofZnuDRqt8LZjtnuiUrAOA09NVDh3Lr2Fg+MjaWkampquekLcmPbdyYS2u1/D+bNqVrhb9awHJ0Vs/avO0FF+VNz310PvnF4dz6+W25b+fEgt3/vN61uezis/KCHxjK+lUdC3ZfAAAAAAAAAIClyje5YHmY7Zukrfq9YLZvdVX/jdfv2Jnknhacc16SlS04B4DT0OjRo/no+Hhurddz18TCfen6VPxgV1curdXy87296V/pjzDgm9av6sgVTzsnL3nq2fnnrXtyxz1j+crwvvzrjgPzesLIms72PGZwfS4aOiPPvLCWp5zTnaIomrgcAAAAAAAAAGBpEYnA8jDbEzo6W7LiNIpEyrL8/SS/3+xziqK4O8mFzT4HgNPHxMxMbt+1K7fW67lj7940qh6U5PzVq3NpX18uqdVywZo1Vc8BFrGiKHLxuT25+NyeJMlMo8z9Ow/lqzv25+tjB3PgyHSOTjdydKaRle1tWdnRlvWrO/J9ta48bvOGnNu7Lu1tohAAAAAAAAAAgJMlEoHl4dAs17tasiJZP8v12XYCwJLUKMv8/b59uaVezyd27cqhmbn/q/vN0tfRkRf19eXSWi0/2NXlX/IHTkp7W5FH1bryqFqr/soBAAAAAAAAALC8iURgedgzy/VWfWNrtnNm2wkAS8rdExO5tV7PR8bHM3z0aNVzsqqtLc/ftCmX12p55saNWdHWVvUkAAAAAAAAAAAA5kEkAsvD7lmun9GSFcmGWa7PthMATns7p6by0fHx3FKv50uHFsdDtP7TGWfk8lotP9Pbm/Ur/BUBAAAAAAAAAADgdOUbYLA87Jrl+sqiKM4oy3JfswYURdGTpHOWl4lEAFiSphuN/MWePbm5Xs+f796dY2VZ9aR8/5o1ubxWy6W1Ws5ctarqOQAAAAAAAAAAACwAkQgsD9vn8JpakqZFIt+6/2zmshMAThtfPXQoN9Xr+fDYWHZOT1c9J5s6OnJJX18uq9XyA11dKYqi6kkAAAAAAAAAAAAsIJEILANlWR4qimJ3kp4TvOysJF9v4oyzZrk+XpblRBPPB4CW2D09nY+OjeXmej1fOnSo6jlZWRT56U2bclmtlmd1d6ejra3qSQAAAAAAAAAAADSJSASWj605cSTyqCSfbuL5j5rl+tYmng0ATXWs0chf792bm0ZH86e7d2e6LKuelP+4YUMuq9Xys729OaOjo+o5AAAAAAAAAAAAtIBIBJaPu5M8+QTXv6/J518wy/W7m3w+ACy4eyYmcnO9nlvHxlKfmqp6Th61enUur9Vyaa2Wc1avrnoOAAAAAAAAAAAALSYSgeXjS0lecoLrT2zy+U+a5fqXm3w+ACyIvdPT+W/j47mpXs//Pniw6jnpXrEi/7mvL5f19+eHurpSFEXVkwAAAAAAAAAAAKiISASWjy/Ncv0JRVG0l2U5s9AHF0WxIsnjZ3mZSASARWumLHPHnj25uV7P7bt25WhZVrqnsyjyvJ6eXNbfn+d0d6ezra3SPQAAAAAAAAAAACwOIhFYPr6QZDLJqke4vi7JDyT5lyac/UNJ1pzg+mSSLzbhXAA4JV8/fDg31+u5pV7PyNRU1XPytPXrc1l/f36utzcbOzqqngMAAAAAAAAAAMAiIxKBZaIsy8miKP4hyY+e4GXPTHMikR+b5fpny7KcbMK5ADBv+48dy8fGx3NzvZ5/OnCg6jk5b9WqXNbfnxfXajlv9eqq5wAAAAAAAAAAALCIiURgebkjJ45EXpDkrU0492dnuf7pJpwJAHM2U5b5u717c1O9nk/u2pXJRqPSPRtXrMjP9/XlslotP7x+fYqiqHQPAAAAAAAAAAAApweRCCwvH0/y9hNcf1JRFN9XluXXF+rAoigem+Rxs7zsEwt1HgDMxzcOH87N9XpuGRvLg0ePVrqloyjyEz09uaxWy0/09GRlW1ulewAAAAAAAAAAADj9iERgGSnL8r6iKD6f5OITvOxVSV65gMf+v7Nc/4eyLLcu4HkAcEIHjx3LbTt35qZ6PZ/bv7/qOXlyV1eu6O/Pi/r60tPRUfUcAAAAAAAAAAAATmMiEVh+PpQTRyJXFkXx1rIsR0/1oKIohpJcNsvLbj7VcwBgNo2yzGf27cvN9Xo+vnNnDjcale7p6+jIZbVarujvz2PXrat0CwAAAAAAAAAAAEuHSASWn1uT/NckfY9wfU2Styd5yQKc9Y4kq05wfexbewCgKbZPTuamej031+t5YHKy0i0dRZHn9fTkiv7+PLu7Ox1tbZXuAQAAAAAAAAAAYOkRicAyU5blZFEU1yd56wlednlRFLeXZfmpkz2nKIoXJrlklpf9TlmWR0/2DAB4OFONRv5s9+7cODqav96zJ2XFe564bl2u6O/PJX192dTZWfEaAAAAAAAAAAAAljKRCCxPv5PkmiRnnuA1f1QUxY6yLP9lvjcviuLiJB+a5WXbk1w/33sDwCO59/Dh3Dg6mj+q1zM+PV3plk0dHXlxrZYr+vvz+HXrKt0CAAAAAAAAAADA8iESgWWoLMvDRVG8LsltJ3hZV5JPF0Xx4rIs/3yu9y6K4qeT3JJktm/EvrYsyyNzvS8APJwjMzP5xM6d+eDoaP7X/v2VbllRFPmJ7u5c0d+f5/b0pLOtrdI9AAAAAAAAAAAALD8iEVimyrL8eFEUH01yyQletiHJnxZF8cdJ3lKW5b890guLorgwya8n+fk5HP+Rsiw/Ma/BAPDv3HXoUD44MpIPj41l/8xMpVset3Ztruzvz6W1Wvo6OyvdAgAAAAAAAAAAwPImEoHl7ZokT0ry/Sd4TZFvhiSXFEXx5ST/mGRrkkP55tNGzknytCSPn+OZ/5bkZSc7GIDl68CxY/nj8fHcODqaLxw8WOmW7hUrckmtliv7+/PEdetSFEWlewAAAAAAAAAAACARicCyVpbloaIonpXks0nOnMNbnvit/07W9iTPKsvy0CncA4BlpCzL/NOBA7lxdDQfGx/P4Uajsi3tSZ7d3Z0rBwbykz09WdnWVtkWAAAAAAAAAAAAeDgiEVjmyrLcXhTFjyb5qyTnNfGobyR5dlmW25t4BgBLxK6pqdw6NpYbR0dzz+HDlW65cM2aXNnfn0trtQysXFnpFgAAAAAAAAAAADgRkQiQsiy/URTFDyb54yTPasIRf5XkkrIs9zbh3gAsEY2yzN/u3ZsbR0fzqV27MlWWlW05Y8WK/Oe+vlzZ358nd3WlKIrKtgAAAAAAAAAAAMBciUSAJMm3Ao5nF0XxkiTvTNK3ALcdT/KGsixvWYB7AbBEjRw9mpvq9fzh6Gi2Tk5WtqMtyY93d+eK/v78dE9PVrW3V7YFAAAAAAAAAAAAToZIBPguZVn+UVEUH0/ykiSvTPLok7jNPUl+P8nNZVkeXsh9ACwNxxqN/MWePblxdDT/Y/fuNCrc8n2rV+eK/v5c1t+fzStXVrgEAAAAAAAAAAAATo1IBHiIsiwnkvxBkj8oiuKCJM9O8qQkj0myOUlXkjVJDic5mGQ43wxDvpTkL8uy/D9V7AZg8bv/yJH84ehobqrXMzo1VdmO9e3teVFfX67o78/F69enKIrKtgAAAAAAAAAAAMBCEYkAJ1SW5b1J7q16BwCnr6ONRj61c2duHB3N/9y3r9It/3HDhrx0YCAv6O3Nmvb2SrcAAAAAAAAAAADAQhOJAADQFHdPTOTG0dHcUq9nz7Fjle3o7ejIFf39uWpgIBesWVPZDgAAAAAAAAAAAGg2kQgAAAtmYmYmHxsfz42jo/mnAwcq21EkeVZ3d146MJCf7OlJZ1tbZVsAAAAAAAAAAACgVUQiAACcsnsmJnLDyEhuqddzYGamsh1bVq7MLw4M5Mr+/py5alVlOwAAAAAAAAAAAKAKIhEAAE7KVKORT+3alRt27Mhn9u+vbMeKoshP9fTkpQMDeWZ3d9qLorItAAAAAAAAAAAAUCWRCAAA87J9cjIfGBnJjaOjGZuermzHBatX56qBgVze359aZ2dlOwAAAAAAAAAAAGCxEIkAADCrRlnm03v25IaRkfz57t1pVLRjVVtbXtjbm6sGBvL0DRtSeGoIAAAAAAAAAAAAfJtIBACAR7Rraiofqtfz/pGR3D85WdmOx69dm5cODuaSvr5s7OiobAcAAAAAAAAAAAAsZiIRAAC+S1mW+acDB3LDyEhuGx/P0bKsZEdXe3su6evLVQMD+YGuLk8NAQAAAAAAAAAAgFmIRAAASJIcOnYsHxkfzw07duSuiYnKdjx1/fpcNTCQF/b2Zt0KP64CAAAAAAAAAADAXPnWHQDAMnf3xERu2LEjt4yN5eDMTCUbelasyOX9/fnFgYE8Zu3aSjYAAAAAAAAAAADA6U4kAgCwDE01Gvnkzp35g5GRfHb//sp2/NjGjblqYCDP37QpK9vaKtsBAAAAAAAAAAAAS4FIBABgGdk2OZn3j4zkD0dHMz49XcmGwc7OXNnfn18YGMi5q1dXsgEAAAAAAAAAAACWIpEIAMASN1OW+es9e3LDyEj+x+7dKSvY0J7kJ3p6ctXAQJ7T3Z0VnhoCAAAAAAAAAAAAC04kAgCwRO2cmsqH6vW8b2QkD0xOVrLhzJUrc/XgYK7s78/gypWVbAAAAAAAAAAAAIDlQiQCALCElGWZfzxwIH+wY0c+vnNnpsrWPzekSPLs7u5cOziY5/b0pL0oWr4BAAAAAAAAAAAAliORCADAEnDw2LF8eGwsN4yM5KsTE5Vs2NTRkV/s78/Vg4M5d/XqSjYAAAAAAAAAAADAciYSAQA4jX310KHcMDKSW8fGcmhmppINT12/Pi/fvDk/29ublW1tlWwAAAAAAAAAAAAARCIAAKedmbLMn+7ald8ZHs7/2r+/kg3r2tvz4lot1w4O5qJ16yrZAAAAAAAAAAAAAHw3kQgAwGli3/R0/rBez+/t2JEHJicr2fDYtWtz7eBgXlyrZf0KP0oCAAAAAAAAAADAYuKbfQAAi9y9hw/nvcPDublez0Sj0fLzO4oiP9vbm5cPDuZpGzakKIqWbwAAAAAAAAAAAABmJxIBAFiEyrLMHXv35vrh4fzFnj2VbDhr5cq8bHAwvzAwkL7Ozko2AAAAAAAAAAAAAHMnEgEAWEQOz8zk1rGxXD88nK8dPtzy84skz+3uzrWbN+fZ3d1p99QQAAAAAAAAAAAAOG2IRAAAFoHtk5P5/R078sHR0ew9dqzl5/d2dOQXBwZy9cBAzlm9uuXnAwAAAAAAAAAAAKdOJAIAUJGyLPOPBw7k+uHhfHLnzsxUsOE/bNiQawcH8zO9vVnZ1lbBAgAAAAAAAAAAAGChiEQAAFpsqtHIn4yP5/odO/KFgwdbfv669vZcXqvlZYODedy6dS0/HwAAAAAAAAAAAGgOkQgAQIuMT03lfSMjuWFkJPWpqZaff9Hatbl2cDCX1mrpWuHHQAAAAAAAAAAAAFhqfDsQAKDJ7jx4MNfv2JGPjo1lqixbenZnUeSFvb25dvPmPHX9+hRF0dLzAQAAAAAAAAAAgNYRiQAANMFMWeZPd+3K9cPD+cz+/S0//5xVq3LN4GB+ob8/vZ2dLT8fAAAAAAAAAAAAaD2RCADAAto3PZ0P1ev53R078sDkZMvPf253d165eXOe1d2dNk8NAQAAAAAAAAAAgGVFJAIAsADuPXw47x0ezs31eiYajZaevbatLVcODORVmzfngjVrWno2AAAAAAAAAAAAsHiIRAAATlJZlrlj795cPzycv9izp+Xnn71qVV61eXN+ob8/Z3R0tPx8AAAAAAAAAAAAYHERiQAAc3bddddlcHAwV199ddVT5uQDH/hARkZGct111y3ofQ/PzOTWsbG8d3g49xw+vKD3notnbNiQ1wwN5XmbNqW9KFp+PgAAAAAAAAAAALA4iUQAgDm57rrr8uY3v/nb/7/YQ5EPfOADueaaa779/wsRijw4OZnf37EjHxgdzd5jx075fvPRWRS5pFbLqzdvzhO6ulp6NgAAAAAAAAAAAHB6EIkAALP63kDkeHyxWEOR7w1Ejm8/2VDkzoMH81sPPpiPjY9nZiEGzkN/Z2dePjiYawYH09fZ2eLTAQAAAAAAAAAAgNOJSAQAOKHvDUSOW6yhyPcGIsfNNxQpyzJ/t29f3rF9ez69d+9CTpyTJ3d15dWbN+fn+vrS2dbW8vMBAAAAAAAAAACA049IBAB4RI8UiBy32EKRRwpEjptLKDJTlvnkzp15x/bt+eKhQws98YTak/xMb29ePTSUH16/PkVRtPR8AAAAAAAAAAAA4PQmEgEAHtZsgchxiyUUmS0QOe6RQpEjMzP5o3o973rwwdw3OdmMiY9o44oVuXpgIK/YvDlbVq1q6dkAAAAAAAAAAADA0iESAQAe1uDg4JxfW3UoMtdA5Lh//9n2TE/nD3bsyHt37MjO6elmzHtEj16zJq8eGsqLa7WsbW9v6dkAAAAAAAAAAADA0iMSAQAe1vHgY67xRVWhyHwDkfe///25+uqrs31yMu8ZHs4HR0Yy0Wg0ceFDPbe7O68ZGsqPbdyYoihaejYAAAAAAAAAAACwdIlEAIBHtNhDkZMJRH74kkty+de+lj8eH8+xsmziuu+2tq0tVw4M5FWbN+eCNWtadi4AAAAAAAAAAACwfIhEAIATWqyhyHwDkde95z357xdfnGu+8IUmrnqos1etyqs2b84v9PfnjI6Olp4NAAAAAAAAAAAALC8iEQBgVostFJlvIHLOr/xKfvsJT0j27GnKnofzjA0b8uqhofzUpk1pL4qWnQsAAAAAAAAAAAAsXyIRAGBOFksoMt9AJK99bbY+85kLuuGRdBZFLqnV8urNm/OErq6WnAkAAAAAAAAAAABwnEgEAJizqkORkwlE8rznLcjZJ9Lf2ZmXDw7mmsHB9HV2Nv08AAAAAAAAAAAAgIcjEgEA5qWqUGQxBiKPX7s2r9uyJT/f15fOtramngUAAAAAAAAAAAAwG5EIADBvrQ5FFlsg8iNnnJFfPvPMPHPjxhRF0bRzAAAAAAAAAAAAAOZDJAIAnJRWhSKLJRBpS/Izvb1545YtefL69Qt+fwAAAAAAAAAAAIBTJRIBAE5as0ORxRCIrCyKXDkwkNcNDeX8NWsW9N4AAAAAAAAAAAAAC0kkAgCckmaFIlUHImesWJFXDA7mVUNDqXV2Lth9AQAAAAAAAAAAAJpFJAIAnLKFDkWqDESGVq7Ma4eGctXAQLpW+FEJAAAAAAAAAAAAOH345iMAsCAWKhR5zw035LUvf/ncD16gQOSxa9fmjVu25EV9feloazvl+wEAAAAAAAAAAAC0mkgEAFgwpxKK7J6ezmXvfGf+8ld/de4HLkAg8h83bMgvn3lmntPdnaIoTuleAAAAAAAAAAAAAFUSiQAAC+pkQpFP7dyZv9u3L0ff9a65H3QKgUiR5PmbNuWNW7bk4g0bTuoeAAAAAAAAAAAAAIuNSAQAWHDzDUX+aj5PD0lOOhDpLIpc3t+f12/Zku9bs2be7wcAAAAAAAAAAABYzEQiAEBTzDcUmbOTCETWt7fn2sHBvHpoKAMrVy7sHgAAAAAAAAAAAIBFQiQCADTNgoci8wxEBjs785qhoVwzOJj1K/zYAwAAAAAAAAAAACxtvi0JADTVT77kJfmRsbH87a//+qndaB6ByPevWZM3btmSS2q1rGxrO7VzAQAAAAAAAAAAAE4TIhEAoCl2HD2ad2zfng+MjOTo05/+zcjj3e8+uZvNMRB56vr1+eUzz8xP9vSkrShO7iwAAAAAAAAAAACA05RIBABYUA9OTuYd27fng6OjmSrL71w4HnnMNxSZQyDyvJ6e/PKZZ+ZpGzbMcy0AAAAAAAAAAADA0iESAQAWxPbJybxt+/Z86HvjkCbpKIpcWqvlDVu25MK1a5t+HgAAAAAAAAAAAMBiJxIBAE7JA0eO5G3bt+emej3TJ4pD/uzP5v8UkeQ77/nW00TWtbfnmoGBvGZoKEOrVp3EYgAAAAAAAAAAAIClSSQCAJyU+78Vh9xcr+fYbE8OOdlA5Lh3vztr2tvzK694RV4+OJiNHR0nfy8AAAAAAAAAAACAJUokAgDMy31HjuSt27bllno9M3N5w6kGIt9y+Ld+K73nn5+NV199yvcCAAAAAAAAAAAAWIpEIgDAnPyfw4fz1m3b8uGxsbnFIcmCBSLHXXPNNUmSq4UiAAAAAAAAAAAAAA8hEgEATujr34pDPjI2lsZ83rjAgchxQhEAAAAAAAAAAACAhycSAQAe1r9NTOQt27blv42Pzy8OSeYfiLz2tVm/YkUOvPOdc3q5UAQAAAAAAAAAAADgoUQiAMB3uedbccjHxsdTnswN5hmIbHjjG/Obr3pVXjowkFvPO+/bAchshCIAAAAAAAAAAAAA300kAgAkSf710KG8Zdu23LZz58nFIcm8A5EXvf3tuen1r8+q9vYk3wk+hCIAAAAAAAAAAAAA8ycSAYBl7msTE/n1Bx7Ix3fuPLUbzTMQ+b0bbsgrXvayh/y6UAQAAAAAAAAAAADg5IhEAGCZenByMm9+4IHcVK+ncao3m2cg8v73v/+EUYdQBAAAAAAAAAAAAGD+RCIAsMzsnp7O27dvz+8OD+doWZ76DRc4EDlOKAIAAAAAAAAAAAAwPyIRAFgmJmZmcv3wcN6xfXsOzMwszE2bFIgcJxQBAAAAAAAAAAAAmDuRCAAscdONRm4cHc1vbtuW+tTUwt24yYHIcUIRAAAAAAAAAAAAgLkRiQDAEtUoy/zJ+Hh+devW3Dc5ubA3b1EgcpxQBAAAAAAAAAAAAGB2IhEAWGLKssyn9+7Nm+6/P18+dGjhD2hxIHKcUAQAAAAAAAAAAADgxEQiALCE/POBA/n/7r8/f79vX3MOqCgQOU4oAgAAAAAAAAAAAPDIRCIAsAR8bWIi/2Xr1nxq167mHVJxIHKcUAQAAAAAAAAAAADg4YlEAOA09uDkZN78wAO5qV5Po5kHLZJA5DihCAAAAAAAAAAAAMBDiUQA4DS0e3o6b9++Pb87PJyjZdnUs4Y+/ekML6JA5DihCAAAAAAAAAAAAMB3E4kAwGlkYmYm1w8P5x3bt+fAzExTz7po7do87bOfzQ1ve9uc39OqQOQ4oQgAAAAAAAAAAADAd4hEAOA0MN1o5MbR0fzmtm2pT0019axzVq3KW845Jwdvvz3Xvu51c35fqwOR44QiAAAAAAAAAAAAAN8kEgGARaxRlvmT8fH86tatuW9ysqln9XV05NfOOitXDw6ms60t142Ozvm9VQUix803FBkZGWnmHAAAAAAAAAAAAIBKiEQAYBEqyzJ/vWdP3rR1a+48dKipZ3W1t+cNW7bkl4aGsm7Fd340uO6665Ikb37zm0/4/qoDkePmGor8xm/8xrc/GwAAAAAAAAAAAMBSIhIBgEXm8/v3501bt+bv9+1r6jmdRZFXbN6cN515Zno7Ox/2NbOFIoslEDlutlBEIAIAAAAAAAAAAAAsZSIRAFgkvjYxkf+ydWs+tWtXU89pS3J5f3+uO/vsnLVq1ayvf6RQZLEFIrFT1XQAACAASURBVMc9UigiEAEAAAAAAAAAAACWOpEIAFTswcnJXPfAA7m5Xk+jyWf9VE9P/v9zz81j1q6d1/u+NxRZrIHIcd8bighEAAAAAAAAAAAAgOVAJAIAFdk9PZ23bduW39uxI0fLsqlnPX3Dhrz93HPz1A0bTvoexyOLwcHBRR2IHHd848jIiEAEAAAAAAAAAAAAWBaKsslfSgXgkRVFcXeSC7/31y+88MLcfffdFSyiFSZmZvI7w8N55/btOTAz09SzLlq7Nm8799w8p7s7RVE09SwAAAAAAAAAAACAqjzmMY/JPffc83CX7inL8jGt3lMVTxIBgBaZbjTywdHR/OYDD2RserqpZ529alXecvbZuaRWS5s4BAAAAAAAAAAAAGBZEIkAQJM1yjIfGx/Pr23dmvsmJ5t6Vm9HR37trLNyzeBgOtvamnoWAAAAAAAAAAAAAIuLSAQAmqQsy/z1nj1509atufPQoaae1dXentdv2ZJfGhpK1wp/vAMAAAAAAAAAAAAsR75FCgBN0kjymm98I18/cqRpZ3QWRV6+eXN+5cwz09vZ2bRzAAAAAAAAAAAAAFj82qoeAABLVXtR5K3nntuUexdJXlKr5d6nPCXvOf98gQgAAAAAAAAAAAAAniQCAM30gk2b8oNdXfnfBw8u2D1/qqcnbz3nnDx23boFuycAAAAAAAAAAAAApz9PEgGAJiqKIm9foKeJPH3DhvzDE5+Y//64xwlEAAAAAAAAAAAAAHgITxIBgCb7kY0b8+MbN+bTe/ee1PsvWrs2bzv33DynuztFUSzwOgAAAAAAAAAAAACWCk8SAYAWeNtJPE3k7FWrcuv3f3++/OQn57k9PQIRAAAAAAAAAAAAAE5IJAIALfCkrq78fG/vnF7b29GR955/fr7+Qz+UF/f3p00cAgAAAAAAAAAAAMAcrKh6AAAsF28555x8YteuHCvLh73e1d6e12/Zkl8aGkrXCn9EAwAAAAAAAAAAADA/niQCAC3yqDVrctXAwEN+vbMo8pqhodz3lKfk188+WyACAAAAAAAAAAAAwEkRiQBAC/3aWWdldds3//gtkrykVsu9T3lK3nP++ent7Kx2HAAAAAAAAAAAAACnNf9UOQC00ODKlXnN0FDunpjIW885J49dt67qSQAAAAAAAAAAAAAsESIRAGix/3rOOWkriqpnAAAAAAAAAAAAALDEtFU9AACWG4EIAAAAAAAAAAAAAM0gEgEAAAAAAAAAAAAAAFgCRCIAAAAAAAAAAAAAAABLgEgEAAAAAAAAAAAAAABgCRCJAAAAAAAAAAAAAAAALAEiEQAAAAAAAAAAAAAAgCVAJAIAAAAAAAAAAAAAALAEiEQAAAAAAAAAAAAAAACWAJEIAAAAAAAAAAAAAADAEiASAQAAAAAAAAAAAAAAWAJEIgAAAAAAAAAAAAAAAEuASAQAAAAAAAAAAAAAAGAJEIkAAAAAAAAAAAAAAAAsASIRAAAAAAAAAAAAAACAJUAkAgAAAAAAAAAAAAAAsASIRAAAAAAAAAAAAAAAAJYAkQgAAAAAAAAAAAAAAMASIBIBAAAAAAAAAAAAAABYAkQiAAAAAAAAAAAAAAAAS4BIBAAAAAAAAAAAAAAAYAkQiQAAAAAAAAAAAAAAACwBIhEAAAAAAAAAAAAAAIAlQCQCAAAAAAAAAAAAAACwBIhEAAAAAAAAAAAAAAAAlgCRCAAAAAAAAAAAAAAAwBIgEgEAAAAAAAAAAAAAAFgCRCIAAAAAAAAAAAAAAABLgEgEAAAAAAAAAAAAAABgCRCJAAAAAAAAAAAAAAAALAEiEQAAAAAAAAAAAAAAgCVAJAIAAAAAAAAAAAAAALAErKh6AACwvMw0yty381C+Orw/944dzP4j0zl6rJGpmUY629uyckVbNqzuyAW1rlw0tCHn9q5Le1tR9WwAAAAAAAAAAACARU8kAgA0VVmW+fz9e3LHPWP5yvC+3D1yIEemZ+b8/jWd7blwYH0uGjojz7ywlovP7U5RiEYAAAAAAAAAAAAAvpdIBABoiv1HpvPJLw3nw5/flvt2Tpz0fQ5PzeQL2/bmC9v25kP/sDXn9a7Niy8+Ky940lA2rO5YwMUAAAAAAAAAAAAApzeRCACwoLbtnsj7PnNfbv/yyLyeGDJX9+2cyJv/7J6886++nuc/cTAve8Z5Oatn7YKfAwAAAAAAAAAAAHC6EYkAAAvi2EwjH/zs1rznb+7N1LFG0887Mj2TP/6XB/OJL+3Ia595QV769HPT3lY0/VwAAAAAAAAAAACAxUokAgCcsm+MH8zrbvtK7npwX8vPnjrWyNv/8t/yV/9az7teeFHO7+tq+QYAAAAAAAAAAACAxaCt6gEAwOmr0Sjz/s/cl+e+93OVBCL/3p0P7stz3/u5vP8z96XRKCvdAgAAAAAAAAAAAFAFTxIBAE7K9Ewjb7jtrtx+50jVU75t6lgjb/vLf8vXRg/kt174+HS062EBAAAAAAAAAACA5cM3JwGAeZucnsm1H/7iogpE/r3b7xzJtR/+YianZ6qeAgAAAAAAAAAAANAyIhEAYF6mZxp55Ue/lL/52njVU07ob742nld+9MuZnmlUPQUAAAAAAAAAAACgJUQiAMCcNRpl3nDbXYs+EDnub742ljfcdlcajbLqKQAAAAAAAAAAAABNJxIBAObsg5+9P7ffOVL1jHm5/c6R3Pi5+6ueAQAAAAAAAAAAANB0IhEAYE6+MX4wv33HvVXPOCnv+vS9+cb4wapnAAAAAAAAAAAAADSVSAQAmNWxmUZed9tXMnWsUfWUkzJ1rJHX3/aVzDTKqqcAAAAAAAAAAAAANI1IBACY1Y2f25q7HtxX9YxTcueD+/LBz95f9QwAAAAAAAAAAACAphGJAAAntG33RN59x71Vz1gQ777j3mzbPVH1DAAAAAAAAAAAAICmEIkAACf0vs/cl6ljjapnLIipY4287zP3VT0DAAAAAAAAAAAAoClEIgDAI9p/ZDq3f3mk6hkL6vYvj+TA5HTVMwAAAAAAAAAAAAAWnEgEAHhEn/zScI5Mz1Q9Y0EdmZ7JJ784XPUMAAAAAAAAAAAAgAUnEgEAHlZZlrn189uqntEUt35+W8qyrHoGAAAAAAAAAAAAwIISiQAAD+vz9+/J/Tsnqp7RFPftnMg/b91T9QwAAAAAAAAAAACABSUSAQAe1h33jFU9oamW+ucDAAAAAAAAAAAAlh+RCADwsL4yvK/qCU211D8fAAAAAAAAAAAAsPyIRACAh5hplLl75EDVM5rq7pEDmWmUVc8AAAAAAAAAAAAAWDAiEQDgIe7beShHpmeqntFUh6dmcv/OQ1XPAAAAAAAAAAAAAFgwIhEA4CG+Ory/6gkt8dUdy+NzAgAAAAAAAAAAAMuDSAQAeIh7xw5WPaElvr5MPicAAAAAAAAAAACwPIhEAICH2H9kuuoJLXFgmXxOAAAAAAAAAAAAYHkQiQAAD3H0WKPqCS1xdHp5fE4AAAAAAAAAAABgeRCJAAAPMTWzPOKJo8vkcwIAAAAAAAAAAADLg0gEAHiIzvbl8SPCymXyOQEAAAAAAAAAAIDlwTcjAYCHWLliefyIsLJjeXxOAAAAAAAAAAAAYHn4v+zdedT1ZV0v/vfnmeABGYQYBUEeQQEZrUTFARVLo0BOaHk050D9aVZmaMdKrZNlDp1MzcSxTmXpyQFQMbPMuRxxRARFwaEQQZnh+v2xNy2S597ffe/xufd+vdbaC9d9Xff1+TzLtT73d3+/3891eTMSALiNXTZvnHcKM7Hzkvw7AQAAAAAAAAAAgOWgSQQAuI1D9tpp3inMxF2W5N8JAAAAAAAAAAAALAdNIgDAbRyx3y7zTmEmjrjDcvw7AQAAAAAAAAAAgOWgSQQAuI0te9wumzeun3caU7XDpvU5aI/bzTsNAAAAAAAAAAAAgInRJAIA3Mb6dZXD99153mlM1eH77pz162reaQAAAAAAAAAAAABMjCYRAGCrjtxv13mnMFWL/u8DAAAAAAAAAAAAlo8mEQBgq048bK95pzBVi/7vAwAAAAAAAAAAAJaPJhEAYKuOO2i3HLTHjvNOYyq27LFj7nGn3eadBgAAAAAAAAAAAMBEaRIBALaqqvLo4w6YdxpT8ejjDkhVzTsNAAAAAAAAAAAAgInSJAIArOjUY/fL5o3r553GRG3euD6n3n2/eacBAAAAAAAAAAAAMHGaRACAFe2yeWNOOWbfeacxUaccs2923n7jvNMAAAAAAAAAAAAAmDhNIgDAQGfcb0s2bViMS4ZNG9bljPttmXcaAAAAAAAAAAAAAFOxGG98AgBTc8DuO+bXTjxk3mlMxK+deEgO2H3HeacBAAAAAAAAAAAAMBWaRACATk88/k45av9d553GWI7ef9c86T4HzTsNAAAAAAAAAAAAgKnRJAIAdNqwfl1efNqR2bRhbV46bNqwLn982pFZv67mnQoAAAAAAAAAAADA1KzNNz0BgJm785475ddPPGTeaYzkmQ8+JHfec6d5pwEAAAAAAAAAAAAwVZpEAIChPek+B+WUo/eddxqrcsrR++aJxx807zQAAAAAAAAAAAAApm7DvBMAZqeqDkxy0ZzTOLi19pU55wCMaN26yotOOyo/uO7GvPcL35l3Op0edOheedFpR2Xdupp3KgAAAAAAAAAAAABT5yQRAGBVNq5fl5c/8tg86NA9553KQA86dK+8/JHHZON6lzsAAAAAAAAAAADAcvDWJACwattvXJ9XPuruOeXofeedyladcvS+eeWjjs32G9fPOxUAAAAAAAAAAACAmdkw7wQAgLVp4/p1ecnDj86h++ycF5/35Vx/483zTimbNqzLMx98SJ54/EFZt67mnQ4AAAAAAAAAAADATDlJBAAY2bp1ldPvtyXnPP34HLX/rnPN5ej9d805Tz8+v3zfLRpEAAAAAAAAAAAAgKWkSQQAGNud99wpbznjnjnzIXfNpg2zvbzYtGFdnv2Qu+YtT75X7rznTjONDQAAAAAAAAAAALAt2TDvBIBtyuuSfGjKMb4z5fWBOdmwfl3OuN+WPORue+dV/3xh/uGTl+aaG26aWrzNG9fnlGP2zRn325IDdt9xanEAAAAAAAAAAAAA1gpNIsCt/Utr7fXzTgJY2w7Yfcf8walH5tkPPTRv/fdv5E0f+Vou/O4PJ7b+lj12zKOPOyCn3n2/7Lz9xomtCwAAAAAAAAAAALDWaRIBAKZi5+035rH3vlMec68D89GLLs95n/92PvONK3L+N69c1QkjO2xan8P33TlH7rdrTjxsr9zjTrulqqaYOQAAAAAAAAAAAMDapEkEAJiqqspxB+2e4w7aPUly080tX/3uD/LZb34/X/r2Vbnymhty3Q0357qbbs5269dlu43rsvPmjbnLXjvliDvskoP2uF3Wr9MUAgAAAAAAAAAAANBFkwgAMFPr11UO3munHLzXTvNOBQAAAAAAAAAAAGChrJt3AgAAAAAAAAAAAAAAAIxPkwgAAAAAAAAAAAAAAMAC0CQCAAAAAAAAAAAAAACwADSJAAAAAAAAAAAAAAAALABNIgAAAAAAAAAAAAAAAAtAkwgAAAAAAAAAAAAAAMAC0CQCAAAAAAAAAAAAAACwADSJAAAAAAAAAAAAAAAALABNIgAAAAAAAAAAAAAAAAtgw7wTALZNVbU5yZYk+yfZNcn2Sa5Lck2Sy5NckuQbrbXr55YkAAAAAAAAAAAAAAD/RZMIcGv3qKpjk9w/yaHprhE3VtXnkvxbkvckeU9r7YrppggAAAAAAAAAAAAAwNZoEgFu7YxVzt+Q5Kj+5wlJrq+q/5fkla21f550cgAAAAAAAAAAAAAArGzdvBMAFsqmJI9I8v6qel9V/fi8EwIAAAAAAAAAAAAAWBaaRIBpOSHJR6rqhVW1ad7JAAAAAAAAAAAAAAAsOk0iwDStT/KbSd5XVXvMOxkAAAAAAAAAAAAAgEW2Yd4JAEvh3kk+XFX3ba1dOu9khlFVT03ylBmE2jKDGAAAAAAAAAAAAADAEtAkAiTJzUk+keSTST7b/1yW5Pv9z81Jdk+yW5J9ktwryf2SHJdk85AxtiR5b1Ud31q7fKLZT8ceSQ6bdxIAAAAAAAAAAAAAAMPSJALL69ok70jyziTntta+2zH/0v7n/CTnJUlV7ZLkjCS/kl7zSJdDk7ypqk5qrbVREwcAAAAAAAAAAAAA4LbWzTsBYOYuTPKsJPu11h7eWnvjEA0iW9Va+35r7Q+T3CnJC5MM0/jx0CRPGyUeAAAAAAAAAAAAAAAr0yQCy+WSJAe31l7UWvvPSS3aWruutfbsJD+T5PIhfuUFVbX3pOIDAAAAAAAAAAAAAJBsmHcCMC1VdeckH5l3HpPUWvuxMX//pknlssL651bVA5P8U5JdB0zdOclvJvnVaeYDAAAAAAAAAAAAALBMNImwyDYk2X3eSSyb1tqnqupRSd6RpAZMfWJVPa+1dsWMUlut7yb5/AzibEmy3QziAAAAAAAAAAAAAAALTpMIMHGttbOr6nVJHj9g2u2SPCzJ62aT1eq01v4syZ9NO05VfS7JYdOOAwAAAAAAAAAAAAAsvnXzTgBYWL+V5LqOOT8/i0QAAAAAAAAAAAAAAJaBJhFgKlpr30rytx3T7lNV62eRDwAAAAAAAAAAAADAotMkAkzTmzvGd0pyt1kkAgAAAAAAAAAAAACw6DSJANP0L0lu6phz11kkAgAAAAAAAAAAAACw6DbMOwGYltbaF5PUvPNYZq21q6rqK0nuMmDagTNKBwAAAAAAAAAAAABgoTlJBJi2izvG95xFEgAAAAAAAAAAAAAAi06TCDBt3+8Y32EmWQAAAAAAAAAAAAAALDhNIsC0Xd8xvnEmWQAAAAAAAAAAAAAALDhNIsC0be4Yv2YmWQAAAAAAAAAAAAAALDhNIsC07d0x/oOZZAEAAAAAAAAAAAAAsOA0iQDTtqVj/JszyQIAAAAAAAAAAAAAYMFpEgGmpqoOSPdJIhfNIhcAAAAAAAAAAAAAgEWnSQSYpp8ZYs5npp4FAAAAAAAAAAAAAMAS0CQCTNMvdYx/o7V2yUwyAQAAAAAAAAAAAABYcJpEgKmoqhOS3KNj2rtnkQsAAAAAAAAAAAAAwDLQJAJMXFVtSvInQ0x987RzAQAAAAAAAAAAAABYFppEgGl4SZIjOuZcmOQfZ5ALAAAAAAAAAAAAAMBS0CQCS6CqjquqDTOK9dwkTx1i6otaazdNOx8AAAAAAAAAAAAAgGWhSQSWw5lJPl9Vj6mqTdMIUFU7VdXfJHn+ENPPT3LWNPIAAAAAAAAAAAAAAFhWmkRgeRyc5PVJLq6qF1TVwZNYtHp+Lsm/J3nEEL9yU5LTW2s3TiI+AAAAAAAAAAAAAAA9mkRg+eyT5H8l+XJVfaqqfq+qHlhVO61mkao6sKpOT/K5JG9LrwllGM9qrX1odSkDAAAAAAAAAAAAANBlw7wTAObqqP7nt5LcXFUXJflikq8n+VaS7ye5Lsn6JLv1P3snuVeSO44Q7+WttZdMIG8AAAAAAAAAAAAAAH6EJhHgFuuSbOl/puElrbVfn9LaAAAAAAAAAAAAAABLT5MIMG3XJHlya+0N804EAAAAAAAAAAAAAGCRrZt3AsBCe0+Su2kQAQAAAAAAAAAAAACYPieJwHL4cJKfSLLvjOK9P8nvtdb+cUbx1rL9t/bDCy+8MIcffviscwEAAAAAAAAAAACANenCCy9caWir7+suqmqtzTsHYEaq6pAkJyS5b5JjkxySyZwo1JKcn+TtSd7YWvvyBNZcClV1bZLt5p0HAAAAAAAAAAAAACyo61pr2887iVnRJAJLrKp2SHJkkiOSHJhel9z+SfZJslOSHZJsTrIxyfVJrk3yvSSXJbkkyeeTfCbJh1tr355x+gtBkwgAAAAAAAAAAAAATJUmEQBmQ5MIAAAAAAAAAAAAAEzVUjWJrJt3AgAAAAAAAAAAAAAAAIxPkwgAAAAAAAAAAAAAAMAC2DDvBACW3BVJdt3Kz69PcsmMc2F2tiTZbis/vy7JhTPOBYDhqd8Aa5P6DbD2qN0Aa5P6DbD2qN0Aa5P6DbD2qN2zs3+STVv5+RWzTmSeNIkAzFFrbe9558DsVdXnkhy2laELW2uHzzofAIajfgOsTeo3wNqjdgOsTeo3wNqjdgOsTeo3wNqjdjNr6+adAAAAAAAAAAAAAAAAAOPTJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC0CTCAAAAAAAAAAAAAAAwALQJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC0CTCAAAAAAAAAAAAAAAwALQJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC0CTCAAAAAAAAAAAAAAAwALQJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC0CTCAAAAAAAAAAAAAAAwALQJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC0CTCAAAAAAAAAAAAAAAwALQJAIAAAAAAAAAAAAAALAANIkAAAAAAAAAAAAAAAAsAE0iAAAAAAAAAAAAAAAAC2DDvBMAgCX0iiR7bOXn3511IgCsivoNsDap3wBrj9oNsDap3wBrj9oNsDap3wBrj9rNTFVrbd45AAAAAAAAAAAAAAAAMKZ1804AAAAAAAAAAAAAAACA8WkSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWgSAQAAAAAAAAAAAAAAWACaRAAAAAAAAAAAAAAAABaAJhEAAAAAAAAAAAAAAIAFoEkEAAAAAAAAAAAAAABgAWyYdwIAwGRV1YYkW5IcmGSnJLdLcm2SK5NcluRLrbWr55YgAFtVVdslOSTJfunV7x2SXJ3kqiTfSK9+Xz+/DAHYGvUbYG1SvwHWJvUbYO3x7BJYBv1ad2CSfZLskWRzkk1Jrk9yTZL/SK/mXdxau2FOaa6Ka29g0VXV7unV7jsk2THJdunV7KuSfCu9OvfDuSU4ArWbW6vW2rxzAICpq6qNSe6a5G5JDu//d78ku/Y/uyS5Kb0Lve8luTTJRUk+k+TjST60LV8gVdURSU5N8tAkR6d3s2ElLckFSd6V5O1J3tdcEADboKqq9L6QH5nkzknumGT//n93S+9L+g79z43pPVS6Ir0v619L8vkkn0jygdba92ac/lCq6rgkpyR5SHp/n9YPmH5Tks8lOSfJ21prH5l+hgBsjfoNsDap38Cy6t9jOSrJCUkOS3KX9O6v3PKibiX5Qf/z3SRf7X++kOSjSb44z3vI6jfA2uPZJbDoqmqH9GrcA5PcO733UTYO8as3JPlikn9N8o9Jzt2WGuVcewOLrKp2S3JyejXunum9OzhIS+/9wfPSq3XnbouNfmo3K9EkAsBCqqp1SY5J8oD0vpQfn97LxKO6Osl7krwhyTtbazeOneQEVNVPJTkzyf3HWObLSV6a5C9aazdNIi+AUVTVgendRL13ejX8bum9qDCuluQjSd6c5I2ttcsnsOZYquoRSZ6V5Ngxlvn3JC9qrf3tZLICmK+qun16L6HtNcT0N7TWHjvdjG5L/QYWRVXN+8HAia21984qmPoNLKuqOibJk5L8fHq7GY/qiiQfTnJukrNba1+dQHqd1G9graqq2yX5hXnnsZLW2mumtbZnl8Ciq6pDk/x6kkdkMs8xf5DeM8w/bq19YQLrjcS1N7DIquqoJM9Mr3YP09C3ksuSvCrJy1prV04it3Go3XTRJALAwugf3/nAJA9Przt2tymFuijJC5OcNa8bk1V1hyR/muRhE1z200lOb619dIJrAnSqqhcl+cX0jvCctmuSvDbJ81tr35lBvP+mqu6a3k2D+01w2fcnOaO19qUJrgkwc1X12iSPG3L6TJtE1G9g0SxLk4j6DSyrqjo+vXvY955SiLNbaydNaW31G1jz+hsiXTTnNFbUWqtJr+nZJbDoqmrP9K6xH5veSXyT1tJ7hnlma+0/prD+Vrn2BhZZVe2RXu1+XCZbu7+V5Ddaa385wTWHpnYzrHXzTgAAxlVVh1fVX6R3AfauJI/P9BpEkuROSf48ycf6O7HNVP8B3ycy2ZusSXJUkg9U1ZMnvC5AlxMymwaRJNmc5KlJvlJVp88oZpKkqk5N8vFM9ot60tuR7d+qatJ/FwBmpqoekOEbRGZK/QZYm9RvYBlV1Z5V9ZYkH8j0GkSSZL9pLax+A6w9nl0Ci65/StJnM/mXjP9bmCRPSPLZqnrglGL894CuvYEF1n/2+Jn03iOcdO3eO8mbquqNVbV5wmsPpHazGppEAFgEP5vkiUl2n3HcY5N8eJYvGVfV8DQ0ygAAIABJREFUyUnel2TPKYXYmOQVVfXCKa0PsK3YKcmrquots/jSXlVPTfL3mcyx01tzuyRvqaqnTGl9gKnp1+FXzzuPrVG/AdYm9RtYRlX1kPRefjh13rmMSv0GmImJniro2SWw6KrqSUnOzvTq3I/aO8m7quqXphnEtTewyKrq8Unek15NnaZHJ3l/Ve0y5ThJ1G5WT5MIAIxnu/ReMn7+tANV1YlJ/ja9m6HT9ptV9dwZxAGYt1OT/GNVTetLdKrqMUn+NNPbWei/QiV5+bRvGgNMwfOSbJl3Ej9K/QZYm9RvYBn1H96/M8le885lVOo3wMy8f1ILeXYJLLqqenR6Gxytn3HoDUleX1WnTWNx197AIquqM5KcldnV7p9Mcu403zlJ1G5GU61NdJMAAJi5qjozyR+s4lduSvK5JF9IclGS/0jywyTbp3cayT5Jjk9yl1WmcmZr7Q9X+TtDqaoDk3wyya5DTP9skjcl+UCSC5J8P8mOSfZPclySRyR5YIa7aDyltfa21WcMMLyq+rckd++YdnOSryf5cpILk1yR5Mr+Z12SXZLsnOTgJEcnOTCr+3J8XpKfbq3dvJrcu1TVTyT5YIZ7SPahJP+3/9+Lk1yV3oknByW5V5JHplfHu1yf5PjW2sdHSBlgpqrqmCQfS++h12q8obX22Mln1KN+A4uuqub9YODE1tp7J72o+g0so6r67fQar4d1bXrX4F9K8rX06t/16d17vn2SPdK7t3J4kk0rrPHp1trRo+b8o9RvYNH0n+tdNOc0VvKo1tpfjbuIZ5fAoquqY5N8JMM3wn0iyTnpXddekOTy9K5Vd07vOvuuSe6d5KQkRwy55rVJfry19rnhMx/MtTewyKrqZ5K8LcM1iFyV5N39+ecn+VZ6tXu39E4guVuSk5P8dIY7uePvW2vTau5TuxmJJhEA1rwhm0S+mOQdSc5N8tHW2tVDrLtPkl9O8rT0mke6tCQntdbOGWLu0KpqQ3oXej/ZMfXbSZ7WWvu7Idb8iSSvSnJsx9TvJTm6tfb1YXIFGMUKTSKXJfnX9B4a/WuSz7fWrlvFmnum9+X28Rn+Rutvt9ZeMGyMIXLYOcmnktypY+oFSZ7cWvvHIdZ8cJJXpHvH/YvSq99XDpMrwDxU1fr0Xk7ruibdmqk1iajfwDLoaBJ5R5K3TzmFc1prl05yQfUbWEb9E0T+bIipNyZ5S5LXJ/mnYe6xVNWmJEcmeWiSU5Icc6vhiTWJqN/AItqGm0SuSLJva+2acRbx7BJYdP17159K7wXhLh9M8pzW2r+sYv0T03vHpWsTvST5eJJ7tAm85OnaG1hkVXWH9JqTb98x9aYkr0zv/ZDvDbHu7ZM8P8mT09188ozW2p8Mke7Q1G7GoUkEgDVvQJPIFek99HpTa+0TY6y/Y5KXJXniENMvS3JYa+2KUeNtJf4zkry0Y9qnkzx0NS9YVNV2SV6X5Bc7pv6/1tqpw64LsFr9JpFj0tuN521J3tZa+9KE1q706vcL09vxYZDrkty1tXbxhGK/LMmvdEx7b5Kfb619fxXr7prkrUlO6Jj60tbarw27LsCsVdWzkqx0Et9X09vRZiXTbBJRv4GF19Ek8rzW2u/OKpdJUb+BZVNVJ6V3H2Vdx9S3JfmN1toFY8Y7IMmT0ttY6dIJNomo3wATUFX7pXdC1KC/C69orT11ArE8uwQWWlU9Nr161OUPkjy3tXbTCDE2JfmjdF8LJ8kvtNb+drUxthLTtTewsKrqnCQP6Zj2vfSuUT8ywvr3THJ2BjehXJPee4MXr3b9AXHVbkamSQSANW8rTSJfSfKiJH85zIkhq4jzS0lem+6u4Be21p49oZh7pNfpu8uAaV9Jcq/W2ndHWH99ejvIndwx9cGttfNWuz7AMKrqIUk+0Vr79hRjbEnyT+kdXz/IWa21YZoCu+Idlt5DsA0Dpn04yYNG+VvVb2B8Xwbv1HZjkiNba19Y7foA09avy59Nsnkrwx9K72bmbw9YYipNIuo3sCwWrUlE/QaWTX93zM9k8IYY16e3g+RrJxx7uyT3aa29dwJrqd8AE1JV/ytJ10nZdx9nY71+HM8ugYVXVZ9KclTHtBe11p41gVgvT9LVwPeR1to9x4zj2htYWFX100nO7Zj23fRq3GfGiHNUkvOS7DFg2ttba13XssPGU7sZS9fOMgCwlnw5yaPS2wX+1ZNsEEmS1tobkzxtiKlP6x/1NgnPzOCbrNcnefgoN1mTpL+jxWOSXNwx9fmjrA8wjNbaudNsEOnHuDDJ/ZJc1TH1F6pqpwmE/J0M/qJ+eZJHjPq3qrX2wyQPT+/UrJVsyOAXrAHm6c+z9QaRG5KcnmReu5qo3wBrk/oNLI3+qalvzOAGkauTPGTSDSJJ0lq7bhINIn3qN8AE9P82PK5j2qfGbRDp8+wSWGhVdXi6G0Q+lOQ3JxTy6Uk+3jHnuP7GS+Nw7Q0sst8dYs5jx2kQSZLW2qfTfd39c1V13DhxbkXtZiyaRABYBN9O8pQkh7fW/mqUozyH1Vp7ZXoP4AbZMb0LqLH0G01O75j2stbaJ8eJ0z9qrutYuuOq6j7jxAGYt9baRel9iR5kxyQPHCdOVR2U5H90TPtfrbVLxonTWvtauv89p1XVncaJAzBpVfX4rFxrX9xaO3+W+dxC/QZYm9RvYAk9KskDBozfnOQXW2vvm1E+I1G/ASbq/kkO6phz1rhBPLsElsSDhpjz7NbaRDY6aq3dnOTMIaaO/PzStTewyKrqx5Pco2Paa1tr50wiXmvt7CSv65j2nHHjqN1MgiYRANa81trrWmuvbK3dOKOQz05vJ7ZBTplAnMdk8E48VyT5/QnESWvt7Uk+0DHt6ZOIBTBnL0/yvY459x0zxlOTrB8wfkGSV48Z4xavSPLVAePr02ukBNgmVNVeSf54heGvZr67QKrfAGuT+g0sjaraMckfdEz7w/793m2d+g0wOU/oGL8uyV9NII5nl8AyOLZj/MuttX+ZZMB+g/eFHdN+YowQrr2BRfaojvEbkzx3wjGf2193JSdV1cFjxlC7GZsmEQBYpdbapUn+umPafapq3L+zj+4Yf3Vr7coxY9zaizvGf7aqBt34BdjmtdZuSNK1Q8RdR12/qtYn+cWOaS+d1KlX/QbJ/9Mx7ZET+JsEMCn/J8ntVxh7Smvtmlkmcwv1G2BtUr+BJfQrSe4wYPwLSX53NqmMTv0GmJz+s7tTO6a9tbXWtXnSMDy7BJbBlo7x90wp7rs7xu88yqKuvYElcHLH+D/03/WbmNbaN5MM2qCjkvzSqOur3UyK/8MAYDTv7BjfOckBoy7e7ybu2gniNaOuv4J3JLlswPh26T7GDmAt+HDH+L5jrP2AJPsMGL82yV+Osf7WvCHJ9QPG901y/wnHBFi1qjopycNXGP7b1lrXQ7BpUr8B1ib1G1gaVbVdkqd1TDuztTaoRm0r1G+AyXlkks0dc84aN4hnl8ASWWmTo1t8ekpxu9b9sRHXde0NLKyqumOSAzumvX5K4V/XMf6oqqoR11a7mQhNIgAwmmGODz1ojPV/tmP831trF4yx/m201m5O8uaOaV15AawF3+4Y33GMtbvq5NmttavGWP82WmtXJDm3Y5r6DcxVVe2U5JUrDF+R5BkzTGdr1G+AtUn9BpbJ/0yy94DxT7bWBu1iuS1RvwEm5/Ed4xcned8E4nh2CSyL7TrG/2NKcb/bMd7VELgS197AIutqYm5JPjSl2B/qr7+SA5McOeLaajcToUkEAEbQWrs8g7tnk2TXMUI8qGP87DHWHmfdE/pH2gGsZV3H3V89xtrbav0+cUpxAYb1wiT7rTD27Nbat2aZzFao3wBrk/oNLJPHdYz/6UyymAz1G2ACquqIJD/eMe11rbVBL68Na1ut3Z5dApP2/Y7xH04pbte6Xc83V7Kt1m/X3sAk3LVj/Mutte9NI3D/3cGuJumfGnF5tZuJ0CQCAKPr2iFipJ0cqmpDkvt2THvvKGsP4QPpHUm3kl3S3YUNsK3bs2N8pB2AqmqfJId2TJtW/T6vY/zwqhq02yjA1FTVvZI8eYXhDyf58xmmcxvqN8DapH4Dy6Sq9k9y7wFTrk73TuvbBPUbYKKe0DF+c5LXjxvEs0tgyfxnx/juU4rbtW5XXrfh2htYAnfsGP/clON/vmP8watdUO1mkjSJAMDodugYH3TDcpDDk+w4YPyGJB8bce2BWmvXJvlkxzQ3WoG1bqWd7G/x1RHX/cmO8Utaa5eMuPZArbWLk1zWMU39BmauqjYl+YsktZXhG5OcPqHdLMehfgOsTeo3sExOy9avqW9xTmttWjsaT5r6DTAB/Xsuj+qYdl5r7esTCOfZJbBMvtAxPq2XY/fpGB/l+aVrb2DR7dExfsWU43edUvKTVTXofs5Wf6djXO1maJpEAGAEVbVTejvTDDLqcXXHdox/vrV23YhrD+PfOsaPmWJsgFn46Y7xD4y4blf9/sSI6w5L/Qa2Rb+V5LAVxl7SWvvsLJNZgfoNsDap38AyObFj/JyZZDEZ6jfAZJyc7l3nz5pQLM8ugWXS9ZzwPlOK23Vi0wdHWNO1N7DoujZ4HvXdvWF1rb9TkoNXuabazcRoEgGA0RydwTu3JcmFY6w9yGdGXHdYn+4Yd7EHrFlVtX+S4wdMuTGjH82pfgPcSlUdluTMFYYvTvK82WUzkPoNsDap38BSqKoNSe7dMe2fZpHLhKjfAJPxhI7x/0zytgnFUruBZfK+JNcOGH9AVW03yYBVtTnJAwZMuTmjXfOr38Ci29gxPqieT8I1Q8y5+yrXVLuZmA3zTgAA1qif6Ri/Msmoxzcf0jF+wYjrDquruWW1Hc4A25KXJVk/YPwtrbVLR1xb/Qboq6p1SV6TZNMKU57SWrt6hikNon4DrKCqNibZkuSOSXZLsn2SG9J7+HVFkm+kd7z9MA/DJk39BpbFMentPLmSS1trF3ctUlU7Jjk8yT5Jdk5vE6Sr09v18mtJvt5au37sbLup3wBjqqr90n3K1JsmWNfVbmBptNYur6q/ysrNeLsmeUqSl04w7NMz+Jr/7NbaJSOsq34Di67rNLtdphx/1yHm3GWVa6rdTIwmEQBYpf4Lbw/vmPavrbWbRwxxp47xr4y47rC61t+xqvZorX13ynkATFRVPSPJqQOm3JjkhWOEOKBjfN71u+vvC8AkPTXJPVcYe3Nr7dxZJtNB/Qb47w6rqj9KckKSI5J07Y55c1V9Ob1j6N+b5NzW2nemnGOifgPL46iO8U+tNFBVRyR5ZJKT0msQGXQ69vVV9ckk/5zkrUk+1lprq8x1GOo3wPgel2Rdx5yzJhjPs0tg2fxxkkdn5U2QnlNVb26tfXPcQFV1QJLf7Jj24hGXd+0NLLofdowP08QxjtsPMeegVa6pdjMxXV8aAYDbOjndFzxvH2Xhqqp0X+yNusP9sC5L77jSQVzwAWtGVW2squele0efP2itrfhiRUeMvZNs7pg27frddSN6h6rac8o5AKSq9k/y+ysMfz/JM2aYzkDqN8BWnZbkN5L8eLobRJLec4a7JnlUktcnuayqzq6qn+3f55g49RtYMnfrGP/sj/6gqo6rqvcm+UySM/trdNXkTUnukeRZST6S5AtV9cv9U6UmQv0GGF//GvuxHdM+1lo7f4LxPLsElkpr7YtJnj9gyo8lObuqBp3+0amqdktybga/ZPyG1to/j7C2a29gGXy7Y3zaNWaPIeYM3SSidjNpmkQAYBWqan0G3wxIkuuT/N2IIW6fZPuOOd8ace2htNZuSvIfHdP2nWYOAJPQbw45Ob0dNX+7Y/q7k7xgjHDD1MWp1u8h11e/gVl4ZZKVHo49p7V22SyT6aB+A0zeuiQPTW8DjX+rqgdNIYb6DSyTwzrGL7zlf1TV7arqrCQfSvLAMePeJcmfJzm/qh485lq3UL8BxndCul80m+QpIp5dAsvqhUneM2D8qCQfr6quk/+2qqrukd6prIcOmHZRRt90ybU3sAwu6Ri/+5TjD7P+auqc2s1EaRIBgNU5Pd07t72htXb5iOvvPsSc74y49mp0xRgmT4CZqKr1VbVrVd2xqu5ZVU+uqtekt4PCP6T7ZYr3JDmltXbDGGl01cUrW2vXjbF+p9baNUl+0DFN/Qamqqp+IcnPrDD80SSvmmE6w1C/Aabr2CTnVdVrq2rnCa6rfgPLZP+O8YuSpKoOTu+a+/HpPjVkNQ5J8q6q+qOq2jDmWuo3wPge3zF+dZK/mWA8zy6BpdRvUDslyaBTPO6S5GP9+x5DNYtU1U9U1V8l+dcMPgXpm0ke2Fq7Yticf4Rrb2AZfL5jfPf+/ZKJq6pDkuw2xNTV1Dm1m4ka90YeACyNqjogvd0iBrkhyR+OEWaYi8crx1h/WF0xhskTYCKq6s5JLpjC0jcm+f0kL+jf6B1HV12cRe2+Jc7tBoyr38DUVNVuSf5kheEbk/xya+3mGaY0DPUbYDYel+S4qvrZ1tqFnbO7qd/AMtmnY/ybVXWXJP80xNxRVZLfSHJIVT1ijBcS1G+AMVTVLklO7Zj2d621SdZTzy6BpdVau6aqfjrJi5M8ZYVpm9K77/G4qro0yQfTe675vfRest0pvVOZ7pLk3kn2GiL0J5Oc1lq7aIz0XXsDy+Dfh5jz4EznfZMTh5y3c1VtHHLTUrWbidIkAgBDqKp1SV6f3hf4QV425ssOt+8Yv3oCLzIPw41WYJG1JO9I8juttU9NaM2u+j3LL+uDjvZUv4FpekmSPVcYe2lr7TOzTGZI6jfA7Bya5CNVdf/W2ufGXEv9BpZCVW2fZJeOaevSOyV1Wg0it3Zykr+vqlNGvE+tfgOM55FJNnfMOWvCMT27BJZaa+3aJE+tqrPT21T0iAHT901y2hjhrk/yp0l+awI7xbv2BhZea+3SqrogyaDTQk5P8mdTCH/GKubePsOdvqd2M1Hr5p0AAKwRz0ty/445lyR5wZhxtu8Yv3rM9Yf1w47xrjwBtkVfSv/mbWvt5Ak2iCTqN7DkqupBSR6zwvDXkvzu7LJZFfUb4L87P8kbkjwzyU8lOSzJHdLbNWxTkr2THJ7khCTPTnJuVvdg6seSnFdVdxozT/UbWBa7DjHnlUn2GzB+VZK/S/LoJMek10yyXf+/x/R//nf9ecM4KckfDzn3R6nfAON5Qsf4Ba21D0w4ptoNkKS1dk6So5L8jyRnJxm3iePWrkzyqiR3bq09cwINIon6DSyPd3SMH1FV95tkwKo6IcndVvErw9Y6tZuJcpIIAHSoqocmeU7HtJbkCa21YR+krWRTx/iNY64/rK44XXkCbGtuTHJhkm+k+wvtKNRvYGlV1Q5J/nzAlKe21mZ103K11G9g2d2U5F1J3pnk7NbaJR3zv93/fD7J+5O8sL/L/WPTayzZMkTMfZK8paru1d+NcxTqN7AsunaLT5L7rPDzG5O8Ir2TVK/Yyvi3+p9PJfnLqto1yfOTPDndz5CfUVXvbq29a4j8bk39BhhRVR2Z5O4d0yZ9ikiidgP8l9ZaS/LWqvpCkv+Z3r2Q7cZY8oYkf5Tk98a4R7IS9RtYFn+Z5Nc65ryiqo6dRBNeVW2X1Z9MMmytU7uZKCeJAMAAVXVYkr9O99/Ml7fWzptASBd7ANOxIclDk7w8yYVV9daqOm6C66vfwDJ7fpKDVhj7+9ba2bNMZpXUb2BZXZbeaagHtNZOaq29aogGka1qrV3bWntVkkOS/Gp6Lzh0OSbJ/x4lXp/6DSyLUXdm/M8k926t/coKDSK30Vq7orX29CTHJ7l8iF95db9RcDXUb4DRdZ0icmOSN04hrtoNkKSqNlTVY6rqc+ltnvFbGa9BJEk29te5qKpeUVV3HjfPW1G/gaXQWvtkko92TDss492PvrX/neTQVf6OJhHmQpMIAKygqvZI70i6nTumfjy9HSImoetv800TitOlK876mWQBMB3rkjwsyYer6v9W1e0ntOYg6jewkKrq7kmescLwlUl+ZYbpjEL9BpbVHVtrv91a++akFmyt3dxae1l6Lxd/bYhfeVpVHTFiOPUbWBYbR/id7yS5f2vtY6MEbK19NMn9++sMsn+S/2+Vy6vfACOoqk3p7Vg/yDmttcumEF7tBpZeVZ2U5IIkr0/vReNJ2zu9E/2+2H92eccJrKl+A8vkd4eY82tV9dxxgvR/v+vUkq0Zttap3UxU11HBALCUqmrHJO/Myjsi3+I/k5zWWrt+QqG7OnFn9be7K84wu4ICTMp3kjxpwPjmJLv2P/sn+ckkBwy59i8muW9VndZa+/AYOarfwNKpqg1JXpOVbwQ+p7V26QxTGoX6DSyl1trUdhxrrX2squ6b5ANJBr3UsCG906geNkIY9RtYFqM8/H9Ma+38cYK21j5bVY9Jcm7H1F+tqpet4u+K+g0wmlOS7N4x56wpxVa7gaVVVZuTvDi9Bo5ZWJ/es8uHVtUZrbW/GWMt9RtYGq21d1XVe5I8uGPq86tq7yRnttauGnb9qtopyR9m9L8H1w05T+1mojSJAMCP6O/G85b0XjIe5JokJ7fWhtkdc1hdzSaz+tvdtUPdpJpiADq11q5M7yXkofVPg3pYktOTHNsx/Q5J3l1VD2mtfXC0LNVvYCk9M8nRK4x9LMkrZ5jLqNRvgClorX29qh6W5INJth8w9eeq6uDW2gWrDKF+A8titXXk1a21d00icP8Fi9ckeeKAafsm+bkkbx1yWfUbYDRP6Bj/VpJzphRb7QaWUr9B5J1JHjDE9JuSvDfJv6R3L+Sb6W04elV6m9ztluTAJPdJ79S+4zvW2yXJX1fVka2154yQfqJ+A8vniUnOT7Jzx7ynJDm1qn4n/z979x1u21nVi/87SKGGTqgBgoSgwI/eWyhSREAF1KuUhKLARSwooCBdBStwAQGlSi8CApcqRTpIF0EQE0JoISGUECAkGb8/5s41xLPXXGvvNfc+Z63P53n2k+c577vHO9Y+84zMPecc801e2d0nbTaxqi6U5G5JHpth16c9OS3jNfWHI+NnUrtZqrGtaQBgrVTVOZK8KMltR6b+OMMOIlt9mHhW3FkOXPJ6m3GyB+zTuvub3f3s7r52hou3Xxz5loOSvLmqtrpFtPoNrJWqumKSR20yfFqS3+zuM3Ywpa1SvwEm0t0fS/KnI9POkeTuWwivfgPrYpE68uMkj17y+o/K+Fss77JAPPUbYEFVdUiSW49Me8GEuwWq3cDa2Xix6D9lvEHkx0n+T5IrdvftuvtPu/vd3f2f3X1Sd5/W3Sd09+e7+63d/cfdfdMk/1+SFyfpkfh/WFWP3eLHUL+BtdLdX07y60nmuT95iSTPSnJ8Vb2zqp5aVX9UVQ/Y+O9Tq+qdSY7fmLdZg0gyfg08mb9JRO1mqTSJAMCGqqokz87QATzLGUnu1d1vnCCNk0fGzzfBmnsy1lU9lifAXqO735nhYutzR6aeL8mLqmrsF949GauLB20h5lao38BOeXaSc28y9pTu/sROJrMN6jfAtP4iyTdG5tx1C3HVb2BdfH+Bua/t7q8vc/Hu/lqS145Mu93Gy5fmoX4DLO6ojD/bM3btezvcuwTW0WMz3qD3pSQ37e4Hd/cxiwTv7k93992T3DnJpm+w3/CoqlqkMftMzr2BtdPdb8iwU8hYE96Z9s+ww9NvJfmTJM/Y+O9vbfz52M4dz03ysrG0Ml7rz6R2s1SaRADgv/1NxrdrTpIHdPdLJ8rhWyPjB1TVuSZa+6zGTirH8gTYq3T3KRm2Fx27WXbNJA/bwhJjdXGnfllXv4HJVdV9ktxik+EvZflvL56S+g0woe7+YYY3rc3yM1V18IKh1W9gXZyU+R9seP5EOTxvZPzCSQ6fM5b6DbCAjRfcHTky7T3d/fkJ03DvElgrVXWjJA8dmfaFJNfp7g9tZ63ufn2SGyQ5cWTq37p2AjCf7n5WkntlfFeO7XpxkvsluejIvBO7e95c1G6WSpMIACSpqick+e05pj6ku589YSpjv/wnyQUnXH/eNebJE2Cv0t2d4Zf0d41M/e2q2uzt+JsZq4s7UbuT5AIj4+o3sC1VdfEMb4XfzIO6e5G3He829Rtgeq+YY84NF4ypfgNrobtPT/KdeaYmef9EaXwg440q154zlvoNsJhbJjl0ZM5zJs7BvUtg3Twxs5+pPCnJHbr7hGUsttHo94tJTp0x7WJJHrVgaOfewNrq7n9IcpMkR08Q/owML8y7R3efkeRyI/O/tkBstZul0iQCwNqrqoclecQcUx/d3X89cTrzXEi4xMQ5JMklR8ad7AH7pI1f0n8ryekzpl00yT0XDD1Wv89ZVZP+wl5VF0ly4Mg09RvYrqcludAmY6/e2MZ5X6J+A0ysuz+T5PiRaVdeMKz6DayTea4Z/0d3f3uKxbv7pAxvSp7lp+YMp34DLObeI+PfS/LKiXNw7xJYG1V1nSQ3HZn26O4eOz9eSHe/J8kzR6YdueC5snNvYK1194eTXDXJE5L8YElhP5XkiO5+3MZLSpPk8iPf86UF4qvdLJUmEQDWWlU9OMObIMb8RXc/bup8uvuUjJ9IXXzKHKrqPEnONzJtkRNYgL1Kd/9bkpePTLvTgmGPnWPOpPV7zvjz5AmwR1V1pyR33WT4u0kevIPpLIv6DbAzPj4yfvkF46nfwDqZp5b8+8Q5jMU/ZM446jfAnDYe/vqlkWkv3bi3OBn3LoE1c5+R8S8nefZEa/9Jklm7dJ83yT0WiOfcG1h73X1Kd/9xhusWj0jyuS2G+kiSX09yrY3GvrO64sj3fmaBddRulkqTCABrq6rul+TJc0x9enc/dOp8zuKYkfGxbeq2a574x0ycA8DUXjsyfpOqmvv3pe4+OeM3yna7fh/f3bMuLgOMmbWr3iO7+6s7lsmSqN8AO+aYkfGDFwmmfgNr5ug55kyyi8hZnDQyfuF5gqg3b61kAAAgAElEQVTfAAv5tSTnGpnz3J1IJO5dAuvjFiPjL+/uH02xcHcfn+QtI9NuuUA8594AG7r7xO7+0+7+6SQ/k+QBGc6l35uh4eF7SU5LcmqG2vnpJC9L8rtJDuvu63X3S7r79D2Ev/rI8nM3iajdLNv+u50AAOyGqrpHhu06a2Tqc5L81vQZ/YSjk1x7xvhhE68/Fv8bU7+VCGAHvDnJGdm8cf78SQ5P8tkFYh6d5CIzxg9L8tYF4i1qrH7P81AJwCwX3eTPv5vkR1V13yWuda2R8cPmWO/d3f2FOdZSvwGm952R8fNsIab6DayL/5pjztRNImPxF6nj6jfAfMbeZv+Z7v7QjmTi3iWwBqrq4Az3BmeZ8jz1zPizdpG6SVVVd/ec8Zx7A5xNd382w3Mgz9xurKo6IMlPj0z7xIJh1W6WRpMIAGunqu6W5HkZ31HrpUl+Y4FfsJflM0nuOmN87MLEdl1pZHyRbfAA9krd/b2qOiGz31h8cBZrEvlMkuvMGFe/gVV1/iTP2uE1b7TxNctRSeZpElG/AaZ36sj4AVuIqX4D6+Lf5pjzg4lzGIu/yD1n9RtgRFVdPeMv0HjOTuSywb1LYB0cOsecD0+cw1j8i2Z4cPiEOeM59waY1vWSnHPG+ImZ77rOWandLM3Yw7EAsFKq6k5JXpxkv5Gpr01yz+4+Y/qs/oePjYxfc+L1xy46f3zi9QF2yjdGxme9nWFP1G+AfZP6DTC9c4+Mb+XhZvUbWBcfnWPOBSbOYSz+InVc/QYYN7aLyKlJ/mEnEtmgdgPrYOy+4KndPbZT6nYdP8ecRe5fqt8A07r5yPi/bOHl1Go3S6NJBIC1UVW3TfKKjL+d8k1JfqW7T5s+qz0aO9m7zMZWp1OZtV104mQPWB3fHRkfe5Dt7Mbq9zWqaqxJcUuqav8kVx+Zpn4D7Jn6DTC9S4yMn7yFmOo3sBa6+ysZf9HFBSdO40Ij44vUcfUbYIaqOmeSXxuZ9k/dPe9b5JfBvUtgHYyd8564AznMU9svvEA8594A07rjyPjbthBT7WZpNIkAsBaq6ogkr8nsLd6S5B1Jfqm7T508qU1093FJvjQy7Ygp1q6qS2V827j3TrE2wC4478j49xeM969Jfjhj/HwZv5m1VddLcp4Z4z/MfG8eBVhH6jfA9K44Mv6VLcRUv4F1MnZNdsoHc+eJv0gdV78BZvuFjL8l/jk7kciZ3LsE1sTpI+Njz5oswzxrLPJGeufeABOpqksnuf6MKacnedUWQqvdLI0mEQBWXlXdMMnrM/5G+PcmuVN3zzrR2ilvHxn/2YnWvfXI+Be6e+wiMMC+4pCR8ZMWCbbx/4/3jUzbrfr9nr3k/28Aex31G2BaG29CvsbItKMXjat+A2vmLSPj15lq4aqqJNcamTb3NWP1G2DUvUfGj0vy1p1I5GzcuwRW3djL4y401Zvbz+Jic8w5Zd5gzr0BJnVUkpox/s/d/c1Fg6rdLJMmEQBWWlVdK8mbMnTRzvKRJHfo7kXfGj+Vse3m7jTRBYi7jozvxkVngKXbeKvD2NvY/msLocfq9y9tIeY81G+A7VG/AaZzq4y/CfNTW4ytfgPrYqxJ5MJVNfaW9a26UpILj8z55IIx1W+APaiqQzL+YNbzuvuMncjnbNy7BFbd10fGK8mlJ85h7AV3SfKNBWM69wZYsqraP8lvjkzbzu5/ajdLoUkEgJVVVVfNcHJygZGpn0xy2+7+7vRZze2Nmf0GiIMzfpF4IVV14SS3HZn2ymWuCbCLbjMy/r0Mb2Rb1Nh2odeqqsO3EHdTG/+/u9rItFcvc01gPXX3Bbu7duIryWNH0nnBHHGev8DHU78BpnPPkfEfZ3h5x1ao38Ba6O5jk3xwZNrYtY6tGot7epKPLhhT/QbYs6My+zmeTvK8Hcrl7Ny7BFbdPC+Pu8XEOdxqZPwH3b1ok4hzb4Dlu2+Sy8wYPybbq3NqN0uhSQSAlbTx1rS3Z/wt8f+e5Ge7+6Tps5pfd5+c5J9Gpv3Wkpe9f5IDZ4wfl+RflrwmwG45cmT8vd3diwbt7i9m/KGNZdfvB4+Mv6+7j17ymgArRf0GmEZVHZbxt4/9y1a3qFe/gTXzwpHx+0+07ljc9y26Q7f6DfA/VVVlaBKZ5R27VavcuwRWXXefmOQrI9NuN3Eatx8ZX3gnVufeAMtVVRdI8qiRaU/u7tO3uobazbJoEgFg5VTV5ZP8c5KLj0z9QpJbd/c3p85pi547Mv5zVXWNZSxUVefL+MnjC7bywDTA3qaqbpHkZiPT3rKNJcbq91FVdcltxP9/quoySe4xMu35y1gLYA2o3wDL99Qk+43MecU211C/gXXxsiSzmjGuUlW3XOaCVXWrJD8zMu01WwyvfgP8pFsmufzInOfsQB6zuHcJrLr3j4zfZeN5lKXbuH957ZFpY/ltxrk3wPI8Ocmsmnl0kmcuYR21m23TJALASqmqS2VoEJm1pVsybOt2q+7+2uRJbVF3vy2z3wRRGU48l+EPk1xixviPkjxtSWsB7JqqOijJ341MOy3JS7exzD8kOX7G+HmSPHEb8c/qSUnONWP8Gxv5ADBO/QZYoqr6/Yy/YfO7SV6+zaXUb2AtbOyG/eyRaU+vqll1am4bcZ4+Mu2H2XrdU78BftJ9RsZPytYb85bCvUtgDYztmHRAkscte9GqOkeSP5tj6hu2uIRzb4AlqKr7JjlyZNofdPePlrCc2s22aRIBYGVU1cWSvD3JFUamHpfklt395emz2rYnjYzfvKp+dzsLVNUNkzx0ZNrzu/vr21kH4Oyq6oiNrTh3ar3zZLiJ9lMjU1/W3bN+2Z6pu3+Y5Ckj0+5ZVb+41TWSpKruluTXRqY9eUkXIABWnvoNrLqqulZVnXuH1rpXxq9pJMkzuvs721lL/QbWzF9meCh2M1fO8h4QeGKSw0fm/EN3n7iV4Oo3wH+rqgsmGat3L96onbvNvUtglb0uyckjc+6x8ZDwMv1VkuuPzPlakndvJbhzb4Dtq6q7JPnbkWlv6O5XL2M9tZtl0CQCwErYuHj61iQ/PTL16xkaRI6ePquleGmSj4zMeVJV3XErwavqsCSvTrL/jGnfS/KYrcQHGHFkkqOr6pEbO3xMpqqulOSdSW41MvXHWU7Ne3KSY0fmvKCqrreV4FV1g4xvL3psxi8aAPCT1G9gld0zyRer6sFVdd4pFqiqA6vqyRm2nh+7//CNzNdIMg/1G1gL3f3VJH8+Mu23q+rR21mnqh6T5LdHpp2S5LHbWSfqN8CZfj2z39ybjNezneLeJbCyuvt7SZ4zx9RnVNVdl7FmVT0iye/MMfUp3X36NpZy7g2svKr6xY2Xhy4zZm00Qb8is89Rv5Hk3stcO2o326RJBIB9XlWdL8n/TXKNkaknJLl1d39h+qyWo7s7yYOS9IxpByR55aJvq6iqG2d408QlR6Y+1pt4gAldKMnjkxxTVU+pqhtXVS0reFWdr6oen+TTSeb5xfhx3f3F7a7b3ackecjItIOSvLWqfn6R2FV15yRvSXK+kam/190/WCQ2wLpTv4E1cMkMN3S+XFV/U1VXX1bgqjoiyXsz/lDxmR7c3d9extrqN7Bm/jTJ2LWLx1TVMxZ9KUdVnb+q/jbJPE0mT+jurywS/+zUb4D/Z+xhso9198d3JJMR7l0Ca+BJSb47MufMOveUre7aWlUXrarXJXnCHNO/muQZW1nnTM69gTXxZ0mOq6onVdWh2w1WVVfN8NLqv87s5+1PS3L37v7mdtc8K7Wb7arh9zcA2HdV1euTzHOi8/Qkn5g4nbP6Wne/cRmBqupPkvzRHFPfnORR3b3pG3yq6nJJHpbkfpnd4ZwMF2Jvtc03UgDsUVU9P8m99jD0lSSvSvK2JB/s7hMXjHtQkptkePvaLyaZ900R70zys8useVX14oxvzdkZ3r72+O7+3IxYP5PkUUl+ZY6lX9zdd587UYC9zMabi2c9mPaC7j5ywvXVb2DlbOzwsacGjs8neUOSdyT5QHd/a4GYl0hy6yS/lfmass/0f7r7wQvMnzcf9RtYCxtviHxPkgNHpn49w5vWX9HdJ82Id+Ekd8uwM8jF50jhPUmO6O4z5kp4hPoNrLONxu2x+5f/u7u39XDwsrl3CayyqnpghudL5vHNJE9L8px5mqir6spJHpjkPpn/HuZdu/vVc84dW9+5N7CyqupzSQ4/yx99IslrMlz//nR3/3iOGOdKcqsMdfrOmW8zhvt092Q7/6ndbJUmEQD2eVV1TJLL7XYee/Du7j5iGYGqar8k/5zk5nN+y+cy3Kj7Qoa3XJw3ySFJrp/kBknmeUv/8Umu2d1fXThhgDnMaBI5u+OS/EeSYzI83HBikh9leBvDQRtf509y2SRXT/JTma/OndWnk9y0u7+z4PfNtLHb1UeSXHnOb/l4kvcnOTrJyRk+26FJbpzhs83jc0mu290nL5YtwN5jL2gSUb+BlTOjSeSsOsmXM9SkYzKcf5+U4fw7GXYCvEiSgzNcYzhsC6m8Nsnduvu0LXzvTOo3sE6q6v5J/nbO6adl2O3p0/nv2n6hJJdIcrUML9sYeyj3TEcnuWF3f2OhhGdQv4F1VlVPzdB0vZkfJrnksnbhWxb3LoFVV1Uvy3wP0J7VF5O8L8ML8b6V4Vz1AkkunOTySW6a8d2Szu4p3f07C37Pppx7A6tsD00iZ/WjJP+W5JMZzitPSvKdDC/gOChDnb5yhpchnXOBZR/e3U/aYspzUbvZKk0iAOzz1qFJJEmq6oIZ3nJ/jWXFnOHbSW7R3Tu58wqwZhZoEpna+5LccdYbNbejqi6b4ebXZaeIfzbHZmh2OXYH1gKYzG43iWzkoH4DK2XOJpGpvTzJPeZ5Y9tWqd/AOqmqP07yuB1c8rgMb2///LIDq9/AOqqqcyb5aoaHhzez1769171LYJVV1bkzvOjiNruYxssyXEdZ6os2nHsDq2qkSWTZTk/ygO7+u51YTO1mK+bZBgcA2AtsvCHoNkn+deKljk9yWxdZgTXQSZ6a4eGGSRpEkmTjF+dbZXh70JT+M8kt/aIOsBzqN8BSnZ7kD7v7V6dsEEnUb2C9dPfjkzwsyRk7sNxnktx4igaRRP0G1tYvZnaDSJI8ZycS2Qr3LoFV1t0/SHLnJC/ZpRSeluTuU+zE6twbYNu+nuT2O9UgkqjdbI0mEQDYh3T3NzNsQfrCiZb4SJLrdPeHJ4oPsLf4ZIbmkN/u7h9NvVh3/2eS6yZ5y0RLvDnJ9bp76gsCAGtF/QZYijOvNTxxpxZUv4F10t1/nuT2SU6YcJnnZqh7kz4goH4Da+jeI+P/leRdO5DHlrl3Cayy7v5hd/96kvsn+c4OLXt8kl/t7t/q7tOnWsS5N8CWvSrJ1br7bTu9sNrNojSJAMA+ZuNCxL2S/HyGi8PL8L0kD0lyo+7+8pJiAox5SpK/zPAmyp3y4SS/luRa3f3OHVw33X1Sd98uyZEZLvAuw/FJ7tXdt59yNxSAdaZ+Ayvk41nedYR5fCzJXZNcfzfe+Kt+A+uku9+a5PAkT8+we9OyfCzJzbv7Pt19yhLjbkr9BtZFVV02w5uAZ3lud/dO5LMd7l0Cq667n5XkyhnOt3840TLfTfKkJId398snWuMnOPcGVtBXJoz9viQ36e67dfeUL+qYSe1mEbUP/D4JADNV1TFJLrfbeezBu7v7iCkXqKoDkvxKkgdn6BRe1JeSPDPJs7v7W8vMDWARGzfEbpfkRkmun+HBhlpC6DOSfDrJPyV5VXd/agkxt62qzpvkXkkelOSntxDi3zNciH7+Tj2kAbCTquoxSR49Y8oLuvvIncnmv6nfwCrYOPe+RZKbJblOhnp2wJLC/2eSNyR5UXd/dEkxt039BtZJVV0+yQMz1L2DtxDilCRvSvLM7n778jJbnPoNrLKqenSSx8yYckaSy3X3cTuT0XK4dwmsuqo6OMML6X41Q53bzku6T0vy/iQvSfKy7t6p3Ur+B+fewKqoqsOS3CHD8yc3SHKBbYQ7Icmrkzyruz++hPSWSu1mjCYRAFgRVXVIkttnuBDxMxkaZ86f5DxJfpThjTtfS/LZJJ9I8pbu/uTuZAswW1VdIMm1MzSLHLrxdfkkF05y3iTnS3LuDG/H/FGGBxi+meQbSY5J8rkk/5bkA9397Z3NfjFVdaUMFyiuleQqSS6d5KAM9fuUDPX7uAy/oH8syZu6+wu7ky3AzqiqI5IcMWPKJ7r7tTuTzZ6p38CqqKoDk1w1yf+X4bz7kI2vS2e4rnDuDLXtnElOzfDGzO9kuMZwXIZz708l+WB3H7vT+S9K/QbWRVWdI8O1lVsnuVqGNx9fMkPNO3eGmn5yhnp+dIZa/oEk79obHwxQvwH2Pe5dAquuqi6U4SUc18xwjnrZDOfcF8xwHeWA/Pe1lJMy1Lxjknwmw46v7+nu7+144iOcewOroqoqw3no9TI0UVxh4+tiGZ45Oe/G1JMz1LYvJ/mPDHX6XUk+vi/s7Jeo3eyZJhEAAAAAAAAAAAAAAIAVsJ3tzgAAAAAAAAAAAAAAANhLaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAAAAAAAAAGAFaBIBAAAAAAAAAAAAAABYAZpEAAAAAAAAAAAAAAAAVoAmEQAAAAAAAAAAAAAAgBWgSQQAAAAAAGCJquqRVdUzvvbf7RxhClV1xMixf8Ru57juRv5+HrPb+QEAAAAA26dJBAAAAAAAAAAAAAAAYAVoEgEAAAAAAAAAAAAAAFgBtjMHAAAAAIAVUlW/kuSg3c5jwwu7+9TdTgIAAAAAAGBdaBIBAAAAAIDV8qQkl9vtJDa8KokmEQAAAAAAgB1yjt1OAAAAAAAAAIB9W1UdU1W9ydfzdzs/AAAAAFgXmkQAAAAAAAAAAAAAAABWgCYRAAAAAAAAAAAAAACAFaBJBAAAAAAAAAAAAAAAYAVoEgEAAAAAAAAAAAAAAFgB++92AgAAAAAAwI46qrufv9tJALDzurt2OwcAAAAAYFp2EgEAAAAAAAAAAAAAAFgBmkQAAAAAAAAAAAAAAABWgCYRAAAAAAAAAAAAAACAFaBJBAAAAAAAAAAAAAAAYAVoEgEAAAAAAAAAAAAAAFgBmkQAAAAAAAAAAAAAAABWwP67nQAAAAAAAMCYqrpgkuskufJZvi6Z5KAk509yviQ/TvKDJCclOS7JfyX5eJIPJvnX7j5j5zNfXFXtn+RmSW6T5GoZPuuFMnzW05KcnOTLSb6Q4bO9pbv/fXeynU9VHZTkFhk+1+FJDkty4Qx/bwck+V6Sryb5YpJfXNbfVVXtl+SaSW6c5FpJrpDkshmOmfNuTPt+km8lOTrJfyR5X5J3dfdXl5HDlKrqsCR3THLtJFdNcokMn23/DJ/r+Ayf66NJ3pXkHd192q4kO6equnqSO2T4e/uZJBdLcoEkleEzfS3Dv+0PJ3lnkvd2d+9Otv9TVZ0zQ626cZKrZzjmDslwrJ83yelJTklyQobP8e/572PuxN3IGQAAAABYLbUXXTMFAAAAAAC2qaqOSXK5GVOO6u7n70w2W1dV50pyywyNBbfI8MD4dnZIPyHJa5P8bXd/bPsZbq6qHpnk8TOmHLCnB/Wr6uJJHpzk/hkaKBbxiSR/nuTlUzTDVNXfJ7nPJsNf6e7LbPJ9N8vwme6UoRlkHnv8+Syiqq6dId+7ZmgyWFQn+Zckz0ny0ikaK6rq8hkaODazx3+rG01Ev5zk9zP8u1jEiUmeneSvu/uEBb93VFUdkaFxYzO36O537eH7zpXkqCS/l+SKCy77lSRPTfKM7j55we9dmqq6RZIjk/xChkadRZ2W5K1JnpXk9VM1vlTVrLiP7e7HzBHjyCTPW1ZOczq0u4/Z4TUBAAAAYJ+0nZspAAAAAAAAS1NVB1TVz1XVCzPsgPDGDA/CXzvbv6dx0ST3TfLRqnpzVV1tm/GWpqr2q6rfzbCLxh9l8QaRJLlGkpckeX9V/fQy89uKqrpiVb05ybuT3CXzN4hsd93rV9Xbkvxrkgdkaw0iybBrxc2TvDDJ56vqLktKcVuq6gYZGoJenMUbRJLkIkn+MMNnuucyc9uqqrpDks8neUYWbxBJkksneVKSz1bV7ZeZ2zyq6nZV9eEk70hyz2ytQSQZdn/5uSSvS/LJjYYbAAAAAICFaRIBAAAAAAD2Fp/M0BhyjyQHTbjObTM0i/xhVe3qvZKqumiGh8v/Osl5lxDy+kk+WFW3W0KsLamquyX5VIaf806teVBVPTPJB5LcesnhD03yqqp6TVVdYMmx51ZVj0jyviRXWUK4CyV5QVU9bbf+DVTV/lX19CRvSHLIEkJeJskbq+rhS4g1qqouXlWvSvKmJNddcvirJXlnVT2zqs655NgAAAAAwIrTJAIAAAAAAOwttvoG/q04IMmfJnlJVe3ILhdnV1WHJvlgkpstOfT5k7y2qm655LijNnZEeXmSc+/gmj+d5MNJfjPDDiBT+YUkH66qrex2sWVVdY6qel6SJ2T59/b+d5KnLTnmqKo6d4aGsAcuO3SSP6uqhy457k8uUnWjJB/LsEvOlH4zyburaqs74gAAAAAAa0iTCAAAAAAAsM5+JcmLq2rK5oL/oaoukeRtSX5qoiXOmeSVVXWZieL/D1V19yR/lWkbNc6+5g0z7B5y5R1a8kpJ3rXDjSLPSHLkhPEfUFW/MWH8n1BV+yd5ZZLbTLjME6tqkp1squoXkrwzyaWmiL8H10/yDo0iAAAAAMC89t/tBAAAAAAAABZwXJJPJjk2yXfO8nVAkgskuVCSn0ly7SQXnTPm3ZJ8KsNODTvhwCSvz+wGkc9maH44fuPrtCQXT3LZDA/XX3yOdS6c5O+S3H47yc6jqq6W5DnZvEHktAw7L3wsyTFJvrcx9/xJDktyvSRXWXDNGyR5S5KD5vyWU5N8JMPxc2KSbyU5PcnBGX6eN85w7Iy5dJI3V9V1u/ukRXJeVFX9QYbdJDbzrQwNC1/OcJx8O8lFMnyemyS5xpxL/U1Vvam7v7yNdOf1lCR3mDH+tSTvSvLVDJ/p5CQXS3KJJLdIcvgca1SS51XVlbr75G1le9agQ4PIKzLUm3l8P8NuQZ/NcMydmGS/DMfcJZPcPMmhc8S5apLXVdUR3X3qonkDAAAAAOtFkwgAAAAAALA3+2yS12ZoBvjUIg/lV9VVktwnyT0y3jDyqKp6XXd/esuZzu9JSa6zhz8/aWPs5d19zGbfvLHryc2T/MUmcc7qdlV1u+5+8xZzncf+SV6Qofnl7L6UIc+XjP3dbezO8ftJemzBqjokw3Ex1iDSSd6UoTHhX7r7hyNxL5vk3kkekuR8M6b+VJIXZXazw3bdIMPxe3ad5GVJnpbkQ919+mYBNnaSeWSS+yU5x4y1zpPkz5LcfcvZzucuSR64hz8/LcmzMjQafaK7Nz0GqurwDA1ddx1Z65JJHp7h829bVV0jyYsz3iByWoadUp6e5MPd/eORuIdn+JncP3v+N3SmGyZ5cvb889tp78twTJ3dEzM0Ke3J+5M8bxtrnrCN7wUAAACAtVIzrrECAAAAAAD7mKo6JsnlZkw5qrufvzPZLKaqjsuwS8M3Mjxg/fLu/vwS4p4/w8PL98/mO10kyT93962XsN4jkzx+wW97epI/XrAJ5hwb6/zRyNR3dvctF8zn7Gv9ffbcsLCZTvLnSR7d3T/aztp7yGX/DA+cX3dk6oeS3Le7/20Laxyc5BkZmhpm2fK/p6q6fJKjF/y2jyX5je7+6IJr3TjJGzPstrOZ05NcobuPXTCns65zRIadTRbx9iQP7O4vLLjWLyV5aWY3Vnw7yWW6+/sL5nT2tc6fYbehWbU1GX7GD5rV5DVjjUOTPD/JzUam3rK7F/0Zn3WdWTeHH9vdj9lG7GOy+c/oBd195FZjAwAAAADzm/XGIAAAAAAAgJ30uSS/keRy3f34ZTSIJEl3f7e7H5jkl5LMeqv/rarqRstYcwFnJPnf3f2gRRpEkqS7z+juR2TYqWOWW1TVlbac4eJOS/Kr3f3wZTeIbHhoxhtE/irJTXH3+F0AABO4SURBVLfSIJIk3X18krtl/Gf7l1U1tpvJsrw5yc0XbRBJku5+X5LbJpm1k8p+Se67xdy26vlJbr9og0iSdPc/JvnlzN555oJJfmVrqf2Ev8zsBpHTkvxBkjtupUEkSbr76CQ/m2G3klmesdEgBgAAAACwRy4gAgAAAAAAe4XuvnV3/91EjQXp7tcm+fWRab85xdoz3K+7n7HNGI/I0GAzy922ucYi7t/dr5gicFUdkuRRI9Oe0N2/392zGoJG9eChSZ49Y9pFkjx4O+vM6W0ZGhBO3mqA7v5QkieNTNvJ4+R53X1Ud5+21QDd/bokLxyZtq3PVFXXS3K/kWn37+6/7O5ZDSujuvvUJPfI0BC0mSsn+V/bWQcAAAAAWG3773YCAAAAAADAjrpZVU15f+AD3f2ZCeNvS3e/sqpens13F7hLVT2gu0/ZgXRe2t3P3W6Q7v5xVf1+kjfMmHbbJH+y3bXm8Ibufs6E8R+V5Jwzxl/U3X+85DV/O8n1klxjs/Gq+vPtNqXM8M0k99xOM8VZPDFDI9QlNhm/clVdtruPXcJas3wuyYOWFOthSX41mx8XR1TVgRsNGFsx9u/mCcs85ru7q+oeST6e5DKbTPv9jO84AgAAAACsKU0iAAAAAACwXo7a+JrK7ybZa5tENvxBht0F9rTj+nmT3CTJWyfO4YQkD1hivDcn+Xo2f/j/utt8UH4eJyd54FTBq+qSSY6cMeWELK/x4P/p7h9W1e8leccmUy6W5I5J/nHZa294UHd/fRmBNj7Ly5L8zoxpN0nykmWsN8O9ltWI1d3fqKo3JfmFTaacK8l1krx/0dhVdZ0kt54x5bNJHrto3DHdfUJVPSrJZk1k16iqa3X3x5a9NgAAAACw79vTzQ8AAAAAAICV1d1fTvLBGVNuuQNpPLO7v7OsYN19epJXzphyriSHL2u9TTxv42c7laMy+wVoj1rmz/SsuvudST48Y8ovT7Fuki8medWSY750ZPzqS17v7N7V3bN+llsx1Wf6jZHxhyxph5c9eVGS42aMT3XMAQAAAAD7OE0iAAAAAADAOnrTjLFrTrz2qUmeMUHcWY0vSXLlCdY8q+dNHP+eM8a+leTvJ17/72aM3bqqprjv9tTuPmPJMT+W4RjczNTHyd9MEHPpx35VHZjkV2ZM+XR3z6oj29LdP07yghlTbjPV2gAAAADAvk2TCAAAAAAAsI6+NGPsqhOv/YHu/toEcT81Mn6ZCdY806e7++NTBa+qn8rsnVD+ceOh+im9a8bYRZJcZYI1X7PsgBs7X3x2xpQpj5MfZnaD1pZ097FJvj1jylY+082SnH/G+Mu3EHNR75oxdo2qusAO5AAAAAAA7GM0iQAAAAAAAOvo6zPGLrWxi8BU3jdR3P8YGT94onWT5F8mjJ0ktx8Zf/XE66e7/zPJrOaeZe9Ac2x3f3nJMc8061iZ8jj58ITNPJ+fMbaVz3S7kfHJj7kk709y+iZjleTqO5ADAAAAALCP2X+3EwAAAAAAAFhUVe2f5LIZHv6+WJLzJjkwyQEZHp4ec8WR8UskOXY7Oc7wgSmCdvePq+oHSc69yZQpdx346ISxk+R6u7z+mY5NcslNxpa9A80kx8mG78wYm/I42Zc+06xj7uSMN2VtW3efUlUnJLn4JlOumukbtAAAAACAfYwmEQAAAAAAWC9HdffzdzuJRVXVYRl2k7hBkmsnuUKmvc9xkUzXJDJV3CT5XjZvEjnnhOt+bMLYyexdOr7Z3d+ceP0znThj7DJLXmvq42QzUx4n+8RnqqqxXTo+2929SMxtODGbN4ks+5gDAAAAAFaAJhEAAAAAAGCvVFUXTHJkkvsmucoOL79Zo8UynDRh7JMz7K6yJwdOuO5kD/9vPLB/pRlTTq6q+061/tlcdMbYpZe81tTHyWamPE72lc90qSTnnzVhB4+5WQ0uyz7mAAAAAIAVoEkEAAAAAADYq1TVAUl+L8nDk1xwl9KYcjeFb00Ye9buBjXhut+dMPbFM/sh/0OT/N2E689rZlPBFuzWcTKlfeXYP2Rk/LobX7tt2cccAAAAALACNIkAAAAAAAB7jao6LMnLk1xzl1PZb8LYP5ow9m74fnefPmH8S00Ye5mWvfvMqh0nyb7zmdb1mAMAAAAAVoAmEQAAAAAAYK9QVddN8n+TXHS3c2EhU+4ikiQHTRx/WabcfYad5ZgDAAAAAPZZ59jtBAAAAAAAADZ2ENEgsm86Y+L4+8puCbXbCbA0jjkAAAAAYJ9lJxEAAAAAAGBXVdUBSV6W+RtEvp/kQ0k+luQ/kxyT5BtJTkxycpJTkpze3afNWPMmSd6z9azZQQfsdgKsHcccAAAAALDP0iQCAAAAAADstgcmudbInE7yT0meleSfu/vUba7pDfz7jh/tdgKsHcccAAAAALDP0iQCAAAAAADsmqo6MMkfjkw7Mcn/6u63LXHpCywxFtM6ZWT8Kd39OzuSCeti7Jj73e5+8o5kAgAAAACwIE0iAAAAAADAbrpDkovPGP9Okut39xeXvO6FlhyP6Zw4Mn7ojmTBOnHMAQAAAAD7rHPsdgIAAAAAAMBau/PI+IMnaBBJkgtPEJNpHDsyfoUdyYJ14pgDAAAAAPZZmkQAAAAAAIDddNMZY19L8qKJ1vWQ9z6iu7+f5JszplyhqvbbqXxYC19K0jPGD9upRAAAAAAAFqVJBAAAAAAA2BVVda4kh86Y8uruPmOi5W88UVym8fEZY+dJcqOdSoTV190nJ/nCjCmHV9UhO5UPAAAAAMAiNIkAAAAAAAC75ZAkNWP836dYtKrOk+TqU8RmMh8aGf/5HcmCdeKYAwAAAAD2SZpEAAAAAACA3XL+kfGvT7Tu7ZPsP1FspvH2kfE77UgWrJOxY+7OO5LFvuX0GWMH7FgWAAAAALDmNIkAAAAAAAC75cCR8VkPHG/Hb08Ul+m8N8k3Z4xfuao0irBMr09y2ozx21SVHYl+0qkzxs69Y1kAAAAAwJrTJAIAAAAAAOyWH4yMH7zsBavqGkluuuy4TKu7z0jyspFpj6uq2ol8WH3dfVKSN82YUkkev0Pp7Cu+N2NsbOcoAAAAAGBJNIkAAAAAAAC7ZdbOEEly3WUuVlX7JXn6MmOyo56WpGeMXz3JfXcoF9bD/xkZv2NV3WZHMtk3zKrpV9ixLAAAAABgzWkSAQAAAAAAdstXM3s3kZ+vqgOWuN7Dk9xoifHYQd39+SSvGZn2tKryd8xSdPfbknx0ZNrLquqwnchnH/DlGWOXrarz7lgmAAAAALDGNIkAAAAAAAC7ors7sx/AvlSSByxjraq6dZJHLyMWu+phSX48Y/zAJK+pqsN3KJ9U1c2r6sI7tR477iEj4xdK8vqqusROJJMkVXWnqtob7/N+bsbYfklut1OJAAAAAMA62xsvHgIAAAAAAOvjrSPjT6iqa21ngaq6Q5LXJVnmriTsgu7+zyR/NjLt4CQfqapfniqPqjrHxoP670ryriSaRFZUd787yQtHph2e5ONVdcRUeVTVgVX161X18Qz1bG+8z/uhkfGHVtV+O5IJAAAAAKyxvfHiIQAAAAAAsD5ekqRnjB+U5M1VdatFA1fVuarqz5L8U5LznG349EXjsdd4XJIPjMw5KMnLq+p5VXXFZS1cVVesqsck+WKGB/VvvqzY7NUelOHvfJZLJHl7Vf1VVV1qWQtX1dWr6i+SHJvkRUmusazYE/jXJN+eMX69JK+rqp/aoXwAAAAAYC3tv9sJAAAAAAAA66u7v1hVr0vyCzOmXSzJ26rqeUn+prv/bVbMqrpokrsneUiSy2wy7YlJHrGFlNll3X16Vd01yfuTXG5k+pFJ7llVr0ny/CTv7e5ZD7H/hKq6UJIbJDkiyc8lueoWUmYf193fq6o7J3lvkgvOmLpfkt9L8qCqenGGJrgPdPf3512rqi6e5IZJbpnhmNtnGiq6+8cb/9aOmjHtDknuUFUfTfKJJP+V5OQkp4yEf1l3n7ycTAEAAABgtWkSAQAAAAAAdtvDMjwMfeCMOZXk3knuXVX/kaFB4OgkJyU5Lcn5kxya5FpJrp3hYe3NPCPJm6NJZJ/V3V+tqtsleXeSg0emnyPJXTa+zqiqTyf5eJITk3wrwzGUJOdKcqEMO0JcLsmVkxyS4dhjzXX3Z6rqjhlqx3lHph+YoVHiqCSnbTRE/FuG4+3MY26/DMfcRTIcc4dmOOYuOckH2DlPztCcNfbv5tobX/N6e4ZmEgAAAABghCYRAAAAAABgV3X356vqoRkeLp7H4RtfW/HWJL+T5Ppb/H72Et39uaq6UZK3ZP7dFs6R5OobX7CQ7n5vVd0iyRsz7HA0j/0z1Ju1qDnd/amq+vsk99vtXAAAAABgXZ1jtxMAAAAAAADo7qckeebEy7wnyV26+8cTr8MO6e4vJrlBhof2YXLd/ZEMDR8f3O1c9mK/Ez8fAAAAANg1mkQAAAAAAIC9xQOTPCrJGRPEfkGSW3f3yRPEZhd19wnd/fNJfjPJCTu8/BkZdqf51g6vyy7q7qOT3DTJI5N8f4eXPzXJPyY5fYfXnVt3n5LkVkleuNu5AAAAAMA60iQCAAAAAADsFXrw+CS3T/K1JYU9LskvdfeR3X3qkmKyF+ruZyc5LMmfZfqmjc8meXiSy3b3bbtbk8ia6e7TuvtPMhxzf5vpm0U+kuRBSS7Z3Xfp7p54vW3p7lO6+15JbpjkVUl+uMspAQAAAMDa2H+3EwAAAAAAADir7n5rVV0hyb2T/EGSy28hzCeTPD3Ji7r7B3sY/16Sj874/u9uYU12Wff/397do2YRhWEYfk4UBf9ABRvFYCsINv6AhegaTGHhBlxCWlclBrF0BRpURLEQq4Ro7bEYwQV8ki8+XhdM+3KKt5u5z8z9JNtjjGdJHifZSvIwyYkVR+8leZVkJ8nOnPPdivMoMef8muTpGGM7yZMkj5LcS3JsxdHfkrzMsnMv5pxfVpy3FnPO10m2xhink9xPcjfJ9STXklxKcj7JyXhvDQAAAAB/zTjil8wAAAAAAAD/sTHGRpKbSR5k+cD4apKLv5/jWW7vP0jyKclulvDj+Zzz8zrOy9Ezxjib5E6SW0luJNlMciXJuSSnsnzM/yNLOPQ9yX6Sj1n2aTfLX0Pezjl/Hvrh+SeNMS5kiSFuZwkiNpNcTnImy86NLDt3kGXn9pJ8yJ+dezPnfH/4JwcAAAAAGohEAAAAAAAAAAAAAAAACmys+wAAAAAAAAAAAAAAAACsTiQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQQCQCAAAAAAAAAAAAAABQ4Bc8LSBm2mVcwgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from matplotlib import pyplot as plt\n", "\n", "t_range = torch.arange(20., 90.).unsqueeze(1)\n", "\n", "fig = plt.figure(dpi=600)\n", "plt.xlabel(\"Fahrenheit\")\n", "plt.ylabel(\"Celsius\")\n", "plt.plot(t_u.numpy(), t_c.numpy(), 'o')\n", "plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')\n", "plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Training loss 203.22389221191406, Validation loss 104.12740325927734\n", "Epoch 1000, Training loss 49.626617431640625, Validation loss 56.38867950439453\n", "Epoch 2000, Training loss 35.23250198364258, Validation loss 37.46330642700195\n", "Epoch 3000, Training loss 23.670225143432617, Validation loss 19.621896743774414\n", "Epoch 4000, Training loss 15.505778312683105, Validation loss 8.775274276733398\n", "Epoch 5000, Training loss 10.130289077758789, Validation loss 3.130990743637085\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAIlCAYAAAAkITwVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl41Ge9///XnckGJAESshCSgYQAbWLXsLUubVqrpz2Hn6YiWpdW0erRVqE9rdZvVYpLa48tNqhH61KLVnuKHHOUrqfVdJEWCKldDC0EJjAJgZAFskCWmcn9+yMTmoTsmclkeT6uK9cwn899z+edSxt45d6MtVYAAAAAEAphoS4AAAAAwNRFIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMgQSAAAAACFDIAEAAAAQMuGhLmCyM8YckzRdUkWoawEAAAACJF3SaWttymg/yFhrA1AP+mOMaYyKiopduHBhqEsBAAAAAuLgwYNqa2trstbGjfazGCEJvoqFCxdml5aWhroOAAAAICBycnK0d+/egMwAYg0JAAAAgJAhkAAAAAAIGQIJAAAAgJAhkAAAAAAIGQIJAAAAgJAhkAAAAAAIGQIJAAAAgJAhkAAAAAAIGQIJAAAAgJAhkAAAAAAIGQIJAAAAgJAhkAAAAAAImfBQFwAAAAAMRU1Tmx4rdmtXeb2a27yKiQrXyswErVmarsTYqFCXhxEikAAAAGBca/X4tHF7qbaVVMrjsz3uvVRWqwee26/VuenasCpb0RGOEFWJkSKQAAAAYNxq9fh0w0O7tau8vt82Hp/Vo7vdctU0a8va5YSSCYY1JAAAABi3Nm4vHTCMdLervF4bt+8NckUINAIJAAAAxqXjTa3aVlI5rD7bSipU09QWpIoQDAQSAAAAjEtbiyvOWjMyGI/PauueiiBVhGAgkAAAAGBcGupUrd52uuoCXAmCiUACAACAcam5zTum/RAaBBIAAACMSzFRI9sQdqT9EBoEEgAAAIxLKzLiR9RvZWZCgCtBMBFIAAAAMC6tWZauCIcZVp8Ih9GapelBqgjBQCABAADAuJQUG63VuWnD6rM6N12JsVFBqgjBQCABAADAuLVhVc6Qp26tyIjXhlXZQa4IgUYgAQAAwLgVHeHQlrXLdd1yZ7/TtyIcRtctd2rL2uWKjnCMcYUYLbYgAAAAwLgWHeHQPdeep1uvWqyteyq001Wn5javYqLCtTIzQWuWMk1rIiOQAAAAYEJIjI3STXlZuikvK9SlIICYsgUAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEJmUgQSY8x0Y8yHjTG/Nsa8YYxpNMacMsa8boz5tjEmpo8+dxlj7ABfPwjF9wIAAABMJeGhLiBAPiHpl/4/l0p6WlKcpEslbZR0nTHmMmvt8T767pB0oI/rJcEoFAAAAMA7JksgaZf0M0k/staWdV00xsyV9ISkiyQ9oM7g0tuvrLUPj0WRAAAAAHqaFFO2rLW/tdZ+uXsY8V8/Kukm/9trjTGRY18dAAAAgP5MikAyiNf9r1GSEkJZCAAAAICeJsuUrYFk+l89kur7uH+FMeZCSdGSKiU9Za1l/QgAAAAwBqZCIFnnf33aWtvWx/1P93r/XWPM/0j6jLW2eagPMcaU9nNr4VA/AwAAAJhqJvWULWPMNZI+p87RkW/1un1A0m2SciTFSEqX9ElJRyR9RNLvxq5SAAAAYGqatCMkxphzJT0iyUi63Vr7evf71tpHenU5JekPxpgiSW9K+rAx5lJr7ctDeZ61NqefOkolZQ+3fgAAAGAqmJQjJMaYNHWeRTJb0iZrbcFQ+/p35vqN/+0Hg1AeAAAAAL9JF0iMMXMkPSvJqc5gcdsIPqZr++C5gaoLAAAAwNkmVSAxxsRKekrSOZL+JOlGa60dwUfN9r8OeVE7AAAAgOGbNIHEGBMl6c+Slkp6RtJ11lrfCD7HSMr3v2X7XwAAACCIJkUgMcY4JD0qKU/SS5Kutda2D9B+jjHmen+I6X49RtLPJK2QdExSYfCqBgAAADBZdtm6We+MatRK+q/OgY6z3GatrVXnNr9bJP3YGPOWJLekWZIuVudp7iclrbbWng524QAAAMBUNlkCyexuf87vt5V0lzoDS52keyWtlJQl6UJJPknlkh6W9CNr7ZFgFAoAAADgHZMikFhr71Jn2Bhq+yZJdwSrHgAAAABDMynWkAAAAACYmAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZAgkAAAAAEKGQAIAAAAgZMJDXQAAAACAoWv0evWP5mbtaWpSe0eHvjF/fqhLGhUCCQAAADBONXULHyX+r30tLWfux4eH6w6nU8aYEFY5OgQSAAAAYBxo8fn0WnOzdjc1qbixUSXNzdp3+rTsAH3qvV4dbm3VgmnTxqzOQCOQAAAAAGPMZ63ePn1auxsbtbupSbsbG/XGqVPy2oHixztmOhzKjY1Vbmyswifw6IhEIAEAAACC7lhbm3Y2NmpnY6N2NTVpT1OTmn2+IfWNczh0cWyslsbGKjcmRktjY5U5bZrCJngQ6UIgAQAAAAKovaNDrzU3a2djo17xh5BDra1D6jstLEy5sbFa5g8gS2NjlTWJwkdfCCQAAADAKBxvb9eOhgbtaGjQK42NKmlqUtsQpl6FSXrXjBlaHhen5bGxWh4Xp5zp0xUeNrVO5iCQAAAAAENk/Ws/djQ0aEdjo/7e0KAD3Xa9Gsi8yEhdMnOmVsTGakVcnC6OjdUMhyPIFY9/BBIAAACgH+0dHSppatKL/hGQHQ0Nqvd6B+0XaYxyY2O1Mi5Ol/i/0qKjx6DiiYdAAgAAAPid9vm0q7FRLzY06MWTJ/VKY6NaOjoG7Tc3MlLvnjlT746L0yUzZ+rCmBhFTbGpVyNFIAEAABNWTVObHit2a1d5vZrbvIqJCtfKzAStWZquxNioUJeHACgoKFB+fr6cTueA7dxutwoLC7Vu3bphfX6j16sdDQ1nAkhxU5M8g6z/MOpc+9EVQN49c6YWREdP6MMJQ4lAAgAAJpxWj08bt5dqW0mlPL6e/3h8qaxWDzy3X6tz07VhVbaiI5ijP1EVFBRo/fr12rx5s4qKivoNJW63W3l5eXK5XJI0YChp9nq1o7FRRSdOqOjkSZU0NWmwzXejjNHKuDi9Z+ZMvXvmTF0SF6dZEREj/bbQC4EEAABMKK0en254aLd2ldf328bjs3p0t1uummZtWbucUDJB5efna/PmzXK5XMrLy+szlHQPI5mZmcrPz+9x/7TPp5cbGvT8yZMqOnlSu5uaBj18MMbh0Lvj4vS+WbP0vpkztSwujulXQUQgAQAAE8rG7aUDhpHudpXXa+P2vbrn2vOCXBWCwel0qqio6Ezg6B1KeoeRoqIipaal6ZWGBv31xAk9d+KEXmlsVPsgAWR2eLjeN3PmmQByYUzMlNt6N5QIJAAAYMI43tSqbSWVw+qzraRCt161mDUlE1R/oUTSmWvpGRm6/g9/0FcaGvT84cNqHOQE9JkOh943a5by/F/nx8RM6oMHxzsCCQAAmDC2FlectWZkMB6f1dY9FbopLytIVSHYeoeSrKwsdUjyeTxypKaq4p57dFdLi9TPeSCxDofeO3NmZwCZPVsXxsTIQQAZNwgkAABgwhjqVK3edrrqCCQTWFtHhw7ExuoDDz+sB6+4Qh6Pp/NGeLh8mzZJyck92kcao0tnztT7Z8/WlbNmaWlsLFOwxjECCQAAmDCa2wY/kC6Q/RAa1lrtb2nRM/X1+r/6ehWdPKnTHR1SdXW/fS6KidH7Z8/W+2fP1ntmztR0TkCfMAgkAABgwoiJGtk/XUbaD2PntM+nopMn9WRdnZ6sr9eh1taeDaqrpVtvlbxeKdz/v6fXq+Svf11PPfecLspiBGyi4r9OAAAwYazIiNdLZbXD7rcyMyEI1WC0Dpw+rafq6/Vkfb2KTpxQW3+7YVVXy9x6q2xVlRKcTm195hktnDZNV1xxhVwul1Z/8IMDnlOC8Y1AAgAAJow1y9JV8NeyYS1sj3AYrVmaHsSqMFRtHR168eRJPVlfryfr6rS/n0XoXc6fMUOXtLbqL3fcoaNVVWe29u0KHgNtCYyJg0ACAAAmjKTYaK3OTdOjuyuG3Gd1bjpb/oZQbXu7nqiv1/baWj1z4oSaB9iSN87h0Afi43VNfLz+JT5enupq5eXl6eihQ2eFEWnwc0owMUyKQGKMmS7pA5JWSVomaYEkh6QDkv5H0iZrbXM/fa+XdLOkbEntknZK+p619uXgVw4AAIZrw6ocuWpODWnHrRUZ8dqwKnsMqkIXa63ePn1a2+vq9JfaWr3S2KiOAdq/a8YMXRMfr2sSEnRpXJwiuu2GVVBY2OPQw76CRu9QUlhYqHXr1gXhO0OwGDvIyZUTgTHm85J+6X9bKmmvpDhJl0qKlfS2pMustcd79dsk6RZJLZL+T1K0pCslGUkftdYWBqC20uzs7OzS0tLRfhQAAPBr9fi0cftebSvp+1ySCIfR6tx0bViVregIdlsKNm9Hh3Y0NurPtbX6S22tDvZekN7NtLAwvX/2bP1rQoKujo+XMzp6wM8uKChQfn7+oKMebrebMDKGcnJytHfv3r3W2pzRftZkCSTXS1op6UfW2rJu1+dKekLSRZIetdZ+otu9KyT9VVKdpEu6+hljLpH0vDpDSoa19sQoayOQAAAQJDVNbdq6p0I7XXVqbvMqJipcKzMTtGYp07SCrcXn03MnTqiwtlbb6+pU23U2SB9SIyO1KiFBq+bM0RWzZmkaW/JOeASSYfAHjJcltUmKs9a2+68/IekaSbdYax/o1adA0lcl3WatvX+UzyeQAACASeGkx6Mn6utVWFOjp+vrdaqj/8lYF8fEnAkhF8fEyHAy+qQSyEAyKdaQDOJ1/2uUpARJR40xXVOzJGlbH322qTOQrJI0qkACAAAwkVW3t6uwpkZ/qq1V0cmT8vbzy+wIY3Tl7Nn6UEKC/i0hQWmDTMUCukyFQJLpf/VI6lr9do46A0qNtbayjz6v+l/PD3JtAAAA405VW5v+VFOjbTU1erGhQf3Np4lxOHRNfLzy58zR1QkJmhk+Ff5piUCbCv+v6VrZ9LS1ts3/565VUX2FEVlrTxljTkqabYyJtdY2BbtIAACAUKpobdX/+EPIjsbGftslRkToQ3Pm6MNz5ujKWbMUzXoQjNKkDiTGmGskfU6doyPf6nYrxv96eoDupyTN8rcdNJAYY/pbJLJw8EoBAADGXkVrq7bW1OiPx49rV1P//9xJj4rSRxITde2cObp05kw5WA+CAJq0gcQYc66kR9S5he/t1trXu9/2vw60op//0gAAwKRzrK1Nf6yp0WPHjw84ErIgOlofTUzU6sRELYuNZVE6gmZSBhJjTJqkpyXNVuehiAW9mnT9CmDGAB8z3f/a54GKvfW3w4B/5IQTmQAAQMjUtrfrT7W1+u/jx/XCyZP9HlSYNW2aVvtDCDtjYaxMukBijJkj6Vl1rhP5jaTb+mjm9r+m9fMZM9Q5Xesk60cAAMBE1Oj1qtAfQp6tr5evn3ZZ06bpY4mJ+mhSks6fMYMQgjE3qQKJMSZW0lPq3EXrT5JutH0ftLJPneeSJBpj0vrYaeti/+sbQSsWAAAgwNo7OvRUfb1+X12t7XV1au3nnBBnVJQ+lpSkjyUlMRKCkJs0gcQYEyXpz5KWSnpG0nXW2j5/GWCtbTHG/E3S1ZJWS3qgV5PV/tfHg1QuAABAQHRYqx0NDfp9dbX+WFOjeq+3z3YpkZFak5iojyUlaWVcnMIIIRgnJkUgMcY4JD0qKU/SS5Ku7TqRfQCb1BlIvmmMecJaW+b/rEskfVFSo6RfB69qAACAkSs9dUqPVFfrD9XVcre19dkmPjxcqxMTdV1Skt47axa7Y2FcmhSBRNLNkvL9f66V9F/9DD3eZq2tlSRr7XPGmAJ1nlPymjHmWUmRkq6SFCbpk9ba+r4+BAAAIBRq2tv1h+PHteXYMf2jue99d6LDwvT/JSTok8nJ+pf4eEWGhY1xlcDwTJZAMrvbn/P7bSXdpc7AIkmy1q43xrymzkBzlTrPK/mrpO9Za/8ehDoBAACGpa2jQ0/U1WnLsWN6sr5e3j6Wx4ZJunL2bH0yOVn5c+YojhPTMYFMiv+3WmvvUmfYGEnfhyU9HLhqAAAARsdaq+KmJm05dkz/ffx4v+tCcmNi9KnkZH0sKUlzo6LGuEogMCZFIAEAAJgMjrW16bfV1Xr42DG9dfp0n21SIyP16eRkXZ+SouwZAx2pBkwMBBIAAIAQ8nR06Mn6ej109KieqKvr87yQaWFhyp8zRzekpOjK2bNZnI5JhUACAAAQAm+fOqWHjh3Tb48dU7XH02eb982cqRtSUrQ6MZF1IZi0+H82AADAGGn2erW1pka/PnpULzc29tkmPSpKn01J0Q0pKcqcNm2MKwTGHoEEAAAgyF5tatIvqqr0++PH1ew7e1JWpDH68Jw5+tzcuUzJwpRDIAEAAAiCJq9Xjx4/rl9UVamknzNDzp8xQ5+bO1efTE5WQkTEGFcIjA8EEgAAgAAq8Y+G/KGf0ZCZDoc+mZystXPn6uKYGPVzmDMwZRBIAAAARqnZ69Ufjh/Xg1VVerWf0ZBL4+L0hdRUfTQxUdMdjjGuEBi/CCQAAAAj9NapU/pZVZW2HDumxn5GQ65PSdGNc+fqvJiYEFQIjH8EEgAAgGHwdHTof2tr9bOqKhWdPNlnm3f7R0NWMxoCDIpAAgAAMASVra365dGj+uXRozra3n7W/Tj/aMgX587VuxgNAYaMQAIAANAPa61eOHlSPz5yRH+ure3zFPULZszQl+fN0yeSkhTD4YXAsPFfDQAAQC+nfT79obpam48c0ZunTp11P9IYfTQxUV+eN0+XxMWxUxYwCgQSAAAAP3drq/7ryBH98uhR1Xu9Z92fHxWlL82bp7UpKUqMjAxBhcDkQyABAABTmrVWLzY0aHNlpf63tlYdfbS5avZsfWXePF2TkMAp6kCAEUgAAMCU1NbRoUerq/VAZaVe72Na1oywMN2QkqKb583TuTNmhKBCYGoIC3UBAAAAw1FQUCC32z1oO7fbrYKCgrOu17S36zuHDmn+K6/os/v2nRVGMqOjtWnhQlVecol+ungxYQQIMkZIAADAhFFQUKD169dr8+bNKioqktPp7LOd2+1WXl6eXC6XJGndunXae+qUflRZqd8dO6Y2a8/qc9Xs2frqvHm6mmlZwJhihAQAAEwY+fn5yszMlMvlUl5eXp8jJd3DSGZmphLy8vQvr7+unOJi/ero0R5hJDosTF+YO1ely5bp/y64QP82Zw5hBBhjjJAAAIAJw+l0qqio6EzgyMvL6zFS0j2MJM6fr/AHHtCn6+vP+pyUyEjdlJqqf09N1Rx2ywJCikACAAAmlP5CiSRdlpenQy6XHKmpqrn3XtXExvboe8GMGbolPV0fT0pSVBgTRYDxgEACAAAmnN6hJCsrSz5JHR6PlJoq36ZNUnLymfb/lpCgW9LSlDdrFocYAuMMgQQAAExITqdTP3v8cV19/vnyeDydF8PDJX8YiTJG16ek6Na0NJ3DTlnAuEUgAQAAE4q1Vi+cPKl7Kyr09FtvnXV/Zni4bnY69ZW0NCWzPgQY9wgkAABgQuiwVo/X1eket1s7Gxul6mrp1lslr7dzZESSvF7Ff+1r+kJREWEEmCBYzQUAAMY1b0eHHjl2TOcXF+tD//xnzzBSVaXIefO0eedOHSwrU2ZmpsoH2BIYwPjDCAkAABiXWnw+/ebYMf2wokKHWlvfudEtjMxdsECvPP+85s+fL0kDbgkMYHxihAQAAIwrjV6v7nW7lbFzp24qKzsrjMy47TapqkqZmZna+cILZ8KI9M7uW4Mdnghg/CCQAACAcaHe49GG8nLN37lTd7hcqu7aOUtSuDG6ITlZ3zh8WKcqK5WZmdnv6EfvUFJYWDiW3waAYWLKFgAACKnj7e3aVFGhn1ZVqdnn63EvOixMn587V7elp2t+dLR07rlKjopSfn7+gFOxukJJYWGh1q1bF+xvAcAoGGttqGuY1IwxpdnZ2dmlpaWhLgUAgHGlqq1N91VU6OdVVWrp6OhxL87h0M3z5mldWpqS2C0LGHdycnK0d+/evdbanNF+FiMkAABgTLlbW3Wv261fHz2qtl6/GI0PD9f6tDR9Zd48zYqICFGFAMYSgQQAAIyJ8pYW3e126+Fjx+TtFUQSIyJ0W3q6vpSaqthw/nkCTCX8Fw8AAILqUEuLvt9PEJkbGamvpafrC6mpmu5whKhCAKFEIAEAAEFxyD8i8ps+gkh6VJTucDq1NiVF0QQRYEojkAAAgIA63Nqquw8f1kN9BJH5UVG6c/583ZCSosgwTh8AQCABAAAB4u4WRDwEEQBDRCABAACjUtXWprsPH9Yvjh49K4g4/UHkMwQRAP0gkAAAgBGpaW/XvW63flpVpdZe54gQRAAMFYEEAAAMywmPR/dXVOiBykqd6hVE0v1B5LMEEQBDRCABAABD0uT1qqCyUvdVVKjB5+txLyUyUnc6nboxNVVRBBEAw0AgAQAAAzrt8+m/jhzRD9xu1Xm9Pe4lhIfrDqdTX543j3NEAIwIgQQAAPTJ09Ghh44d08ZDh3S0vb3HvZkOh25LT9e6tDROVgcwKvwEAQAAPXRYq63Hj+tbhw7pQEtLj3szwsK0Pi1N/5GertkRESGqEMBkQiABAACSJGutnq6v1/8rL9drzc097kUZo5vmzdMdTqcSIyNDVCGAyYhAAgAAtKOhQd9wufRSQ0OP6w5Ja+fO1bfnz1dadHRoigMwqRFIAACYwt5sbtb/Ky/X43V1Z937aGKivpuRoSXTp4egMgBTxaQJJMaYXElXSVouaYWkVElt1to+f51jjLlL0oYBPvJea+0dga4TAIDxwN3aqm+Xl+u31dWyve59cPZsfT8zU7mxsSGpDcDUMmkCiaRvSfrQCPrtkHSgj+sloysHADCV1DS16bFit3aV16u5zauYqHCtzEzQmqXpSoyNCnV5Z5zweHSP263NlZVqsz2jyMq4ON2TkaHLZ88OUXUApqLJFEhekfS6pGL/17Eh9vuVtfbhYBUFAJjcWj0+bdxeqm0llfL4ev4D/6WyWj3w3H6tzk3XhlXZio4I3TkdrT6ffnLkiO52u3Wi11ki506frrszMvShOXNkjAlRhQCmqkkTSKy193Z/zw9UAECwtXp8uuGh3dpVXt9vG4/P6tHdbrlqmrVl7fIxDyU+a/X76mp9q7xc7ra2HvdSIyO1ccECfSYlReGcrg4gRCZNIAEAYKxt3F46YBjpbld5vTZu36t7rj0vyFV1stbqmfp6fd3l0hunTvW4F+dw6A6nU+vS0jhdHUDIEUikK4wxF0qKllQp6SlrLetHAAADOt7Uqm0llcPqs62kQrdetTjoa0peb27W7QcP6tkTJ3pcj/CfJXKn06k5nCUCYJwgkEif7vX+u8aY/5H0GWttc18dAADYWlxx1pqRwXh8Vlv3VOimvKyg1HSkrU3fKi/Xw8eOnbVz1ieSkvS9jAxlTJsWlGcDwEhN5QmjByTdJilHUoykdEmflHRE0kck/W44H2aMKe3rS9LCANcNABgHhjpVq7edrrPP++iuoKBAbrd70M9xu90qKCiQJDV5vfp2ebkW7dql3/QKI1fMmqWS3Fz9PjubMAJgXJqyIyTW2kd6XTol6Q/GmCJJb0r6sDHmUmvty2NfHQBgvGtu8w7eaJj9CgoKtH79em3evFlFRUVyOp19tnO73crLy5PL5dLLDQ164corVe3x9GiTPX26frhwoa6Oj2ejFwDj2lQeIemTtfaopN/4335wGP1y+vqSdDAohQIAQiomamS/0xuoX35+vjIzM+VyuZSXl9fnSEn3MBIxb562LlnSI4wkRUTowcWL9frSpbomIYEwAmDcI5D0rcz/OjekVQAAxq0VGfEj6rcyM6Hfe06nU0VFRf2GErfbrXdffrlcLpeUmirP/fdLycmSpGlhYfrm/Pk6sGKFvpCayja+ACYMflr1reuIWha1AwD6tGZZuiIcwxt9iHAYrVmaPmCb/kLJPw4c0HnveY8qy8ul1FRp0yYpOVlG0mdSUrR/+XJ9NyNDseFTdjY2gAmKn1q9mM6x7Xz/W7b/BQD0KSk2Wqtz0/To7ooh91mdmz6kLX+7QknX1KzMrCz5rJW83h5h5IpZs3T/woW6MDZ2NN8KAITUlBwhMcbMMcZcb4yJ6nU9RtLPJK2QdExSYSjqAwBMDBtW5Qx56taKjHhtWJU95M9OT0/X7du2SeHh8nk8nWEkPFzatEmLFizQn9/1Lj13wQWEEQATXkBHSIwxyZKWSNpnra3udj1D0t2SzpN0WNJGa+3uAD/7XyV9q9flSGPMzm7vv2utfUKd2/xukfRjY8xbktySZkm6WFKCpJOSVltrTweyRgDA+FDT1KbHit3aVV6v5javYqLCtTIzQWuWDm0Eo0t0hENb1i7Xxu17ta2k73NJIhxGq3PTtWFVtqIjhnYq+qtNTbrlwAG9uH//Wfe+PX++7ly2TJGsEQEwSRhrh3eo04AfZsyPJH1VUra1dp//WoykfZJSJHVNtj0l6QJrrSuAz/7oCn1+AAAgAElEQVSM3tkdqz+ftdY+bIyJlXSnpJWSsiTNkeSTVC7paUk/stYeCVBdpdnZ2dmlpaWB+DgAwCi0enzauL1U20oqAxYeutQ0tWnrngrtdNWNOOQca2vTneXlnWeJVFdLt94qVVVJ4eEKM0YdHo8yMzMH3BIYAMZCTk6O9u7du9e/q+yoBDqQ/ENShLX2Xd2u3Sxps6Q/SNoo6RpJP5L0c2vtlwP28HGKQAIA40Orx6cbHto9pAMNV2TEa8va5cMOJSPV3tGhzZWV+s7hw2ry+aRuYWR6Wpr+8uyzWjR9+jtrSgglAEIskIEk0OO98yT1HvX4N0leSeustWXW2gJJr0nKC/CzAQDo18btpUM+XX1Xeb02bt8b5Ioka60er63Vu4qLdbvLdVYYmbtggd7asUNXnnPOoFsCA8BEFehAEiupqeuNf8eqFZJKrLV13drtk5QW4GcDANCn402t2lZSOaw+20oqVNPUFqSKpLdOndLVb7yhVf/8p8paWjovVlcrzB9GMjMztfOFF3qMghBKAExGgQ4kRyRldHu/VNJMSc/3ahcuqT3AzwYAoE9bi/tecD4Qj89q656Bt/QtKCgYUiBwu90qKCiQJJ3weLS+rEznFRfrmRMnzrQJk/SeN95Qhz+M9Dclq3coKSxkQ0gAE1ugzyF5RdJ1xpgPSSqS9E1JVtL2Xu3OVWd4AQAg6IY6Vau3na463ZSX1ee9goICrV+/Xps3bx5wPYfb7T6z9uPlhgb97corVevx9GhzxaxZeiArS+ddfrkKkpKUn58/4PqQrlBSWFiodevWjeh7A4DxItAjJN+X1CbpT5JOSFol6Xlr7ctdDYwxCyRlS9oV4GcDANCn5jZvwPvl5+cPOnWqexiJnDdPW5cs6RFGMqKjVZiTo+cuuEDnxcRIktatWzekxepOp5MwAmBSCGggsda+Lek9kn6nzu1zvyfpw72afVDS65L+N5DPBgCgPzFRI5sQMFC/wdZzuN1uve/yy+VyuaTUVLXff7+UnCxJmhEWprszMrR32TJ9ODFRnUsuAWBqCvSULVlr/yHpMwPcf1DSg4F+LgAA/VmREa+XymqH3W9lZsKA97tCSdcoSF5enoqKitTe0aEVl12merdbSk2VNm06E0Y+mZSkexcu1LyooR/ACACTGce8AgAmvTXL0hXhGN4oRITDaM3S9EHb9R4pWZiVpUWLFp0VRi6MidFLF16oR7KzCSMA0E1AR0iMMcM6oclay16FAICgS4qN1urcND26e+Bds7pbnTv0E9adTqe2PPWU3peTI2/XGpHwcGnTJsXPm6fvZWToC6mpcjA1CwDOEugpW4fUuavWUNggPB8AgD5tWJUjV82pIZ/UvmFV9pA+t8Xn071ut+557bWz/gL8VHKyHlixQgkRESOoGACmhkAHghfVdyAJk5Quyen/8yviHBIAwBiKjnBoy9rl2rh9r7aV9H0uSYTDaHVuujasylZ0hGPQz9xeW6t1Bw6o/PDhztPVvV4pPFxGkvV69fLnPqdTRUVKGMKuWX2paWrTY8Vu7SqvV3ObVzFR4VqZmaA1S4c+egMA452xdngHRY3qYcYskfRrdYaWq6y1rWP28BAxxpRmZ2dnl5aWhroUAIBfTVObtu6p0E5X3Yj+oe9qadG6Awf0eF2dVF3dGUaqquRITdX9f/mLPjxnjq644gq5XK4BDznsT6vHp43bS7WtpDIgwQkAAi0nJ0d79+7da63NGe1njemUKWvtPmNMvqR9kjZK+vpYPh8AAElKjI2S940n9P1BDiCUOrfv7TqAsGt61g/cbrVZ2yOMzExP147nn1dOZqYk9bn71lBCSavHpxse2j3g1DKPz+rR3W65apq1Ze1yQgmACW3Md9my1tZI2inp42P9bAAApHdOWe/vQMMuXQcbrl+/Xjd+//vKKS7WxsOHzwojaRkZeuPvfz8TRqTBzynpz8btpUM+WX5Xeb02bt87pLYAMF6Fctvf5BA+GwAwhQ33lPXpaWn6VVaWylvfmWkc98orUlWVMjMzteP55/sc/egdSgoLCwes63hTq7aVVA7re9lWUqGaprZh9QGA8WTMA4kx5iJJl0s6PNbPBgBMXQUFBWeCx0CjF263W3fddZcu94cRk5qq0/fdd+Zgw3BjdFt6uirvu08PPPDAoFOxup71wAMPaN26dQPWuLW478X2A/H4rLbuGfp2xgAw3gR0Ubsx5tsD3I6RtFjS1epcu3K7tXZTwB4+TrGoHQBCr2uKVu8F5t1HQTIzM/XII4/o4x//+DsjJr1OWc+bNUs/WbRI2TNmBKXOT/9614hOlH/vojn63edWBKEiAOjbeF7Ufpc6d9Aa6OSn05LumQphBAAwPuTn52vz5s1nLTDvGr3oCiWXXnrpO52Sks6EkbmRkdq0cKE+lpQkE8TDDZvbvGPaDwDGg0AHks8OcK9d0lFJxdbaUwF+LgAA/eodPHqHkod/+1u97z3veaeDwyFt3qyw5GR9NS1NGxcsUFx48DemjIka2TNG2g8AxoOA/gSz1m4J5OcBABAo/YWS4oYGffwjH+nZ2BhdHBOjX+fm6sLY2DGrcUVG/IimbK3MTAhCNQAwNkK5yxYAAGOq92L2jKwsrb7oInmrqzsbOBxSeLjk9erkV7+q+BMnxrS+NcvSFeEY3pSwCIfRmqXpQaoIAIKPQAIAmFLS0tP1xf/+byk8XB0ej+Tzdd5IStJ1zz6r195+e9hnhwRKUmy0VuemDavP6tyhnS4PAOPVqKZsGWNc6lzE/n5rbbn//VBZa+3C0TwfAIDheLO5WV/av187XC6p1y6Tv3jkEd2Ylydp5KesB8KGVTly1Zwa0uGIKzLitWFV9hhUBQDBM9oRkgWSMiRFdHs/1K+MUT4bAIAhOeXz6esHD+rikhLtKCuTvvrVd0ZG/H7w7/8+pHNKgi06wqEta5fruuXOfqdvRTiMrlvu1Ja1yxUd4RiTugAgWEY1QmKtDRvoPQAAofaX2lp9paxM7rY2qbpauvVW6fhxSdK89HT98bHH9KlPfWrQLYELCwsHPdgwUKIjHLrn2vN061WLtXVPhXa66tTc5lVMVLhWZiZozVKmaQGYPAJ6MCLOxsGIABAa7tZWfbWsTH+uq+u80BVGqqqUsmCBvnjDDVq7dq2cTudZByT2PjxxLMMIAEwEgTwYkUASZAQSABhb3o4ObT5yRN8uL9epjo7Oi93CSEZmpp7vY03IQKEEANBTIANJQKdYGWMWGWOuN8Zk9Lq+3BjzijGm2RhTaoz5UCCfCwCAJBU3NmrZq6/qPw4efCeMSFq4Z49UVaXMfsKIdPa6kcLCwrEsHQCmrEAf7fofkj6vbgvWjTGJkv5PUpw6d+Q6V9IfjTHLrLWvB/j5AIApqMHr1TfLy/XTI0fUfdw/ITxc9y1cqBsuu0yb09KUn58/4KhHVyhhihYAjJ1AL0J/j6Q3rLUV3a6tVWcYuV/SNEn5khzqDC8AAIyYtVbbjh/Xubt36ye9wshnU1L09vLl+szcuTLGaN26dUOaguV0OgkjADCGAj1CMlfSi72uXS2pTdJGa227pD8bY3ZKWhngZwMAppBDLS26qaxMT9b3PK/jnOnT9fPFi3XZrFkhqgwAMByBDiTRklq73hhjHJKWStpprW3u1u6QpAsD/GwAwBTg7ejQjyorteHQIbV0WycSZYy+OX++bnc6FRXGLvQAMFEEOpBUSDqn2/v3SpouqahXu2mSTgX42QCASa64sVE37tun10/1/Cvkylmz9LPFi7Vo+vQQVQYAGKlAB5K/Svp3Y8w6dYaQ76lzIfufe7U7T53hBQCAQTX5F63/uNc6kcSICP0oK0ufSEqSMX2fag4AGN8CHUjukbRG0ib/eyPpse67aRljciQtlPSTAD8bADAJ/bm2VjeXlamyra3H9c+lpOg/Fy5UfEREiCoDAARCQAOJtbbSGHOhpBslJUoqkfRwr2YXqXPEZGsgnw0AmFyOtLXpK2VlKqyt7XF9ybRpenDJkoAuWq9patNjxW7tKq9Xc5tXMVHhWpmZoDVL05UYGxWw5wAAzhboERJZa49IumuA+49IeiTQzwUATA4+a/Xzqip9w+VSk8935nqkMfqG06lvzJ8fsEXrrR6fNm4v1baSSnl8tse9l8pq9cBz+7U6N10bVmUrOsIRkGcCAHoKeCABAGCk3mxu1hf279fOxsYe1983c6YeXLxY58yYEbBntXp8uuGh3dpVXt9vG4/P6tHdbrlqmrVl7XJCCQAEwagCiTFm8BOmBmCtdY+mPwBgcmj1+fTdw4f1nxUV8tp3Ripmh4frhwsX6rMpKQoL8KL1jdtLBwwj3e0qr9fG7Xt1z7XnBbQGAMDoR0gOSbKDNeqHDcDzAQATXNGJE/ri/v0qa2npcf26pCT9KCtLyZGRAX/m8aZWbSupHFafbSUVuvWqxawpAYAAG20geFEjDyQAgCms3uPRbQcP6jfHjvW4Pj8qSj9bvFhXJyQE7dlbiyvOWjMyGI/PauueCt2UlxWkqgBgahpVILHWXh6gOgAAU4S1Vo8dP651Bw7ouMdz5nqYpPVpafpORoZmOIK7VmOoU7V62+mqI5AAQIAxZQoAMGYOt7bqS/v366n6noHgopgY/XLJEuXGxo5JHc1t3jHtBwDoX1ADiTEmSlK8pDZr7ch+HQUAmPB81urHlZX6Znm5TnV0nLk+LSxM31mwQOvT0hQeoK18hyImamR//Y20HwCgf0H56W+M+ZIx5jVJpyRVSrqv2701xpg/GWMWBePZAIDx5Y3mZl3y6qu65eDBHmHkqtmz9c9ly3Sb0zmmYUSSVmTEj6jfyszgrWsBgKkqoH8DGGPCjTHbJf1E0hJJeyX13qfxLUkflvSxQD4bADC+tPp8utPlUm5JiYqbms5cTwgP1+/OOUfPnH++MqdNC0lta5alK8IxvG2EIxxGa5amB6kiAJi6Av0rqXWS/lXS45LmW2vP793AWvumpHJJVwf42QCAceKFkyd1wZ49utvt7nGuyKeSk/XW8uX6VEqKTIDPFRmOpNhorc5NG1af1bnpbPkLAEEQ6Mmw10s6Kunj1tqWAdq5JJ0b4GcDAELspMejr7lc+uXRoz2uz4+K0oNLluiD8SObKhUMG1blyFVzakg7bq3IiNeGVdljUBUATD2BHiFZJGnXIGFEkmolzQnkg40xucaYO/zrU44YY6wxpnUI/a43xuw2xjQbY+qNMU8aYy4NZG0AMBX8qaZG5xYX9wgjYZJuSUvTP5ctG1dhRJKiIxzasna5rlvu7Hf6VoTD6LrlTm1Zu1zREcHdihgApqpAj5C0SYoZQjunpIYAP/tbkj40nA7GmE2SbpHUIun/JEVLukrSB4wxH7XWFga4RgCYdKra2nRzWZkKa2t7XD9/xgz9askSLYuLC1Flg4uOcOiea8/TrVct1tY9FdrpqlNzm1cxUeFamZmgNUuZpgUAwRboQPKmpGXGmARrbV1fDYwxTkkXS/pbgJ/9iqTXJRX7v44N1NgYc4U6w0idpEustWX+65dIel7Sb4wxz1trTwS4TgCYFDqs1a+PHtXtBw+qwec7cz3KGN21YIH+Iz1dEWO8e9ZIJcZG6aa8LA49BIAQCHQg+bWk30h6xBjzid7/mDfGxEj6laRI/2vAWGvv7fWswbr8h//1e11hxP85rxhjfi7pq5LWSro/kHUCwGRQdvq0bty3Ty809BzsvmzmTP1iyRItnj49RJUBACaagP7qylq7RdI2SR+UVG6Medx/61JjzDZJhyW9X9KjoZwOZYyJlnSl/+22Ppp0XVs1NhUBwMTg6ejQDw4f1nnFxT3CyEyHQ79cvFh/u/BCwggAYFiCceTsxyTdLuk2Sdf4ry32fzWoc63H3UF47nCcIylKUo21trKP+6/6X8/athgApqqSpiZ9ft8+vdbc3ON6/pw5+smiRUqNYq0FAGD4Ah5IrLVW0n8aY+6XdJGkBZIc6jyxvdha2x7oZ46A0//aVxiRtfaUMeakpNnGmFhrbVNf7bozxpT2c2vhCGsEgHHhtM+nuw4d0v0VFerodj0lMlI/XbRI1yYmhqw2AMDEN+opW8aYK/xb5/bYoN1a67PW7rHWbrPWPmat3SEpy982b7TPHaWuncBOD9DmVK+2ADChFRQUyO12D9rO7XaroKBAkvS3Eyd0fnGxftgrjHx+7ly9tWwZYQQAMGqjGiExxqRLekJShaTcIXSpkFQoKc0Ys8haWzWa549C14p3O4Q2Q2KtzenzQzpHTjhNC0BIFRQUaP369dq8ebOKiorkdDr7bOd2u5WXlyeXy6VHq6u16wMf6HE/a9o0/WLxYuXNnj0WZQMApoDRjpB8Xp07Zn1tKNOa/G1ulzRN0udG+ezR6Kp1xgBtulZlNg/QBgAmhPz8fGVmZsrlcikvL6/PkZLuYcSRmqpdF1xw5p5D0tfS0/XG0qWEEQBAQI02kFylzoXh/zvUDtbav0iqlnT1KJ89Gl1/E6f1ddMYM0PSLEknhxK0AGC86T09y+l0qqio6KxQ0jU9y+12632XXy6XyyWlpsq3aZOUnCxJuigmRrtzc3XvwoWa5uC0cgBAYI02kJyjzkMIh2uPpCWjfPZo7FPnqfKJxpi+QsnF/tc3xq4kAAiMrulZvUdCeoeS9773vXrve9+r9evXK/vCC3W4vFxKTZX8YSQ6LEw/yMzUrosv1sWxsSH8jgAAk9loA8kMdW7lO1wNCuFicWtti945KX51H026rj3exz0AGNcGmp7VFUqcTueZERJJOnXiRI8wctnMmXpj6VJ93emcMKetAwAmptH+LXNCUvII+iX7+4bSJv/rN40xi7ouGmMukfRFSY3qPHkeACaU/qZnDSg8XNq0SXGpqXrQf8DhIg44BACMgdEGkr2SVhpjpg21gzFmuqRL/H0Dxhjzr8aYnV1f/suR3a8ZY/61q7219jlJBZISJL1mjPlfY8yTkl6UFCFprbW2PpA1AsBYGWjNyLsvv7zPgPL+2bO1d/lyfSE1VWFmWBsNAgAwYqMNJNvVOW3rm8Po80117rK1fZTP7i1R0opuX1Ln1r3dr/XYMN9au17SZyW9pc4F+pdK+quky6y1/xPg+gBgTPUOJVlZWcrIylJlebnUtTg9PLzzy+uV60tfkq+6OrRFAwCmnNEGkgclHZN0hzHmm8aYfj/PGBNmjPmWpDvUucvWg6N8dg/W2oettWaQr4f76bfUWjvDWjvLWvsv1tq/B7I2AAiVrlASHhEhj8ejDo+n84bPJ6Wm6tqnn9Zrb789vOldAAAE0KgORrTWnjbGXKvOUYWNkm40xvxR0quSavzNEtW5a9VH1bnNbqukj1hrBzolHQAQAE1er75dXi6v7XkOrCMpSb956il9+vzzJUlFRUVnziDJy8sb8PBEAAACaVSBRJKstTv9C8EfkfQuSbf00axrMnKppE9Za18f7XMBAAN7uq5Oa198UUdvvlnyenvcS42O1mWzZp153zWSQigBAIy1gOzlaK19w1p7vjoPO/yppJfVedbHfv+ffyrpGmvteYQRAAiu2vZ2ffqtt3T1c891hpGqKikuTpKUlJYmp9OpCv+p7AOdU1JYWBiqbwEAMIWMeoSkO2vtM5KeCeRnAgCGxlqr/z5+XOsOHFBNZaV0662dYSQ1Vesfe0xpe/boo9deK0n9joR0hZLCwkKtW7culN8OAGCKMLbXvGIEljGmNDs7O7u0tDTUpQCYxCpbW/WlsjI9XlcnVVefCSNR8+Zp+7PP6qpzz+3R3u0fIXG5XMrMzGR6FgBgWHJycrR379691tqc0X4Wx+8CwATWYa1+fuSIsouLO8OIJL30klRVpQSnU2/t2HFWGJGYngUAGD8COmULADB29p8+rRv37dOLDQ09rr//xht1yYIF+vyaNQOOejA9CwAwHhBIAGCC8XR06P6KCt116JDauk27nRUerk0LF+ozKSkyF1wwpM9yOp2EEQBASBFIAGACebWpSZ/bt0+vNTf3uL46MVE/zspSSlRUiCoDAGBkCCQAMAG0+HzaeOiQ7quokK/b9ZTISP3XokXKT0wc1ufVNLXpsWK3dpXXq7nNq5iocK3MTNCapelKjCXUAADGDoEEAMa5F06e1I379qmspaXH9c/Pnav/zMzU7IiIIX9Wq8enjdtLta2kUh5fz10WXyqr1QPP7dfq3HRtWJWt6AhHQOoHAGAgBBIAGKcavF59/eBBPXj0aI/rmdHR+uWSJbpi9uxhfV6rx6cbHtqtXeX1/bbx+Kwe3e2Wq6ZZW9YuJ5QAAIKObX8BYBz6S22tcnbv7hFGwiTdlp6uN5ctG3YYkaSN20sHDCPd7Sqv18bte4f9DAAAhotAAgDjyPH2dn28tFQf+uc/daS9/cz182fM0M6LL9YPFy7UdMfwRy2ON7VqW0nlsPpsK6lQTVPbsJ8FAMBwEEgAYByw1uq3x47p3N279VhNzZnrkcboexkZ2pObq2VxcSP+/K3FFWetGRmMx2e1dU/FiJ8JAMBQEEgAIMQOtbToX954Qze8/bbqvd4z1y+Ni9NrS5fqzvnzFRE2uh/XQ52q1dtOV92ongsAwGBY1A4AIeKzVj+urNSd5eU63dFx5nqMw6EfZGbqS6mpCjMmIM9qbvMO3iiA/QAAGCoCCQCEwD+bm/X5ffu0q6mpx/Vr4uP1s8WL5YyODujzYqJG9uN+pP0AABgq/qYBgDHU1tGhuw8f1j1utzz2nTUdcyIiVJCVpeuSkmQCNCrS3YqMeL1UVjvsfiszEwJeCwAA3bGGBADGyMsNDbp4zx595/DhHmHkk0lJemvZMn0iOTkoYUSS1ixLV4RjeJ8d4TBaszQ9KPUAANCFQAIAQdbk9erm/fv1nn/8Q3tPnz5zPT0qSk+ed54eyc7WnMjIoNaQFBut1blpw+qzOjddibFRQaoIAIBOTNkCgCB6oq5O/75/vyrb3jnPw0i6ad483Z2RodjwsfsxvGFVjlw1p4a049aKjHhtWJU9BlUBAKY6RkgAIAiOt7frur179W9vvtkjjJw7fbr+ftFF+vGiRWMaRiQpOsKhLWuX67rlzn6nb0U4jK5b7tSWtcsVHTH8AxgBABguRkgAIICstfpddbVuOXCgx5kiEcbozvnzdYfTqahRnikyGtERDt1z7Xm69arF2rqnQjtddWpu8yomKlwrMxO0ZinTtAAAY4tAAgABUt7Soi/u369nT5zocX1lXJx+tWSJcmbMCFFlZ0uMjdJNeVm6KS8r1KUAAKY4AgkAjJK3o0ObjxzRt/o44PCejAx9ad48OYK0exYAABMdgQQARuF1/wGHe8bogEMAACYbAgkAjECLz6fvHD6sH7rd8nW7PiciQpuzsvTxIB1wCADAZEMgAYBh+tuJE/ri/v060NLS4/oNycm6PytLCRERIaoMAICJh0ACAENU7/Ho9oMH9dCxYz2uZ0RH68HFi3VVfHyIKgMAYOIikADAIKy1+mNNjb5SVqbjHs+Z62GSbk1P110LFmiGgzM7AAAYCQIJAAygorVVXy4r0+N1dT2uXxQTo18uWaLc2NgQVQYAwORAIAGAPvis1U+PHNGd5eVq9r2zbD06LEzfWbBAt6SlKTyEBxwCADBZEEgAoJc3mpt147592t1rK98rZs3Sg4sXK2v69BBVBgDA5EMgAQC/rq1876uokNfaM9fjw8O1KStL1ycns5UvAAABRiABAEl/PXFCX9y3TwdbW3tc/2RSkjZlZSkpMjJElY1eTVObHit2a1d5vZrbvIqJCtfKzAStWZquxNioUJcHAJjiCCQAprQ6j0e3HTyoh3tt5bsgOlo/X7xYH5zAW/m2enzauL1U20oq5fHZHvdeKqvVA8/t1+rcdG1Yla3oCHYJAwCEBoEEwJRkrdXvq6t1y8GDqu21le8taWnamJExobfybfX4dMNDu7WrvL7fNh6f1aO73XLVNGvL2uWEEgBASLBFDIAp52BLiz74xhv69Ntv9wgjF8fEqDg3V/dlZU3oMCJJG7eXDhhGuttVXq+N2/cGuSIAAPpGIAEwZXg6OvSDw4f1ruJiPXvixJnr08PCdN/Chdp18cW6eBKcK3K8qVXbSiqH1WdbSYVqmtqCVBEAAP9/e3ceX2dZJnz8dzVJ05aW7qVb0jYtBVoFlaVV2eo2jlpHtOLovG64jaLDpiOCgkUHxhHR4s47L4rjiig6zIyOgxaBmaEgIGARuiRputC9pXub5X7/eJ6UJCTdspwk5/f9fM7nae7l9Dp3n56c6zz3/dwdMyGRVBQeePZZTn/4YT5VU8O+pqaD5X85ahRLzzyTKyoq+s2+Irc/tPp5a0YOp74xcfsfVndTRJIkdax//PaVpA7saGjgo8uW8bJHH+WJ3bsPlp9QVsaPZ83i31/4QqYOHlzACLvekU7VauuB6i2HbyRJUhdzUbukfimlxC82b+ajy5ez7sCBVnUfmDCBL1RVMbKsrEDRda9d+xt6tJ8kSZ1hQiKp36nbt4+PLV/Ov25p/Y3/KUOG8O2ZMzlnxIgCRdYzhpYf21v7sfaTJKkz/O0jqd9oaGriq2vX8pmaGna3WCcyMIKrp0zhk5WVlPeTdSKHMmfaKO5bvvmo+82tGt0N0UiSdGgmJJL6hT/s2MEHly3j0V27WpWfP2IE35o5k5OGDClQZD3vwjMrWPTb5Ue1sL2sJLjwjIpujEqSpPb1/68KJfVrOxoauGT5cuY88kirZGR0aSnfPflkfnfaaUWVjACMGzaIBadPPqo+C06vYOyw8m6KSJKkjhV1QhIR90REOsTjtYWOUVLH7ty0iVkPPsjNa9fS1KL8PePH89RZZ/Hu8eOJiILFV0jXzp/NnGmjjqjtnGmjuHb+rG6OSJKk9jllK/MzYFc75Wt7OhBJh1e3bx9/t3w5v2yzaH3m4MF8a+ZM5o0cWaK7vTQAACAASURBVKDIeo9BZSXcdtFZLLzrSe54uP19ScpKggWnV3Dt/FkMKuvbO9NLkvouE5LMx1NKtYUOQtKh1Tc1sWjNGq6trWVPm0Xrn6qs5MrKSgaV+MG62aCyEm548wu5/NUzuf0Pq3mgegu79jcwtLyUuVWjufAMp2lJkgrPhERSn/DAs8/yoWXLeLzF5oYA5w0fzrdmzuTk444rUGS939hh5Vw8bwYXz5tR6FAkSXoeExJJvdq2+nquqqnh2+vW0XLS0ejSUm6cPr2o14lIktQfmJBk3hcRo4EmYBnwi5RSXYFjkopaSokfbdzIZStWsLG+vlXdRePH80/TpzO6n+60LklSMTEhyXy6zc83RsTnUkqfK0g0UpFbvmcPH1m+nLu3bWtVPmvIEL5VBDutS5JUTIo9IbkX+Gfgf4BngApgAVmCcl1E7EgpLTqSJ4qIpR1UTe+KQKVisK+xkS+sXs0Nq1axPz03QWvwgAFcM2UKl1dUMLAIdlqXJKmYFHVCklK6pk3RMuD6iPgD8J/Awoi4JaW0t+ejk4rLf23dykeWL2fF3tb/3f5y1Ci+fuKJTBs8uECRSZKk7lTUCUlHUkq/yZOSM4C5wOIj6DO7vfL8yok7jkkdWLd/P5evWMFPNm1qVT5x4EAWzZjBW8aOddG6JEn9mAlJx5aTJSQTCh2I1B81NDXxjXXr+HRNDTsbGw+WDwD+bvJkFk6dyvGlvkVJktTf+du+Y81bPbe3g7ukTnhwxw7+dtkyHt3V+r/XnGHD+NbMmbxo2LACRSZJknqaCUk7ImIscE7+4yOFjEXqTzraU2REaSlfqKri/RMmMMDpWZIkFZWiTUgiYi4wGLgnpedu5xMRU4HvA8cB/5pSWlOQAKV+JKXE9zZs4BMrV7KpzZ4i7z7hBP5p+nTGDRxYoOgkSVIhFW1CApwMfAd4JiKWAeuBycDpwCBgKfCBwoUn9Q9P7NrFR5Yv5/5nn21VPmvIEL45cybnuqeIJElFrZgTkiXAN4E5ZHfBejmwG/gj8FPgm97uVzp2Oxsa+GxtLYvWrKGxRfmQAQP4jHuKSJKkXNEmJCmlPwMfKXQcUn+TUuKnmzZx2YoVrDtwoFXdBWPG8JUZM6gcNKhA0UmSpN6maBMSSV3v6T17+Ojy5dy9bVur8qpBg/jqiSfyutGjCxSZJEnqrUxIJHXa7sZGrl+1ihtXr+bAc/eIoDyCKysr+WRlJYNLSgoYoSRJ6q1MSCQds5QSv9i8mUtXrKBu//5Wda8dNYqvzpjBjCFDChSdJEnqC1xRKgmARYsWUVdXd9h2dXV1LFq0iOV79vC6J57gzUuXtkpGJpeX87PZs/mPF77QZESSJB2WV0gksWjRIi699FJuvvlmFi9eTGVlZbvt6urqOH/ePGqqq7lixQoa3/KWg3VlEVxRUcHVlZUMLfWtRZIkHRmvkEjiggsuoKqqiurqaubNm9fulZJVq1Zx1rnnUlNdDRMn0nj22QfrXjVyJE+ceSY3VFWZjEiSpKNiQiKJyspKFi9e3GFScu/TT3PK2WezYdUqmDgRbroJTjiByeXl/HTWLH5z6qmc5PQsSZJ0DExIJAHtJyVP1dTw0fvv57xXvIK9a9YcTEZKx4/nkxUV/PnMM1kwbhwRUejwJUlSH+XcCkkHNScl8+bNo7q6mlNmzswqGhoOJiOvPOkkvnriiZxy3HGFDVaSJPULJiRSP7Np535+8lAdS2q2smt/A0PLS5lbNZoLz6hg7LDyw/bfNXo047/2Narf+MYsEQEoLWX8177Gope/nLeOHesVEUmS1GVMSKR+Yl99IwvvWsodD6+hvjG1qrtv+Wa+cvcyFpxewbXzZzGo7PmbFO5oaGBhbS03r11Lw44dreoGRPC7007jlHHjuvU1SJKk4uMaEqkf2FffyLtvfZAfPbj6eclIs/rGxI8erOPdtz7IvvrGg+VNKfG99euZuWQJN61ZQ8P69XD55dDQQJSWUlZWRlN9PW949auPaJ8SSZKko2FCIvUDC+9aypKarUfUdknNVhbe9SQAj+zcyTmPPsq7n3qKDfX1sGFDloysW8f4qVOpWbGCFStWHPaWwJIkScfKhETq4zbu3Mc/f/PrNOzYeNi2DTs2suMPv+Qnj6/mXX96kjMefpj/aZ6etWEDkScj06qqWPL73zNlypTD3hJYkiSpM0xIpD7uI1d+ns1338KGH111yKSkYcdGNvzoKrb99v9Su/E/+JfNGzk4uWvDBo77+MdJ69ZRVVXFPW12azcpkSRJ3cWEROrjmqacSemI8TRsX99hUtKwYyPP/OQqGravh4kTSeedc7DulCFD+HB1NbvXrKGqqorFbZKRZm2TkjvvvLNbX5ckSSoO3mVL6uPS0DGc8Pbrs2QkT0pOePv1lB6f3RFr3/5NbPzZ1aSt61vtsl7aCF+cOZ2LJ02i7KyzOGnIEC644IJ2k5FmzUnJnXfeySWXXNJTL1GSJPVjXiGR+rih5aWUHj8uS0JaXCk5sHMjW0dsY8NPriJtfOa5ZGTcOIaurudNqwdxaUUFZQOyt4FLLrnkkMlIs8rKSpMRSZLUZUxIpD5uzrRRAM9LSp655YPs/Mx74ZnnkpGB5WMY/7/7GL30AOdPGVPgyCVJkkxIpD7vwjMrKCvJdk5vmjSeAf/4JSgtzXZZb2iA0lLiH29k9IYRjH9gH+U7migrCS48o6LAkUuSJLmGROrzxg0bxOvOmMituzaxa3IpbGyzC3uC8Uv2MXBow8GiBadXMHZYeQ9HKkmS9HxeIZH6sANNTXx59WpuG7OTXRVlsHHjwV3WKSnNHo0NbPrBc3ffmjNtFNfOn1XgyCVJkjImJFIf9estWzj1oYe4fOVKnm1sbLXL+oBR45n0wVuY9MFbWi10f920Mm676CwGlZUc/i+QJEnqASYkUh/z1O7dvP7xx/nLJ57g6b17s8INGxiQJyNTpk7js1//CfNOn8WZL5jJ/E99izETKmjYvp7//KcPs/GZtYV9AZIkSS24hkTqI7bW13NdbS1fX7eOhpSeq9iwgeM/8Ql25Lust7exYd1fv5h58+Yd3GW9o80PJUmSeppXSKRerqGpia+vXcuJS5awaO3aVsnIucOH84naWnasXu0u65IkqU/yConUi/1m61YuW7GCJ/fsaVU+ddAgbpw+nTePGUO8+MVMGjTIXdYlSVKfFKnl1A91uYhYOmvWrFlLly4tdCjqQ57es4crVqzg37dubVU+tKSEqysruXTyZAaVuDBdkiQVxuzZs3nyySefTCnN7uxzeYVE6kU6WicSwEXjx/P5adMYX+7+IZIkqf8wIZF6gfqmJr6xbh0La2vZ1tDQqu7c4cP58owZvGTYsAJFJ0mS1H1MSKQCSilx15YtfGLlSpY138I312qdSESBIpQkSepeJiRSgTy2axeXr1jB77Zvb1U+rKSEq6dM4ZJJk1wnIkmS+j0TEqmHrd+/n0/X1HDr+vW0vKXEAOADEyZw3bRpjBs4sFDhSZIk9SgTEqmH7Gls5Mtr1nDDqlXsbmpqVfeakSP50vTpvGDo0AJFJ0mSVBgmJFI3a0qJ72/YwNU1NazZv79V3SlDhvCl6dN57ahRrhORJElFyYRE6kb3bNvGFStX8siuXa3KR5eWsnDaND44YQJlAwYUKDpJkqTCMyGRusFTu3fz99XV3LVlS6vygRH83eTJXF1ZyYiysgJFJ0mS1HuYkEhdaNOBAyysreVb69bR2KbubWPHckNVFdMGDy5IbJIkSb2RCYnUBfY2NvLVtWv5h1Wr2NHYOhV56fHHc9P06cwdPrxA0UmSJPVeJiRSJzSlxA83bOCqmhpWt1mwPm3QIL5QVcWCsWNdsC5JktQBExLpGP1u2zY+0c6C9RGlpXxmyhQunjSJchesS5IkHZIJiXSU/rRrF39fXc2vtm5tVV4WwcWTJvHpKVMY7YJ1SZKkI2JCIh2hdfv3c01NDd9Zv56mNnUXjh3L9VVVTO8nC9Y37dzPTx6qY0nNVnbtb2BoeSlzq0Zz4RkVjB1WXujwJElSP2JCIh3GzoYGbly9mhtXr2ZPmx3Wzx4+nBunT2fO8ccXKLquta++kYV3LeWOh9dQ35ha1d23fDNfuXsZC06v4Nr5sxhUVlKgKCVJUn9iQiJ1oL6piVueeYbramvZWF/fqu6kwYP5wvTpvHH06H6zYH1ffSPvvvVBltRs7bBNfWPiRw/WUb1pF7dddJZJiSRJ6jRX3EptpJT46caNzHroIT66fHmrZGRcWRnfOPFEnjjzTP5qzJh+k4wALLxr6SGTkZaW1Gxl4V1PdnNEkiSpGHiFRGrh3u3b+fuVK1myc2er8iEDBnB5RQV/X1HBsNL+999m48593PHwmqPqc8fDq7n81TNdUyJJkjql6K+QRMSgiFgYEcsiYl9ErIuIWyNicqFjU89Zuns38594gvP++MdWyUgJ8MEJE1gxZw6fmzatXyYjALc/tPp5a0YOp74xcfsfVndTRJIkqVgUdUISEYOA3wLXAEOBXwKrgfcCj0TE9AKGpx6wZt8+3v/UU5z60EP825YtrereNGYMfzrzTL590klMKO/fVwGOdKpWWw9Ubzl8I0mSpEPon1/3HrmrgJcB/wu8JqW0CyAiLge+BNwKnFe48NRdttXX8491ddy8di372tw566XHH88Xp0/n5cOHFyi6nrdrf0OP9pMkSWpWtAlJRJQBH8t/vLg5GQFIKd0UEe8Gzo2I01NKDxckSHW5vY2NfG3tWq6vq2N7Q+sP0zMHD+Yfq6p4Uz9brH4khpYf21vBsfaTJElqVsyfJs4GRgArU0qPtlN/B3AqMB8wIenjGlPie+vXc01tLWv2729VN37gQK6dMoX3TZhA2YDinMU4Z9oo7lu++aj7za0a3Q3RSJKkYlLMCclp+fGRDuofadNOfVBKibu2bOFT1dU8uWdPq7phJSV8srKSSydP5riS4t5P48IzK1j02+VHtbC9rCS48IyKboxKkiQVg2JOSCrzY0f3Ol3Tpp36mPu3b+fK6mr+e8eOVuUDI7h40iSuqqxkzMCBBYqudxk3bBALTp/Mjx488rtmLTi9wlv+SpKkTivmhGRoftzTQf3uNu0OKSKWdlDlnbp62OO7dnFVdTX/vrX1naMCeOcJJ3DdtGlMGTSoMMH1YtfOn031pt1HdMetOdNGce38WT0QlSRJ6u+KOSFpXrXc0RyV4lrV3A9U793LNTU1/HDjxuf9o75+1Ciur6ri1KFHlF8WpUFlJdx20VksvOtJ7ni4/X1JykqCBadXcO38WQwqK+5pbpIkqWsUc0LSvPvdcR3UD8mPuzqobyWlNLu98vzKiV8ld6P1+/fz+VWruOWZZ6hPrT9Ev/T447mhqorzRowoUHR9y6CyEm548wu5/NUzuf0Pq3mgegu79jcwtLyUuVWjufAMp2lJkqSuVcwJSV1+7GhH9slt2qmXebahgS/W1fHlNWvY02YvkdlDhnB9VRXzR48uulv4doWxw8q5eN4MLp43o9ChSJKkfq6YE5LH8uNLOqhvLn+8B2LRUdjb2MjX167lhro6trbZS2RKeTnXTZvG35xwAiUmIpIkSb1eMSck/w08C0yPiBe3sxfJgvz4bz0bljpS39TErevXc11tLesOHGhVN7asjM9MmcIHJ06kvEj3EpEkSeqLijYhSSkdiIivAVcDX4uI16SUdgNExOVkmyLen1J6qJBxCppS4scbN3JNTQ0r9+1rVTespISPV1Rw2eTJDCst2tNZkiSpzyr2T3CfB14FvAxYHhH3AVOAOcAW4L0FjK3opZT4ty1buLqmhid2725VV57vJXJlZSVj3UtEkiSpzyrqhCSltC8i5gGfAt4BvAnYBtwGfCaldOS7xKlL3bNtG1fV1PC/bTY1LAEumjCBa6ZMYbJ7iUiSJPV5RZ2QAKSU9gLX5A8V2EM7dnB1TQ3/tW3b8+r+etw4rps6lROHDGmnpyRJkvqiok9I1Ds8sWsXn6mp4Zdbtjyv7vWjRvH5adN40bBhBYhMkiRJ3cmERAW1fM8erq2t5cft7K5+zvDhXD9tGme7qaEkSVK/ZUKigqjbt4/ramv57vr1NLapO33oUP6hqorXjBzppoaSJEn9nAmJetT6/fu5vq6Ob69bx4HU+prI7CFD+Ny0abxpzBgTEUmSpCJhQqIesaW+ni/W1fHVtWvZ09TUqm76oEEsnDaNvx43zt3VJUmSiowJibrV9vp6vrxmDV9es4adja0nZ00uL+eaKVN4z/jxlLm7uiRJUlEyIVG32NXQwM1r13Lj6tVsa2hoVTeurIyrpkzhQxMmMKikpEARSpIkqTcwIVGX2tvYyDfXreMf6+rYVF/fqm5kaSmfrKzko5MmcZyJiCRJkjAhURfZ39TEPz/zDP+wahXPHDjQqu74khIur6jg0smTGV7qKSdJkqTnOHFfBy1atIi6urrDtqurq2PRokUA1Dc1ccu6dZy4ZAkfXb68VTIyZMAAPlVZSc3cuVw7darJiCRJkp7HT4gCsmTk0ksv5eabb2bx4sVUVla2266uro558+ZRXV3Nkh07eODVr6Zm375Wbcoj+MikSVxZWcm4gQN7InxJkiT1UV4hEQAXXHABVVVVVFdXM2/evHavlLRMRkonTeJHM2e2SkbKIvjwxImsnDuXm2bMMBmRJEnSYZmQCIDKykoWL17cYVJSu2oVZ517LtXV1TBxIg1f+hKccAIApRF8YMIEls+ZwzdmzmRSeXmhXoYkSZL6GBMSHdReUlK7ahXffvRRTnr5y9mwahVMnAg33QQnnMAA4D3jx/P0WWdxy0knMWXQoEK/BEmSJPUxriFRK81JSfPUrKoZM0gADQ0Hk5E44QTeMW4c10ydyswhQwodsiRJkvowr5ColZQSjw8ZwnGLFkFpKamhIUtGSkvhppt46wtewJ/OPJPvz5plMiJJkqRO8wqJgCwR+fXWrVxbW8tDO3fC7t2t6gP41amn8hennFKYACVJktQveYWkyKWU+M3Wrbzs0Ud53RNPZMnIhg1w+eXQ0ECUllJaVkZqaOAjb3jDEe1TIkmSJB0pE5IilVLi7q1bOefRR/mLxx/ngR07sormZGTdOiZNnUrtypWsXLHisLcEliRJko6FCUmRSSnxu23bOPePf+TVjz/OfzcnIgAbNjD44x+Hdeuoqqrif37/eyorKw97S2BJkiTpWJmQFJHF27Zx/h//yCsfe4z7n322Vd3Z+/Yx8cor2btmDVVVVc/brd2kRJIkSd3BhKQI/H77ds5/9FFe8dhj3NsmEXnliBHc96IXseDpp1lXW9tuMtKsbVJy55139tRLkCRJUj/lXbb6sXu3b+eztbUs3r79eXWvGDGCz06dyjkjRgBw9iWXAHDBBRe0m4w0a05K7rzzTi7J+0iSJEnHKlJKhY6hX4uIpbNmzZq1dOnSHv17r6ut5dra2ueVzxsxgmunTuW8PBGRJEmSjtbs2bN58sknn0wpze7sczllq5+6YMyYVj+fN3w4i087jd+96EUmI5IkSeo1nLLVT71w6FDeOnYs6w8cYOHUqcwbObLQIUmSJEnPY0LSj3335JMZPGAAEVHoUCRJkqR2mZD0Y0NKSgodgiRJknRIriGRJEmSVDAmJJIkSZIKxoREkiRJUsGYkEiSJEkqGBMSSZIkSQVjQiJJkiSpYExIJEmSJBWM+5CoXZt27ucnD9WxpGYru/Y3MLS8lLlVo7nwjArGDisvdHiSJEnqJ0xI1Mq++kYW3rWUOx5eQ31jalV33/LNfOXuZSw4vYJr589iUJkbL0qSJKlzTEh00L76Rt5964MsqdnaYZv6xsSPHqyjetMubrvoLJMSSZIkdYprSHTQwruWHjIZaWlJzVYW3vVkN0ckSZKk/s6ERABs3LmPOx5ec1R97nh4NZt27u+miCRJklQMTEgEwO0PrX7empHDqW9M3P6H1d0UkSRJkoqBCYkAjniqVlsPVG/p4kgkSZJUTExIBMCu/Q092k+SJEkCExLlhpYf2w3XjrWfJEmSBCYkys2ZNuqY+s2tGt3FkUiSJKmYmJAIgAvPrKCsJI6qT1lJcOEZFd0UkSRJkoqBCYkAGDdsEAtOn3xUfRacXsHYYeXdFJEkSZKKgQmJDrp2/uwjnro1Z9oorp0/q5sjkiRJUn9XtAlJRJwfEekQjwcKHWNPG1RWwm0XncXbz6rscPpWWUnw9rMque2isxhUVtLDEUqSJKm/8RZJsBK4v4PyojOorIQb3vxCLn/1TG7/w2oeqN7Crv0NDC0vZW7VaC48w2lakiRJ6jomJHB/Suk9hQ6itxk7rJyL583g4nkzCh2KJEmS+rGinbIlSZIkqfBMSCRJkiQVjFO24MSIuAEYDWwmW0/y65RSU2HDkiRJkvo/ExJ4Wf5o6YmIeEtKafmRPklELO2gavoxRyZJkiT1c8U8ZetZ4IvAXLKrI6OBVwIPAC8E/isihhcuPEmSJKn/67NXSCLiDuAFR9ntXSmlBwFSSo8Cj7ap/11EnA0sBs4BLgauP5InTinN7iDOpYA7CEqSJEnt6LMJCTAVOOko+ww5XIOUUmNEfIEsIfkLjjAhkSRJknT0+mxCklI6oxufvnntyIRu/DskSZKkolfMa0gOZWR+3FXQKCRJkqR+zoSkfW/Jjw8XNApJkiSpnyvahCQiPhQRo9uURUR8CLgMSMC3ChKcJEmSVCQipVToGAoiImqBicCTwKq8+IXANKAJuDSl9NUu+Ht2lJeXD5s+3e1IJEmS1D+sXLmS/fv370wpHd/Z5yrmhORjwGuA2cA4oAx4BrgPuDml9FAX/T3rye7utbornu8oNWdBKwvwdxcjx7tnOd49y/HuWY53z3K8e5bj3bO6a7wrgD0ppfGdfaKiTUiKQfPu8R3tkaKu5Xj3LMe7ZznePcvx7lmOd89yvHtWXxjvol1DIkmSJKnwTEgkSZIkFYwJiSRJkqSCMSGRJEmSVDAmJJIkSZIKxrtsSZIkSSoYr5BIkiRJKhgTEkmSJEkFY0IiSZIkqWBMSCRJkiQVjAmJJEmSpIIxIZEkSZJUMCYkkiRJkgrGhKQPioghEfGmiPh/EfF4ROyIiN0R8VhEXBMRQw/R910R8WBE7IqIrRHxHxHxsp6Mvy+KiMsj4ucRsTwino2I/RGxKiJui4jZh+jneHdSRIyKiI0RkSLiqcO0dbyPUkTck49tR4/XdtDPse6EiBgfEV+OiGURsTcfw4cj4p86aP+GiPh9/v6zI//zG3o67r4kIs4/zLnd/Limnb6e38coIuZGxM8iYn1E1Ofj99uIWNBB+wERcWlEPJH/X9gUET+NiFk9HXtflI/3LyNic0Tsy99TPh8RQw7Rp9ed326M2AdFxPuB/5v/uBR4EjgeeBkwDHgKOC+ltLFNv5uAy4C9wG+AQcArgQDemlK6s0deQB8UEZuB44DHgbV58WxgJnAAeFNK6Vdt+jjeXSAivgu8i2zcnk4pndxBO8f7GETEPcB5wM+AXe00+VJK6Yk2fRzrToiIlwL/AYwge//+E9l79yxgckqptE37vwMWAQ3A3cB+4DXAYOCSlNLNPRd93xERJwNXdlBdAvyf/M+vSCktbtHP8/sYRcRbgR+TfeH9B2AlMBF4eV72hZTSlS3aB3A7sADYDvwWGAOcC+wD5qWUlvTka+hLIuJvgNvIzueHgTrgDKACeAw4J6W0s02f3nl+p5R89LEH2YezbwAntimfADwCJOCHbepekZdvbtkPeCnZL7ftwMhCv7be+iB7Mx3UTvmH83FdC5Q43l0+7q/Mx/Hb+fGpDto53sc+xvfkYzf1CNs71p0b74nANmAPcEE79We1+XkmUE/24eylbco353UndmfM/fEB/GV+HtcBA1qUe34f+5iWAhvz8Xtbm7qXkn0AbgKmtyi/KG+/DDihRflb8vIVQGmhX1tvfACT8zFNwHtblJeTJXkJ+GabPr32/C74gPro4n/Q7KRK+S+vgS3K/z0vv7SdPovyuisKHX9ffADL8/Gb5Xh36bgOzsd2KXAih05IHO9jH+ejTUgc686N9/fyMfroEbb/et7+K+3UXZbXfbXQr6uvPYAf5GN3Q5tyz+9jH9MX5OPz5w7qf5HXX9iibGle9qZ22v8yr3tLoV9bb3wAn87H5zft1I0FdpPN4BjdorzXnt+uIel/HsuP5cBogIhovhwHcEc7fZrL5ndvaP1WY348AI53F7oWmE52Faq+o0aOd89xrDsnIkYCFwLPAv98hN2a14m0N94/zY+O91GIiOOAv8p//H6Lcs/vztl/hO22AkTENLJpinvJPii35Xgf2un58Z62FSmlTWTTQcuA10HvP79LD99EfUxVfqwn/08PnEyWoGxKKa1pp88j+fHUbo6t34mIdwEnkV1urs6LHe9OiohTgSuA76SU7o2IqYdo7nh3jfdFxGiyKRXLgF+klOratHGsO+flZON3N1CfL/I9m+xDw1PA7SmlDc2NI2IEUJn/+GjbJ0sprcnXt02JiOEppWe7+wX0E28mWxP4aEppaYtyz+/Oqc4fJ0fEhSml25sr8nVTfwHUAPfmxaflxz+llNr70umRNu3U2nH5cVsH9c2fAU8D/oVefn6bkPQ/l+THX6eUmr+taP6F1t4JSEppd0RsB0ZGxLDUZgGUnhMRnyBbzH4ccEr+53XAO1JKTXkzx7sTImIA2U0btgN/fwRdHO+u8ek2P98YEZ9LKX2uRZlj3TnNd+TbANxHNsW2pRsi4r0ppeYrH83jvS2ltLuD51xDtgi4EniigzZqrXkx+7+0Kff87oSUUmNEvAe4C/hJ/vtyJdn61rOBB4F3ppQO5F0OOd4tyis7qC92m/LjlA7qm8un5sdefX47ZasfiYjXAe8juzrymRZVzbcB3nOI7s2/7Dq8ZbCA7Bued5PdEWQ2NC/+PAAAC9tJREFUsJosGXm4RRvHu3M+BpwFfCKltOUI2jvenXMv8E6y6XFDyK74XU12R6frIuKSFm0d684ZmR/fRfYt5PvI5npPA24i+6Lj+/kVQnC8u1xEjCebttII/KhNtePdSSml+8ju2ldDdrent5HdMWs32ZXBdS2aH268HetD+31+fHtEDGxZERFzyd7LIbuDH/Ty89uEpJ+IiFPI5sIG2Qe5x1pW58dD3eM5DlGnXErpVSmlIPtgcS7wNHBPRFzdopnjfYwiogL4PPD7lNJ3j7RbfnS8j0FK6ZqU0vdTStUppb0ppWUppeuBN+VNFkbE4PzPjnXnlOTHUuDylNKtKaXNKaXalNIVZHO4B/LclUHHu+u9g+zf4b9SSuvb1DnenRQRbweWkN29bA7ZB9uZZMnfp4G7I6KsuXl+dP+JY/MDsnGuBH4ZEbMjYlhke0f9lOxLJcim4UIvP79NSPqBiJgM/JrsQ/JNKaVFbZo0X3Y7jo41b6DT3j4EaiOltD3/Juh1ZPf+/lxEnJlXO97H7htkH8g+fBR9HO9ukFL6Ddk+AsOBuXmxY905zePXRLZ3QFu35sfz27R3vLtOR9O1wPHulIg4key83gS8PqX0YEppd0ppeUrpQ2RTuV4KvDfvcrjxbi53rNuRT+N8A1lS8lqy/Yx2AL8ie4+5KW/avMakV5/fJiR9XESMAf6LLEP+DvDxdpo1L0yd3MFzHEe2Qdd258QenXwh3k/IvlVovjOF433s3kB2Ofmbke0gfk++cd+P8/rKFuXNl5Qd7+6zPD9OyI+OdefU5sf1Ldb4tVc/Lj82j/fIfGzbM7lNW3Ugn0nwYrIPW79op4nnd+f8NdkNGn7dwZqn5kXu5+fHQ443ntuHlbJNa08mm0r+VeCbwN+S3YK5WfONG3r1+e2i9j4sIoaRZcInAz8HPpDym0m38TTZ7fjGRsTkdu6u8JL8+Hi3Bdu/bc6PY/Oj4905I8jmILdncIu65vcvx7v7NK95aP62zLHunOY7ZY2MiGjn/Xp0ftwF2ZXYiGiekvFi4P6WjfOr42OAOu+wdUTemR9/nlJqbx6953fnNH/Q3dFBfXP5qPzYPLX8BRFR1s6dthzvI5BS2ku2v9H3WpZHxKvyP96TH3v1+e0Vkj4qIsrJNg06A/hP4O0ppcb22uYn6+/yHxe006S57N+6Os4i0fwBeSU43p2RUor2HmSLfgGeblG+Pe/jeHeDiBgLnJP/+Ag41p2Vf5tZQ5ZYz2mnyfn58ZEWZc37M7Q33m/Nj473YUREkK0fgfana3l+d17zmpwzOqhvntZcC5BSqgH+TPb/4fXttHe8j1FEnEeWYCxNKf039IHzu7t2XPTRfQ+yBXk/J1uYdC8w5Aj6vCpvvxk4sUX5S8l2dX8WGFXo19YbH2Qfyt4GlLYpLyO7I1Qj2TSjCse72/4NpnLondod72Mb17nAPCDaGe/78zH9pWPdpWP+oXz8HgTGtCg/nWyudwIWtCg/iWxx6j5gbovyE/N/gwbgpEK/rt7+ILsJSQLWAgMO0c7z+9jH+CX52CXgw23q5pJd+UvAq1qUvz8vWwaMa1H+5ry8Gigr9GvrrQ/gRe18NnlJfp43AfPa1PXa87vgg+njGP7Rsr1Gmv/T/xz4bgePMW36fSXvs5ts/ux/kN0iuBF4S6FfV299AO/Jx20T2c0DfkB2VWpdXr4XuLCdfo531/0bTOUQCYnjfczj2nxuryO7rP9jskRkb17+p5YfEhzrLhnzAWRz6ROwhWyh72KyqRQJuKWdPpfldfX5WP+C7EuQBFxW6NfUFx7ALfl4/dMRtPX8PvZx/mKLzyd/ys/1+/OxS8C327QfwHNfsG4luzvUYrIP03uBlxX6NfXmR/6+vRH4DfBD4H/ysa4nm8bfXp9eeX4XfDB9HMM/Gny2xX/4Qz2mttP3PWR3ztlNtvHcr4GzC/2aevODbLrQP+RvquuAA2Tf9PwJuBmYcYi+jnfX/BtM5TAJieN9TON6CtmdzR7Of6nV5+P2v8DlwGDHulvGfQDwEbKpWbvz95P/Jts0rqM+88muiO/MH/cBbyz0a+kLD7Ldqbfm7yGnHmEfz+9jH+8LyL6025y/p2wlmyr0jg7al+TvN38iS0I2Az8DZhf6tfT2B9kVpnvy9+8DZFdGfgC86DD9et35HXlgkiRJktTjXNQuSZIkqWBMSCRJkiQVjAmJJEmSpIIxIZEkSZJUMCYkkiRJkgrGhESSJElSwZiQSJIkSSoYExJJkiRJBWNCIkmSJKlgTEgkSZIkFYwJiSRJkqSCMSGRpCIUEekwj3s6+fzvz5/n010Uco+KiPvz+Cf3h79Hknqz0kIHIEkqqNs6KH+qR6PQQRFRCtQDK1NKMwodjyR1NxMSSSpiKaX3FDqGIvcOYAiwvtCBSFKhmJBIklQgKaW6QscgSYXmGhJJ0mFFxPyI+E5E/DkidkbE7oj4Y0RcGREDD9N3akT8OCI2R8TeiHgwIl7fTrtX5esp/jkiJkbE/4uItRHRGBEfbdFuQES8NyLui4hn8+d8LCIuy6c7tX3eNRHRkP/5gxHxRETsi4j1EfHNiBh+mPjfEhFLImJPRGyJiB9GxMQO2h5tbK3WkETE+8mmawFMb7Ou5+5DxSlJfZVXSCRJR+I7QDmwFHgCOB6YA9wAvCIiXptSamqnXxXwELAbuBeYAMwF/jUiXpNS+m07fU7I+wRwP9mUpj0AEVEC3A68GXgWeDCvmwPcBMyLiDe1F0tE3ARcnPf5FfBy4G+BkyPiFSml1E4sfwdckcfzK+As4O3ASyLiRSmlfS2e/5hja2EZ8D3gXcBO4Oct6pYeop8k9VkmJJKkI/EB4D9TSnuaCyLieODHwF8Cfw38sJ1+7wW+Anw8pdSY97sCuBG4GmgvIXkDcAfwf1JK+9vUfZLsA/+vgXemlDbnzzksj2V+Huu32/QrAS4EzkwpPZ73GQssAc4HziFLmNr6W+CVKaV78j7H5THPyZ/ve10Q20EppXsj4n/IEpKNrvGRVAycsiVJRewQt/0d0bJdSunOlslIXrYDuDz/8a86+CuWA59oTkZyN5NdQXhZe9OYgH3Ax9omI/nUsCvyvn/T/IE/j2Un0Dzd6UMdxHJ1czKS99kEfCv/8dwO+nypORnJ++wmu9rRqk8XxCZJRcsrJJJU3Dq67e+BtgURMRN4HTAdGEo2par5i60TO3iexSmlhpYFKaX6iKgFTgNGApva9HkopdTeXadOB0YBd6WUtratTCk9ExErgVMjYmBKqe1r+E07z7ksP07oIP4j7dPZ2CSpaJmQSFIRO5IpQRERwJfJ1lNEB82GdVC+poPyXfmxvJ26ju48NTU/zo+I9tZ7tDQS2NDi56aU0jNHGQe0H397fToTmyQVNRMSSdLh/A1wCVmicBnwALApv9IxhGzBekeJyuE+nLdnXwflJfnx6TyGQ2l7BeJY4jiafp2JTZKKmgmJJOlwLsiPH0op/bpNXVUPxtF8teLxXrjYuzfHJkm9movaJUmHMzI/rm6n7sIejGMJ2a1wXxkRQ3vw7z0SXRZbvuamCb80lFQkTEgkSYfTvIj7Q/l6EgAi4nyyO0v1iJTSXrI7XI0CfhYRFW3bRMRpEfHWnoqpG2N7BpiQ3zJYkvo1v32RJB3OIuCdwMfINkF8AphMtrHgl4CP92AsnwNOIbsysywiHiVb2zKG7O5fU4GfAT/twZi6I7Z/BT4M/DEi/pdsXc2TKaWbDt1Nkvoer5BIkg4ppfRnsh3K/w0YB7yRbPf0DwCf6uFYGlNKbyP70P97YCbZZoSzyK4qXNvTMXVTbJ8EvgEMBN4GvI/slsuS1O9ESsd64xFJkiRJ6hyvkEiSJEkqGBMSSZIkSQVjQiJJkiSpYExIJEmSJBWMCYkkSZKkgjEhkSRJklQwJiSSJEmSCsaERJIkSVLBmJBIkiRJKhgTEkmSJEkFY0IiSZIkqWBMSCRJkiQVjAmJJEmSpIIxIZEkSZJUMCYkkiRJkgrGhESSJElSwZiQSJIkSSoYExJJkiRJBfP/AURT2DoobAgtAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Exercises here!\n", "\n", "neuron_count = 20\n", "\n", "seq_model = nn.Sequential(OrderedDict([\n", " ('hidden_linear', nn.Linear(1, neuron_count)),\n", " ('hidden_activation', nn.Tanh()),\n", " ('output_linear', nn.Linear(neuron_count, 1))\n", "]))\n", "\n", "optimizer = optim.SGD(seq_model.parameters(), lr=1e-4)\n", "\n", "training_loop(\n", " n_epochs = 5000, \n", " optimizer = optimizer,\n", " model = seq_model,\n", " loss_fn = nn.MSELoss(),\n", " t_u_train = t_un_train,\n", " t_u_val = t_un_val, \n", " t_c_train = t_c_train,\n", " t_c_val = t_c_val)\n", "\n", "from matplotlib import pyplot as plt\n", "\n", "t_range = torch.arange(20., 90.).unsqueeze(1)\n", "\n", "fig = plt.figure(dpi=150)\n", "plt.xlabel(\"Fahrenheit\")\n", "plt.ylabel(\"Celsius\")\n", "plt.plot(t_u.numpy(), t_c.numpy(), 'o')\n", "plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')\n", "plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }