{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import torch\n", "torch.set_printoptions(edgeitems=2)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]\n", "t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]\n", "t_c = torch.tensor(t_c)\n", "t_u = torch.tensor(t_u)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def model(t_u, w, b):\n", " return w * t_u + b" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def loss_fn(t_p, t_c):\n", " squared_diffs = (t_p - t_c)**2\n", " return squared_diffs.mean()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([35.7000, 55.9000, 58.2000, 81.9000, 56.3000, 48.9000, 33.9000, 21.8000,\n", " 48.4000, 60.4000, 68.4000])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w = torch.ones(1)\n", "b = torch.zeros(1)\n", "\n", "t_p = model(t_u, w, b)\n", "t_p" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(1763.8846)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loss = loss_fn(t_p, t_c)\n", "loss" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "delta = 0.1\n", "\n", "loss_rate_of_change_w = \\\n", " (loss_fn(model(t_u, w + delta, b), t_c) - \n", " loss_fn(model(t_u, w - delta, b), t_c)) / (2.0 * delta)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "learning_rate = 1e-2\n", "\n", "w = w - learning_rate * loss_rate_of_change_w" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "loss_rate_of_change_b = \\\n", " (loss_fn(model(t_u, w, b + delta), t_c) - \n", " loss_fn(model(t_u, w, b - delta), t_c)) / (2.0 * delta)\n", "\n", "b = b - learning_rate * loss_rate_of_change_b" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def dloss_fn(t_p, t_c):\n", " dsq_diffs = 2 * (t_p - t_c)\n", " return dsq_diffs" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def dmodel_dw(t_u, w, b):\n", " return t_u" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def dmodel_db(t_u, w, b):\n", " return 1.0" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "def grad_fn(t_u, t_c, t_p, w, b):\n", " dloss_dw = dloss_fn(t_p, t_c) * dmodel_dw(t_u, w, b)\n", " dloss_db = dloss_fn(t_p, t_c) * dmodel_db(t_u, w, b)\n", " return torch.stack([dloss_dw.mean(), dloss_db.mean()])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "def training_loop(n_epochs, learning_rate, params, t_u, t_c):\n", " for epoch in range(1, n_epochs + 1):\n", " w, b = params\n", "\n", " t_p = model(t_u, w, b) # <1>\n", " loss = loss_fn(t_p, t_c)\n", " grad = grad_fn(t_u, t_c, t_p, w, b) # <2>\n", "\n", " params = params - learning_rate * grad\n", "\n", " print('Epoch %d, Loss %f' % (epoch, float(loss))) # <3>\n", " \n", " return params" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "def training_loop(n_epochs, learning_rate, params, t_u, t_c, print_params=True):\n", " for epoch in range(1, n_epochs + 1):\n", " w, b = params\n", "\n", " t_p = model(t_u, w, b) # <1>\n", " loss = loss_fn(t_p, t_c)\n", " grad = grad_fn(t_u, t_c, t_p, w, b) # <2>\n", "\n", " params = params - learning_rate * grad\n", "\n", " if epoch in {1, 2, 3, 10, 11, 99, 100, 4000, 5000}: # <3>\n", " print('Epoch %d, Loss %f' % (epoch, float(loss)))\n", " if print_params:\n", " print(' Params:', params)\n", " print(' Grad: ', grad)\n", " if epoch in {4, 12, 101}:\n", " print('...')\n", "\n", " if not torch.isfinite(loss).all():\n", " break # <3>\n", " \n", " return params" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Loss 1763.884644\n", " Params: tensor([-44.1730, -0.8260])\n", " Grad: tensor([4517.2964, 82.6000])\n", "Epoch 2, Loss 5802484.500000\n", " Params: tensor([2568.4011, 45.1637])\n", " Grad: tensor([-261257.4062, -4598.9707])\n", "Epoch 3, Loss 19408031744.000000\n", " Params: tensor([-148527.7344, -2616.3933])\n", " Grad: tensor([15109615.0000, 266155.7188])\n", "...\n", "Epoch 10, Loss 90901075478458130961171361977860096.000000\n", " Params: tensor([3.2144e+17, 5.6621e+15])\n", " Grad: tensor([-3.2700e+19, -5.7600e+17])\n", "Epoch 11, Loss inf\n", " Params: tensor([-1.8590e+19, -3.2746e+17])\n", " Grad: tensor([1.8912e+21, 3.3313e+19])\n" ] }, { "data": { "text/plain": [ "tensor([-1.8590e+19, -3.2746e+17])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "training_loop(\n", " n_epochs = 100, \n", " learning_rate = 1e-2, \n", " params = torch.tensor([1.0, 0.0]), \n", " t_u = t_u, \n", " t_c = t_c)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Loss 1763.884644\n", " Params: tensor([ 0.5483, -0.0083])\n", " Grad: tensor([4517.2964, 82.6000])\n", "Epoch 2, Loss 323.090546\n", " Params: tensor([ 0.3623, -0.0118])\n", " Grad: tensor([1859.5493, 35.7843])\n", "Epoch 3, Loss 78.929634\n", " Params: tensor([ 0.2858, -0.0135])\n", " Grad: tensor([765.4666, 16.5122])\n", "...\n", "Epoch 10, Loss 29.105242\n", " Params: tensor([ 0.2324, -0.0166])\n", " Grad: tensor([1.4803, 3.0544])\n", "Epoch 11, Loss 29.104168\n", " Params: tensor([ 0.2323, -0.0169])\n", " Grad: tensor([0.5780, 3.0384])\n", "...\n", "Epoch 99, Loss 29.023582\n", " Params: tensor([ 0.2327, -0.0435])\n", " Grad: tensor([-0.0533, 3.0226])\n", "Epoch 100, Loss 29.022669\n", " Params: tensor([ 0.2327, -0.0438])\n", " Grad: tensor([-0.0532, 3.0226])\n" ] }, { "data": { "text/plain": [ "tensor([ 0.2327, -0.0438])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "training_loop(\n", " n_epochs = 100, \n", " learning_rate = 1e-4, \n", " params = torch.tensor([1.0, 0.0]), \n", " t_u = t_u, \n", " t_c = t_c)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "t_un = 0.1 * t_u" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Loss 80.364342\n", " Params: tensor([1.7761, 0.1064])\n", " Grad: tensor([-77.6140, -10.6400])\n", "Epoch 2, Loss 37.574917\n", " Params: tensor([2.0848, 0.1303])\n", " Grad: tensor([-30.8623, -2.3864])\n", "Epoch 3, Loss 30.871077\n", " Params: tensor([2.2094, 0.1217])\n", " Grad: tensor([-12.4631, 0.8587])\n", "...\n", "Epoch 10, Loss 29.030487\n", " Params: tensor([ 2.3232, -0.0710])\n", " Grad: tensor([-0.5355, 2.9295])\n", "Epoch 11, Loss 28.941875\n", " Params: tensor([ 2.3284, -0.1003])\n", " Grad: tensor([-0.5240, 2.9264])\n", "...\n", "Epoch 99, Loss 22.214186\n", " Params: tensor([ 2.7508, -2.4910])\n", " Grad: tensor([-0.4453, 2.5208])\n", "Epoch 100, Loss 22.148710\n", " Params: tensor([ 2.7553, -2.5162])\n", " Grad: tensor([-0.4445, 2.5165])\n" ] }, { "data": { "text/plain": [ "tensor([ 2.7553, -2.5162])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "training_loop(\n", " n_epochs = 100, \n", " learning_rate = 1e-2, \n", " params = torch.tensor([1.0, 0.0]), \n", " t_u = t_un, # <1>\n", " t_c = t_c)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1, Loss 80.364342\n", "Epoch 2, Loss 37.574917\n", "Epoch 3, Loss 30.871077\n", "...\n", "Epoch 10, Loss 29.030487\n", "Epoch 11, Loss 28.941875\n", "...\n", "Epoch 99, Loss 22.214186\n", "Epoch 100, Loss 22.148710\n", "...\n", "Epoch 4000, Loss 2.927680\n", "Epoch 5000, Loss 2.927648\n" ] }, { "data": { "text/plain": [ "tensor([ 5.3671, -17.3012])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "params = training_loop(\n", " n_epochs = 5000, \n", " learning_rate = 1e-2, \n", " params = torch.tensor([1.0, 0.0]), \n", " t_u = t_un, \n", " t_c = t_c,\n", " print_params = False)\n", "\n", "params" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADIkAAAiNCAYAAAC6QIV/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmU33V97/HXdybDhEWIECKLyh4QCPsqEWVLK7da6hGk7bUtBRUpUK5tr1e5oqJFe7CKFrmICEVsRbBWS0XZBcIiSyREkIRVWYIQhAgkmUxmvvePsVUkQpb5/L6/+c7jcc4czpk58329v+ck/+XJr6rrOgAAAAAAAAAAAAAAAIxtPU0fAAAAAAAAAAAAAAAAwOoTiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFJjR9AMB4VlXVE0kmLedHS5M80uFzAAAAAAAAAAAAAGCsel2SNZbz/Wfrut6o08c0parruukbAMatqqqWJOlv+g4AAAAAAAAAAAAAaKmBuq4nNn1Ep/Q0fQAAAAAAAAAAAAAAAACrTyQCAAAAAAAAAAAAAADQAiIRAAAAAAAAAAAAAACAFhCJAAAAAAAAAAAAAAAAtMCEpg8AGOeWJun/7W/29/dnq622auAcAAAAAAAAAAAAABh7HnjggQwMDCzvR0s7fUuTRCIAzXokyfa//c2tttoqd999dwPnAAAAAAAAAAAAAMDYs8MOO+See+5Z3o8e6fQtTepp+gAAAAAAAAAAAAAAAABWn0gEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0gEgEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0gEgEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0gEgEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0gEgEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0gEgEAAAAAAAAAAAAAACgBUQiAAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAaAGRCAAAAAAAAAAAAAAAQAuIRAAAAAAAAAAAAAAAAFpAJAIAAAAAAAAAAAAAANACIhEAAAAAAAAAAAAAAIAWEIkAAAAAAAAAAAAAAAC0wISmDwAAAAAAAAAAAAAAgFU2PJQsmJc8fmfy5D3JkmeTZQPJ0NKkd41kQn8ycVIyZftkk12TydskPb1NXw1FiEQAAAAAAAAAAAAAABg76jp5eGYy97LksVnJE3clg4tW/Pf71k42mpZsuluy7aHJ5tOTqip3L3SQSAQAAAAAAAAAAAAAgO63+Nlk9kXJ7V8Z+eSQVTX4QvLILSNft5yVTJ6a7HF0svORyZqTRu9eaIBIBAAAAAAAAAAAAACA7vWLB5OZZyRzLlm5TwxZUQvmJd//YHL1x5NphyfTT0rW33L0d6ADepo+AAAAAAAAAAAAAAAAXmJoWTLzc8kX90lmXVAmEPlNg4tGdr64z0iUMjxUdg8KEIkAAAAAAAAAAAAAANBdnpqbnDcjuepjydBAZ7eHBpKrPpp8ZcbIHTCGiEQAAAAAAAAAAAAAAOgOw8PJjZ9Pzn5T8tgdzd7y2O0jd9z4+ZG7YAyY0PQBAAAAAAAAAAAAAACQocHk28clcy5u+pJfGxpIrjwleeLHyWFnJb19TV8EL8sniQAAAAAAAAAAAAAA0KzBJck33t1dgchvmnPxyH2DS5q+BF6WSAQAAAAAAAAAAAAAgOYMDSaX/EUy73tNX/Ly5n0v+eZRI/dClxKJAAAAAAAAAAAAAADQjOHh5NvHdX8g8l/mXjZy7/Bw05fAcolEAAAAAAAAAAAAAABoxs3/lMy5uOkrVs6ci5Obz2z6ClgukQgAAAAAAAAAAAAAAJ331Nzkmr9v+opVc80nR+6HLiMSAQAAAAAAAAAAAACgs4aWJd9+fzI00PQlq2ZoIPn2ccnwUNOXwIuIRAAAAAAAAAAAAAAA6Kybz0weu6PpK1bPY7cnN/1T01fAi4hEAAAAAAAAAAAAAADonF88mFx7WtNXjI5rTxt5H+gSIhEAAAAAAAAAAAAAADpn5hnJ0EDTV4yOoYGR94EuIRIBAAAAAAAAAAAAAKAzFj+bzLmk6StG15xLkiULm74CkohEAAAAAAAAAAAAAADolNkXJYOLmr5idA0uGnkv6AIiEQAAAAAAAAAAAAAAyqvr5LZzm76ijNvOHXk/aJhIBAAAAAAAAAAAAACA8h6emTx9X9NXlLFgXvLTG5u+AkQiAAAAAAAAAAAAAAB0wNzLmr6grHtb/n6MCSIRAAAAAAAAAAAAAADKe2xW0xeU9XjL348xQSQCAAAAAAAAAAAAAEBZw0PJE3c1fUVZ8+8aeU9okEgEAAAAAAAAAAAAAICyFsxLBhc1fUVZgy8kC+5r+grGOZEIAAAAAAAAAAAAAABlPX5n0xd0xvxx8p50LZEIAAAAAAAAAAAAAABlPXlP0xd0xnh5T7qWSAQAAAAAAAAAAAAAgLKWPNv0BZ2xeJy8J11LJAIAAAAAAAAAAAAAQFnLBpq+oDPGy3vStUQiAAAAAAAAAAAAAACUNbS06Qs6Y0gkQrNEIgAAAAAAAAAAAAAAlNW7RtMXdEZvf9MXMM6JRAAAAAAAAAAAAAAAKGvCOIknxst70rVEIgAAAAAAAAAAAAAAlDVxUtMXdMaa4+Q96VoiEQAAAAAAAAAAAAAAypqyfdMXdMZ4eU+6lkgEAAAAAAAAAAAAAICyNtml6Qs6Y+Nx8p50LZEIAAAAAAAAAAAAAABlTZ6a9K3V9BVl9a2dTN6m6SsY50QiAAAAAAAAAAAAAACU1dObbLRT01eUtfFOI+8JDRKJAAAAAAAAAAAAAABQ3qa7NX1BWZu0/P0YE0QiAAAAAAAAAAAAAACUt+2hTV9Q1nYtfz/GBJEIAAAAAAAAAAAAAADlbT492WCbpq8oY/LUZLP9mr4CRCIAAAAAAAAAAAAAAHRAVSV7HtP0FWXseczI+0HDRCIAAAAAAAAAAAAAAHTGzkcmfWs1fcXo6ltr5L2gC4hEAAAAAAAAAAAAAADojDUnJdMOb/qK0TXt8GTiek1fAUlEIgAAAAAAAAAAAAAAdNL0k5Le/qavGB29/SPvA11CJAIAAAAAAAAAAAAAQOesv2VywIebvmJ0HPDhkfeBLiESAQAAAAAAAAAAAACgs/Y9Ptl096avWD2b7pG88YSmr4AXEYkAAAAAAAAAAAAAANBZvROSw/5f0tvf9CWrprc/OeyspKe36UvgRUQiAAAAAAAAAAAAAAB03obbJgee3PQVq+bA/ztyP3QZkQgAAAAAAAAAAAAAAM3Y94Rk2hFNX7Fyph2R7Ht801fAcolEAAAAAAAAAAAAAABoRk9PcthZydS3Nn3Jitn20JF7e/xTfLqTP5kAAAAAAAAAAAAAADSnty85/J+7PxTZ9tDkneeP3AtdSiQCAAAAAAAAAAAAAECz+iYm77owmXZE05cs37QjkiO+OnIndDGRCAAAAAAAAAAAAAAAzevtS/7oS8khpya9/U1fM6K3PznkEyN3+QQRxgCRCAAAAAAAAAAAAAAA3aGnJ9nvr5Njb0g23b3ZWzbdY+SO/U4cuQvGAH9SAQAAAAAAAAAAAADoLhtum/zlFcnBH+/8p4r09o98msnRV4zcAWPIhKYPAAAAAAAAAAAAAACAl+idkEw/Kdn+7cnMM5I5lySDi8rt9a2VTDt8ZHP9LcvtQEEiEQAAAAAAAAAAAAAAutf6WyZv/0Iy4xPJ7IuS285NFswbvedPnprseUyy85HJxPVG77nQAJEIAAAAAAAAAAAAAADdb+J6yd7vS/Z6b/LTG5N7L0sen5XMn71ynzDSt3ay8U7JJrsl2x2abLZfUlXl7oYOEokAAAAAAAAAAAAAADB2VFWy+fSRryQZHkoW3JfMvzN58p5k8bPJsoFkaCDp7U8m9CdrTkqmbJ9svEsyeZukp7fZd4BCRCIAAAAAAAAAAAAAAIxdPb3JlO1GvmCc62n6AAAAAAAAAAAAAAAAAFafSAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABoAZEIAAAAAAAAAAAAAABAC4hEAAAAAAAAAAAAAAAAWkAkAgAAAAAAAAAAAAAA0AIiEQAAAAAAAAAAAAAAgBYQiQAAAAAAAAAAAAAAALSASAQAAAAAAAAAAAAAAKAFRCIAAAAAAAAAAAAAAAAtIBIBAAAAAAAAAAAAAABogQlNHwAAAAAAAAAAAAAAAKPhiYVL8h+zH8vCxYPpn9Cb7TdeNwduNyU9PVXTp0FHiEQAAAAAAAAAAAAAABjTrp37ZI46/7b0VMlw/eKfbbnh2jn50DfkoDe8ppnjoIN6mj4AAAAAAAAAAAAAAABWxfMDy7LNyZflqPNvS/LSQCRJHnzqhRz7tTty7dwnO3wddJ5IBAAAAAAAAAAAAACAMecLV9+XHT96eQaHllOG/JbBoTrHXnhH5i9c3IHLoDkiEQAAAAAAAAAAAAAAxowHn3o+m/+f7+azV85bqd8bWDacb816rNBV0B1EIgAAAAAAAAAAAAAAdL3h4Tp/8uVbcuA/XrfKz7h09uOjeBF0nwlNHwAAAAAAAAAAAAAAAC/nynt+nvd89fbVfs7iwaFRuAa6l0gEAAAAAAAAAAAAAICu9Mslg9npY1eM2vP6J/SM2rOgG4lEAAAAAAAAAAAAAADoOp+9Ym6+cM39o/rM3Td79ag+D7qNSAQAAAAAAAAAAAAAgK5x/5PP5eDPXl/k2UdP37LIc6FbiEQAAAAAAAAAAAAAAGjc8HCdd51zc257+Jkizz/2zVtl6ynrFHk2dAuRCAAAAAAAAAAAAAAAjfr+j+fn2K/NKvb8vzlkao4/cOtiz4duIRIBAAAAAAAAAAAAAKARCxcNZudTryi6cfwBW+eEg7YpugHdQiQCAAAAAAAAAAAAAEDHffp79+bs6x4ounHXx2Zk3Yl9RTegm4hEAAAAAAAAAAAAAADomLlPPJffO+P6ohvnvHv3zNhho6Ib0I1EIgAAAAAAAAAAAAAAFDc0XOcdZ92Y2Y8uLLax75Yb5F+O2Ts9PVWxDehmIhEAAAAAAAAAAAAAAIq6dPbjOeHrPyq6cdUH3pytp6xTdAO6nUgEAAAAAAAAAAAAAIAinnlhaXb9xJVFN046eJucdPDUohswVohEAAAAAAAAAAAAAAAYdadeek/Ou/GhYs/v663yo1NmZJ1+/ywe/ou/DQAAAAAAAAAAAAAAjJq7H1+Y//GFmUU3zvuLPXLgdq8pugFjkUgEAAAAAAAAAAAAAIDVtmxoOG8788b8ZP4vi23sP3XDXHDUnqmqqtgGjGUiEQAAAAAAAAAAAAAAVsu//+jR/K9vzC668YO/fUs2n7x20Q0Y60QiAAAAAAAAAAAAAACskqefH8jun7yq6Mbf/d62+asDti66AW0hEgEAAAAAAAAAAAAAYKWd8p0f56s3/7TY89daoze3nXxw1u73z95hRfnbAgAAAAAAAAAAAADACrvr0Wfz9jNvLLrx1b/cK/tP3bDoBrSRSAQAAAAAAAAAAAAAgFc0ODSct37+htz/5PPFNg5+w5R8+c/2SFVVxTagzUQiAAAAAAAAAAAAAAC8rEtufyR/9827im7c8L8PyOvWX6voBrSdSAQAAAAAAAAAAAAAgOV66rmB7Pn3VxXdOPnQN+Q9+29ZdAPGC5EIAAAAAAAAAAAAAAAv8aFv3ZWv3/pIseevt2ZfbvnQQVlzjd5iGzDeiEQAAAAAAAAAAAAAAPhvs372TN5x1k1FN/71mL3zxq0nF92A8UgkAgAAAAAAAAAAAABAli4bziGfuy4/fXpRsY237rhRzvrT3VJVVbENGM9EIgAAAAAAAAAAAAAA49zXb/1ZPvStOUU3Zn7wgLz21WsV3YDxTiQCAAAAAAAAAAAAADBO/fyXS7L3aVcX3fjo27bPUfttUXQDGCESAQAAAAAAAAAAAAAYh/7m4tn5t1mPFnv+5HX6M/ODB2RiX2+xDeDFRCIAAAAAAAAAAAAAAOPI7Q//Iu88++aiG9947z7Ze8sNim4ALyUSAQAAAAAAAAAAAAAYB5YMDuWAz/wg8xcuKbbxh7tskjPetUuqqiq2AfxuIhEAAAAAAAAAAAAAgJa78OaH85Hv3F104+YPHZiN11uz6Abw8kQiAAAAAAAAAAAAAAAtNX/h4uz7qWuKbnzisB3z7n02K7oBrBiRCAAAAAAAAAAAAABAy9R1nRMvujOXzn682Mamk9bMNX/75vRP6C22AawckQgAAAAAAAAAAAAAQIvc8uDTOfKcW4pufPPYfbPH5usX3QBWnkgEAAAAAAAAAAAAAKAFlgwOZb9PX5OnX1habOOdu782nzl852LPB1aPSAQAAAAAAAAAAAAAYIw7b+ZDOfU/7ym6ceuHD8qUdScW3QBWj0gEAAAAAAAAAAAAAGCMevSZRZn+D9cW3fj0O6blyL1eX3QDGB0iEQAAAAAAAAAAAACAMaau67z/a7Py/bufKLaxxeS1c/lJ+2eNCT3FNoDRJRIBAAAAAAAAAAAAABhDbrx/Qf703B8W3fj3496YXV//6qIbwOgTiQAAAAAAAAAAAAAAjAGLlw5lr9OuynNLlhXb+OO9Xp9PvWNasecDZYlEAAAAAAAAAAAAAAC63DnXP5DTLru36MZtJx+cDV/VX3QDKEskAgAAAAAAAAAAAADQpX729KLsf/q1RTdOf+dOOXyP1xXdADpDJAIAAAAAAAAAAAAA0GXqus4xF9yeq+99stjG1Nesk++e+Kb09fYU2wA6SyQCAAAAAAAAAAAAANBFrpv3VP78vFuLblx6/PRMe+16RTeAzhOJAAAAAAAAAAAAAAB0gRcGlmX3T16ZJYPDxTb+bN/Ncuof7ljs+UCzRCIAAAAAAAAAAAAAAA374rX35/TL5xbdmPWRQ7L+2msU3QCaJRIBAAAAAAAAAAAAAGjIwwteyFs+84OiG2e8a5cctuumRTeA7iASAQAAAAAAAAAAAADosOHhOn9+/q254b4FxTZ22GTdfOev9suE3p5iG0B3EYkAAAAAAAAAAAAAAHTQ1T/5eY6+4PaiG989cXp22GS9ohtA9xGJAAAAAAAAAAAAAAB0wHNLBrPLqVdmaLgutnH09C3ykT/Yvtjzge4mEgEAAAAAAAAAAAAAKOxzV87L56++r+jGnacckklrrVF0A+huIhEAAAAAAAAAAAAAgEIeeOr5HPSP1xXdOPNPds0f7LRJ0Q1gbBCJwCqoqqovyXZJdkyyw6/++9okk371tV6SoSSLkzyT5PEkDyW5K8ltSW6q63pp5y8HAAAAAAAAAAAAoBOGh+v88ZdvyQ8f+kWxjV1eNyn/9v43prenKrYBjC0iEVgBVVX1JNk1yYFJDkoyPcnar/BrE5L0ZyQa2SLJfr/xs0VVVV2R5IIk/1nX9bJRP3o5qqp6OMlmndj6Hd5T1/W5De4DAAAAAAAAAAAAFHf53U/kfRfeUXTj+ye9KdtttG7RDWDsEYnA71BV1YSMBCFHJDksyfqj+Pi1fvXMw5I8VFXVp5N8pa7roVHcAAAAAAAAAAAAAKCDfrlkMDt97IqiG+9/y1b54O9vV3QDGLtEIvBbqqraIclJSf4oyQYdmNwiyZeSvK+qqmPquv5RBzYBAAAAAAAAAAAAGEWnX35vvnjtA0U3Zn90RtZbs6/oBjC2iUTgpd6W5JgGdndLcnNVVX9d1/WXGtgHAAAAAAAAAAAAYCXN+/lzmfG564tunP0/d8/v77hR0Q2gHUQi0F36k5xdVdWmdV2f0vQxAAAAAAAAAAAAACzf0HCdw8++KbN+9myxjb02Xz8XvXef9PRUxTaAdhGJwOobSnJ3kp8keSjJgiQvJJmYZIMkGyeZnmTblXjmR6qqeqGu638Y5VsBAAAAAAAAAAAAWE2XzZmf4/5lVtGNqz6wf7ae8qqiG0D7iERg1dyb5NIk30vyw7quF73SL1RVtXGS9yY5ISPxyCv5VFVVc+q6vmy1Ll1xNyU5v/DGDYWfDwAAAAAAAAAAAFDMwkWD2fnUK4punHjg1vnAjJX5f5MD/JpIBFbcs0n+OcmFdV2vdPpZ1/X8JB+vquozSc5Icswr/EqV5Nyqqrav67rc55D92n11XZ/bgR0AAAAAAAAAAACAMee0y36Sc65/sNjzqyq566Mz8qqJfcU2gPYTicAruz/J6Um+tiKfGPL/2bvPKL3quv3b554hhRAILfQaeiihQ+ghBKwgItgQRUQURVRElCJFEBVRkCaKIqKAoIIU4Q4JoYROgBB6Rwi9hUD6zH5ewP38vRUzKfObuWbmONa6Xrhmsz9f1nIFXszJ1Za6rt9Jsn9VVTcl+V2S5tk8vmySw5J8f367AAAAAAAAAAAAAMy9B59/Kx/65U1FG+fss2l2Grx00QbQMxiJwH/3aJLjklxU13VLe7+8rus/VFW1UJIz23j0oKqqTqzr+q32vgEAAAAAAAAAAACA9zerpTW7n3lLJkycVKyx9epL5PwvbpGmpqpYA+hZjETgP72U5MAkv6nrelbJUF3XZ1VVtWWSfWbz2EJJ9kpyTslbAAAAAAAAAAAAAHjX3++dmIMvurdo47pDts+ggf2LNoCex0gE/k1d1+d2cPL7ST6RpN9snvlYjEQAAAAAAAAAAAAAinrjnRnZ6IfXFm0cMmLNHDR8jaINoOcyEoFOVtf181VVXZhkv9k8tm1VVU11Xbd21F0AAAAAAAAAAAAAPckxlz+Q39/ydLH3916gKXcfNSL9+/gVbqAcf8JAY7gysx+JLJJk5SRPdcw5AAAAAAAAAAAAAD3D/RMn5SOnjS3aOHffzTJsraWKNgASIxFoFDfOwTODYiQCAAAAAAAAAAAA0C5mtbTmI6eNzcMvTi7WGLbWwPzuC5ulqqpiDYB/ZSQCDaCu69erqpqRpPdsHlu0o+4BAAAAAAAAAACKNx8GAAAgAElEQVQA6M7+dvdz+fbF44s2bjh0h6y8xEJFGwD/zkgEGserSZabzc8X7KhDAAAAAAAAAAAAALqjV9+enk2PH1W0cdgH1s5Xd1itaAPgvzESgcbRr42fT+uQKwAAAAAAAAAAAAC6oSMunZA/3f7PYu/v32eB3HHE8PTr7Ve0gc7jTyBoAFVVLZxkQBuPvdERtwAAAAAAAAAAAAB0J+OffTO7nXFz0cb5+22ebdcYWLQBMCeMRKAxbJikauOZJzriEAAAAAAAAAAAAIDuYMas1nzglBvz5KvvFGvsPHjpnP25TVJVbf0aKEDHMBKBxvDhNn7+VpJy32/2b6qqak6yapKVkgxMsmCSliRT3rvluSTP1nX9dkfdBAAAAAAAAAAAADCnLr7z2Xz3r/cVbdz03WFZcfF+RRsAc8tIBDpZVVVNSfZq47GxdV23Fj5lpaqqjk0yPMlGSdr8t5aqqp5MMi7JdUn+Udd1hw1ZAAAAAAAAAAAAAP7dy5OnZfMTRhdtHPnhdfKlbQcVbQDMKyMR6Hy75d1v7ZidyzvgjmHvfebGoPc+eyZJVVU3JTk7yZ/rup7VvucBAAAAAAAAAAAA/Hff/cv4XHzXc8Xev/hCvXPzYTtmwd7NxRoA88tIBDpRVVXNSY5r47EZSS7pgHPaw7bvfY6pqurIuq7/3NkHAQAAAAAAAAAAAN3buGfeyB5n3VK0ccH+W2Sr1ZYs2gBoD0Yi0LkOSLJeG8+cV9f16x1xTDtaPclFVVXtnWT/uq5f7OyDAAAAAAAAAAAAgO5l+qyW7PizGzLxzanFGh/ZYNmc9umNUlVVsQZAezISgU5SVdXKSX7cxmMzk/ykA84p5SNJxlVVtVtd13d19jEAAAAAAAAAAABA9/Cn25/JEZfeX7Rxy/d2zHKLLli0AdDejESgE1RV1ZTk90kWbuPRU+q6fqL8RUUtl+SGqqo+XNf19Z19zJyqquprSQ7sgNRqHdAAAAAAAAAAAACAbuHFSdOy5YmjizaO3XXdfH6rVYo2AEoxEoHOcWySHdp45tkkPyx/SpLk8SR3JLk/yYQkTyWZ9N5napLFkiyRZMkkmybZLsm27/3vOdEvyRVVVe1Y1/Wd7Xt6MQOTDO7sIwAAAAAAAAAAAICkrut8++LxufSeicUayyzSN9cfukP69mou1gAozUgEOlhVVR9Kcngbj9VJ9qvrenKhM+okNyS5PMlVdV0/2sbzr7z3SZKxSU6pqqo5yV5Jvptkwzlo9k/y16qqNq7r+tV5OxsAAAAAAAAAAADoae546vXsdfatRRsXHzA0m6+6eNEGQEcwEoEOVFXV4CQXJmlq49HT67q+tsAJrye5NMlZczAMma26rlvy7t/LhVVVfSbJr5Is3MZftmKSXyf5+Py0AQAAAAAAAAAAgO5v2syWbPfTMXl58vRijY9vtHxO3mtIqqoq1gDoSEYi0EGqqhqY5Ioki7Tx6J1JvlPojM3rup7V3i+t6/qCqqruTPKXJBu08fjuVVV9sK7rq9v7DgAAAAAAAAAAAKB7OO+Wp3P05Q8Ubdx++PAsvUjfog2AjmYkAh2gqqqFklyZZFAbj76WZM+6rmeUuKPEQORf3v1YVVXbJxmTZMM2Hj8hiZEIAAAAAAAAAAAA8H88/+bUbPXj64o2Tth9vXx2i5WLNgA6i5EIFFZVVe8kf02yeRuPTk2yW13Xz5S/qoy6rt+sqmrXJPckWWI2j25UVdXwuq5Hd9Bp8+KVJA92QGe1JH06oAMAAAAAAAAAAAANq67rfP3Ce3LVfS8Ua6y4+IIZ9e3t02eB5mINgM5mJAIFVVXVlOSPSXZp49GZefcbRG4uf1VZdV0/W1XVt5L8oY1H90nSsCORuq7PSHJG6U5VVQ8kGVy6AwAAAAAAAAAAAI3q1idey6d/c1vRxl+/ulU2WXmxog2ARmAkAoVUVVUl+XWSPdt4tDXJ5+u6vqr8VR2jruvzq6o6JMmQ2Ty2W1VVveq6ntlRdwEAAAAAAAAAAACNY9rMlgw9cXTemFLuVwn32nSF/PQTs/t1RoDuxUgEyvlFkv3m4Lmv1nV9YeljOsGpSX43m58PSLJRkjs65hwAAAAAAAAAAACgUZxz05M5/qqHijbuOGJ4llq4b9EGQKMxEoECqqo6PsnBc/DoIXVd/7r0PZ3k0iRnJ+k1m2eGxkgEAAAAAAAAAAAAeoxnX5+SbX86pmjjJ3usn09utlLRBkCjMhKBdlZV1WFJjpiDR4+u6/rnpe/pLHVdv1lV1b1JNpvNY2t31D0AAAAAAAAAAABA56nrOgecPy4jH3ypWGPQwIVyzcHbpfcCTcUaAI3OSATaUVVV30jy4zl49KS6ro8rfU8DuDuzH4ms0kF3AAAAAAAAAAAAAJ3kpsdeyed+e0fRxmVf2zobrrho0QZAV2AkAu2kqqr9k5wyB4+eUdf1d0vf0yCebuPnS3XEEQAAAAAAAAAAAEDHmzJjVjY/YXTenj6rWOOzW6yUE3Zfv9j7AboaIxFoB1VVfS7Jr5JUbTz62yQHlb+oYUxq4+f9OuQKAAAAAAAAAAAAoEOddf0T+ck1Dxdt3HXkTlmyf5+iDYCuxkgE5lNVVXsmOTdJUxuPXpjky3Vd1+Wvahgz2vh5rw65AgAAAAAAAAAAAOgQz7z2TrY/6fqijZP3HJI9NlmhaAOgqzISgflQVdWuSf6UpLmNRy9Lsk9d163lr2ooC7bx86kdcgUAAAAAAAAAAABQVF3X2ff3d+b6R14p1lh7mYVzxUHbpFdzW/9db4Cey0gE5lFVVbskuThtfxvG1Uk+Wdf1rPJXNZxl2vj52x1yBQAAAAAAAAAAAFDMmEdezr7n3lm0ceVB22S95QcUbQB0B0YiMA+qqtohyaVJ+rTx6HVJPl7X9YziRzWm1dv4+cQOuQIAAAAAAAAAAABod29Pn5WNf3htZsxqLdbYd+tVcvRH1y32foDuxkgE5lJVVUOTXJFkwTYeHZtk17qup5W/qmFt0cbPn+qQKwAAAAAAAAAAAIB2ddrox3LytY8Wbdx91IgsvlDvog2A7sZIBOZCVVUbJ7k6Sf82Hr0zyYfrun6n/FWNqaqqwUlWaeOx+zrgFAAAAAAAAAAAAKCdPPnK29nx5BuKNk791IbZbcPlizYAuisjEZhDVVWtl2RkkgFtPDo+yS51Xb9V/qqGts8cPHNL8SsAAAAAAAAAAACA+dbaWudzv7s9Nz/+WrHG+ssPyKUHbpUFmpuKNQC6OyMRmANVVa2ZZFSSJdp49MEkI+q6fqP8VY2rqqrFkhzQxmNP1HX9REfcAwAAAAAAAAAAAMy7UQ++lC/94a6ijasP3jbrLLtI0QZAT2AkAm2oqmqVJKOTLN3Go48l2amu61dK39QFnJhk0TaeubgjDgEAAAAAAAAAAADmzeRpM7PBsSNT1+UaX95uUA7/0DrlAgA9jJEIzEZVVcvl3YHICm08+nSS4XVdv1D8qAZXVdUn0va3iLQk+W0HnAMAAAAAAAAAAADMg5+PfCS/vO7xoo17fzAii/brXbQB0NMYicB/UVXVwCSjkgxq49HnkuxY1/Wz5a+ae1VVDU7yQl3Xb3RAa0SS8+fg0Uvqun6i9D0AAAAAAAAAAADA3Hn85cnZ6ec3Fm2c+dmN86H1ly3aAOipjETgfVRVtWiSkUna+v6yF/PuQOSp8lfNs52THF1V1c+TnFnX9WvtHaiqqkpyWJIfpu0/V6YmOby9bwAAAAAAAAAAAADmXWtrnU/9+rbc8fTrxRqbrLxYLj5gaJqbqmINgJ7OSAT+TVVV/ZP8I8mGbTz6apKd6rp+rPxV823RJMcl+V5VVRck+X1d1ze3x4urqtooyY/z7hhlThzT4KMaAAAAAAAAAAAA6FGuuf+FfOWPdxdtjPzWdllz6YWLNgAwEoH3c2GSoXPw3J+TDK2qak6ebQ8v1HV91Xy+o1+SLyX5UlVVzya5Ksm1SW6p6/rFOX1JVVWLJ9k+yYFJdpqL/uVJTpqL5wEAAAAAAAAAAIBCJk2dmSHHjiza+Nqw1XLoLmsXbQDw/xiJwH9afw6f+1rRK/7TDXl31NFeVkzylfc+qarqhSQPJ3kyyYtJXk8yLUlLksWSLJ5kYJJNkqyXZG6/6+3WJHvXdV23x/EAAAAAAAAAAADAvPvJNQ/nrOufKNoYf/TOGbBgr6INAP4vIxHgfy373mdYgXdfn2TXuq4nF3g3AAAAAAAAAAAAMIceeXFydjnlxqKNsz+3SXZZd5miDQDen5EIUNovkxxS1/Wszj4EAAAAAAAAAAAAeqqW1jp7nHVL7n32zWKNLQctngu+tGWamqpiDQBmz0gEKOXRJF+p63pMZx8CAAAAAAAAAAAAPdmV9z2fr19wT9HGqG9vn9WX6l+0AUDbjESg+3s4yYNJBndQ77EkP05yfl3XMzuoCQAAAAAAAAAAAPybN6fMyIbHXVu0cfDwNfKtEWsWbQAw54xEoJur6/qaJNdUVbVUkh3e+2yWZL0kfdsp82ySa5L8MclNdV3X7fReAAAAAAAAAAAAYB4cf+WDOWfsU8Xe39xU5d4fjMjCfXsVawAw94xE4N/Udb1KZ99QQl3XLye5+L1PqqpqTrJOkiFJBiVZ8b3PCkkGJOn33qdPkllJpiWZnOSFJBOTPJJkQpI767p+pCP/XgAAAAAAAAAAAID398Dzk/LhX44t2vjdFzbNjmsvXbQBwLwxEoEeqq7rliT3v/cBAAAAAAAAAAAAurBZLa3Z9fSb8+ALbxVrbLvGkjlv383T1FQVawAwf4xEAAAAAAAAAAAAAKAL+/u9E3PwRfcWbYz5zg5ZdcmFijYAmH9GIgAAAAAAAAAAAADQBb329vRscvyooo1Dd1krXxu2etEGAO3HSAQAAAAAAAAAAAAAupij/35/zrv1mWLvX7BXc+46cqcs1MevGwN0Jf7UBgAAAAAAAAAAAIAuYsJzk/LR08cWbZz3xc2z/ZoDizYAKMNIBAAAAAAAAAAAAAAa3MyW1nzw1Jvy+MtvF2vstM5S+c0+m6aqqmINAMoyEgEAAAAAAAAAAACABvaXcc/lO5eML9q48dBhWWmJfkUbAJRnJAIAAAAAAAAAAAAADeiVydOz2Qmjija+/8G1c8D2qxVtANBxjEQAAAAAAAAAAAAAoMF8/28TcuEd/yz2/gEL9spt3x+eBXs3F2sA0PGMRAAAAAAAAAAAAACgQdzzzzey+5m3FG386UtbZOvVlyzaAKBzGIkAAAAAAAAAAAAAQCebMas1I35xQ555bUqxxgfXWyZnfnbjVFVVrAFA5zISAQAAAAAAAAAAAIBOdNEd/8z3/jahaGPsYcOywmL9ijYA6HxGIgAAAAAAAAAAAADQCV5+a1o2/9Hooo2jPjI4+22zatEGAI3DSAQAAAAAAAAAAAAAOth3Lhmfv4x7rtj7l+zfJ2MPG5a+vZqLNQBoPEYiAAAAAAAAAAAAANBBxj3zevY469aijYu+vGW2HLRE0QYAjclIBAAAAAAAAAAAAAAKmz6rJcNOuj7PT5pWrLHrkOVy6qc2TFVVxRoANDYjEQAAAAAAAAAAAAAo6PzbnslRl91ftHHr93fMsgMWLNoAoPEZiQAAAAAAAAAAAABAAS9MmpqhJ15XtHHcbutmn6GrFG0A0HUYiQAAAAAAAAAAAABAO6rrOgdfdG8uH/98scZyA/pmzKE7pM8CzcUaAHQ9RiIAAAAAAAAAAAAA0E5ue/K1fOrXtxVtXPKVodlslcWLNgDomoxEAAAAAAAAAAAAAGA+TZvZkm1+Miavvj29WGOPjVfIyXsNKfZ+ALo+IxEAAAAAAAAAAAAAmA+/G/tUjrvywaKN2w8fnqUX6Vu0AUDXZyQCAAAAAAAAAAAAAPPguTemZJufjCna+NHu6+czW6xUtAFA92EkAgAAAAAAAAAAAABzoa7rHPinu3P1/S8Wa6y8RL9c+63t03uBpmINALofIxEAAAAAAAAAAAAAmEO3PP5qPnPO7UUblx64VTZaabGiDQC6JyMRAAAAAAAAAAAAAGjD1Bkt2fLE0Zk0dWaxxqc3XzEnfnyDYu8HoPszEgEAAAAAAAAAAACA2fj1jU/kR/94uGjjziN2ysCF+xRtAND9GYkAAAAAAAAAAAAAwPv452tTst1JY4o2TvrEBtlz0xWLNgDoOYxEAAAAAAAAAAAAAOBf1HWd/f9wV0Y99HKxxhpL9c8/Dt42vZqbijUA6HmMRAAAAAAAAAAAAADgPTc++kr2+d0dRRtXfH2brL/CgKINAHomIxEAAAAAAAAAAAAAerwpM2Zl0+NHZcqMlmKNfYaunON2W6/Y+wHASAQAAAAAAAAAAACAHu2MMY/npP95pGhj3JE7ZYn+fYo2AMBIBAAAAAAAAAAAAIAe6elX38kOP7u+aOOUT26Yj220fNEGAPwvIxEAAAAAAAAAAAAAepS6rvP5c+/MjY++UqwxeNlFcvnXt84CzU3FGgDw74xEAAAAAAAAAAAAAOgxrnv4pXzx93cVbVz1jW2y7nIDijYA4P0YiQAAAAAAAAAAAADQ7b09fVY2Om5kZrbUxRr7bbNqjvrI4GLvB4C2GIkAAAAAAAAAAAAA0K2dOuqx/GLUo0Ub9xw1Iost1LtoAwDaYiQCAAAAAAAAAAAAQLf0xCtvZ/jJNxRtnPbpjfLRIcsVbQDAnDISAQAAAAAAAAAAAKBbaW2t89lzbs+tT75WrDFkxUXzt69uleamqlgDAOaWkQgAAAAAAAAAAAAA3cbIB17Ml88fV7RxzTe3zdrLLFK0AQDzwkgEAAAAAAAAAAAAgC7vrWkzs8ExI4s2Dth+UL7/wXWKNgBgfhiJAAAAAAAAAAAAANCl/ex/HsnpYx4v2hj/g50zoF+vog0AmF9GIgAAAAAAAAAAAAB0SY+9NDkjfnFj0cav9t44H1hv2aINAGgvRiIAAAAAAAAAAAAAdCktrXX2OvvWjHvmjWKNzVZZLBd9eWiam6piDQBob0YiAAAAAAAAAAAAAHQZV094IV/9091FG9d+a7ussfTCRRsAUIKRCAAAAAAAAAAAAAANb9KUmRly3MiijYN2XD2H7LxW0QYAlGQkAgAAAAAAAAAAAEBDO/EfD+XsG58s2rjvmJ2zSN9eRRsAUJqRCAAAAAAAAAAAAAAN6aEX3soHT72paOM3+2yaEYOXLtoAgI5iJAIAAAAAAAAAAABAQ2lprfOxM27OhImTijW2Xn2JnP/FLdLUVBVrAEBHMxIBAAAAAAAAAAAAoGFcPv75fOPCe4o2Rh+yfVYb2L9oAwA6g5EIAAAAAAAAAAAAAJ3ujXdmZKMfXlu08a2d1szBO61RtAEAnclIBAAAAAAAAAAAAIBOdewVD+Tcm58u9v7eCzTl7qNGpH8fvzoLQPfmn3QAAAAAAAAAAAAAdIr7J07KR04bW7Rx7hc2y7C1lyraAIBGYSQCAAAAAAAAAAAAQIea1dKaj5w2Ng+/OLlYY4e1BubcL2yWqqqKNQCg0RiJAAAAAAAAAAAAANBhLr3nuXzrz+OLNm44dIesvMRCRRsA0IiMRAAAAAAAAAAAAAAo7tW3p2fT40cVbXz3A2vlwB1WL9oAgEZmJAIAAAAAAAAAAABAUUdeNiF/vO2fxd7fv88CueOI4enX26/GAtCz+SchAAAAAAAAAAAAAEXc99yb2fX0m4s2/vDFzbPdmgOLNgCgqzASAQAAAAAAAAAAAKBdzWxpzS6n3JgnX3mnWGPE4KXz689tkqqqijUAoKsxEgEAAAAAAAAAAACg3Vx817P57l/uK9q46bvDsuLi/Yo2AKArMhIBAAAAAAAAAAAAYL69PHlaNj9hdNHGER9aJ/tvN6hoAwC6MiMRAAAAAAAAAAAAAObLYX+5L3++69li71+sX6/c8r3hWbB3c7EGAHQHRiIAAAAAAAAAAAAAzJNxz7yRPc66pWjjgv23yFarLVm0AQDdhZEIAAAAAAAAAAAAAHNlxqzWDP/59Xn29anFGh9ef9mc/pmNUlVVsQYAdDdGIgAAAAAAAAAAAADMsQtu/2cOv3RC0cbN39sxyy+6YNEGAHRHRiIAAAAAAAAAAAAAtOnFSdOy5YmjizaO/ujg7Lv1qkUbANCdGYkAAAAAAAAAAAAA8F/VdZ1DLh6fv90zsVhj6UX65IZDh6Vvr+ZiDQDoCYxEAAAAAAAAAAAAAHhfdz79evb81a1FGxcfMDSbr7p40QYA9BRGIgAAAAAAAAAAAAD8H9NmtmSHk67Pi29NK9bYfaPl8/O9hqSqqmINAOhpjEQAAAAAAAAAAAAA+P/94dan84O/P1C0cdv3h2eZAX2LNgCgJzISAQAAAAAAAAAAACDPvzk1W/34uqKN4z+2XvbecuWiDQDoyYxEAAAAAAAAAAAAAHqwuq5z0IX35Mr7XijWWGGxBTP6kO3TZ4HmYg0AwEgEAAAAAAAAAAAAoMe69YnX8unf3Fa08devbpVNVl6saAMAeJeRCAAAAAAAAAAAAEAPM21mS7b+8XV57Z0ZxRp7brJCTtpzSLH3AwD/yUgEAAAAAAAAAAAAoAc556Ync/xVDxVt3HH48Cy1SN+iDQDgPxmJAAAAAAAAAAAAAPQAz74+Jdv+dEzRxk/2WD+f3Gylog0A4L8zEgEAAAAAAAAAAADoxuq6zlf+OC7/88BLxRqDllwo13xzu/ReoKlYAwBom5EIAAAAAAAAAAAAQDc19rFXs/dvby/auOxrW2fDFRct2gAA5oyRCAAAAAAAAAAAAEA3M3VGSzb/0ahMnjarWOMzW6yUH+2+frH3AwBzz0gEAAAAAAAAAAAAoBv51Q1P5MdXP1y0cdeRO2XJ/n2KNgCAuWckAgAAAAAAAAAAANANPPPaO9n+pOuLNk7ec0j22GSFog0AYN4ZiQAAAAAAAAAAAAB0YXVdZ7/z7sp1D79crLHW0gvnym9sk17NTcUaAMD8MxIBAAAAAAAAAAAA6KKuf+TlfOHcO4s2rjxom6y3/ICiDQCgfRiJAAAAAAAAAAAAAHQx70yflY1/eG2mz2ot1vjCVqvkmF3XLfZ+AKD9GYkAAAAAAAAAAAAAdCGnX/dYfjby0aKNu48akcUX6l20AQC0PyMRAAAAAAAAAAAAgC7gqVffybCfXV+0ceqnNsxuGy5ftAEAlGMkAgAAAAAAAAAAANDAWlvr7PO7OzL28VeLNdZbfpFcduDWWaC5qVgDACjPSAQAAAAAAAAAAACgQY1+6KXsd95dRRv/+Ma2GbzcIkUbAEDHMBIBAAAAAAAAAAAAaDCTp83MBseOTF2Xa+y/7ao54sODywUAgA5nJAIAAAAAAAAAAADQQH5x7aM5dfRjRRv3/mBEFu3Xu2gDAOh4RiIAAAAAAAAAAAAADeDxl9/OTj+/oWjjjM9snA9vsGzRBgDQeYxEAAAAAAAAAAAAADpRa2udT/36ttzx9OvFGhuvtGgu+cpWaW6qijUAgM5nJAIAAAAAAAAAAADQSf7ngRdzwPnjyja+uV3WWmbhog0AoDEYiQAAAAAAAAAAAAB0sElTZ2bIsSOLNr66w2o57ANrF20AAI3FSAQAAAAAAAAAAACgA/3kmodz1vVPFG2MP3rnDFiwV9EGANB4jEQAAAAAAAAAAAAAOsAjL07OLqfcWLTxq703yQfWW6ZoAwBoXEYiAAAAAAAAAAAAAAW1tNbZ46xbcu+zbxZrbLHq4rlw/y3T1FQVawAAjc9IBAAAAAAAAAAAAKCQq+57IV+74O6ijVHf3j6rL9W/aAMA6BqMRAAAAAAAAAAAAADa2ZtTZmTD464t2vjG8DXy7RFrFm0AAF2LkQgAAAAAAAAAAABAOzr+ygdzztinir2/uanKvT8YkYX79irWAAC6JiMRAAAAAAAAAAAAgHbw4PNv5UO/vKlo47ef3zTD11m6aAMA6LqMRAAAAAAAAAAAAADmw6yW1ux2xs154Pm3ijW2XWPJnLfv5mlqqoo1AICuz0gEAAAAAAAAAAAAYB79/d6JOfiie4s2xnxnh6y65EJFGwBA92AkAgAAAAAAAAAAADCXXnt7ejY5flTRxiEj1sxBw9co2gAAuhcjEQAAAAAAAAAAAIC5cMzlD+T3tzxd7P19ezVl3JEjslAfv+YJAMwd//YAAAAAAAAAAAAAMAcmPDcpHz19bNHGeV/cPNuvObBoAwDovoxEAAAAAAAAAAAAAGZjZktrPvzLm/LoS28Xa+y49lL57ec3TVVVxRoAQPdnJAIAAAAAAAAAAADwX/xl3HP5ziXjizZuPHRYVlqiX9EGANAzGIkAAAAAAAAAAAAA/JtXJk/PZieMKtr43gfXzle2X61oAwDoWYxEAAAAAAAAAAAAAP7F4ZdOyAW3/7PY+xfpu0BuO3x4+vX2a5wAQPvybxcAAAAAAAAAAAAASe599s187Iybizb+9KUtsvXqSxZtAAA9l5EIAAAAAAAAAAAA0KPNmNWaXU65MU+9+k6xxgfWXSZn7b1xqqoq1gAAMBIBAAAAAAAAAAAAeqw/3/nPHPbXCUUbYw8blhUW61e0AQCQGIkAAAAAAAAAAAAAPdDLb03L5j8aXbRx1EcGZ79tVi3aAAD4V0YiAAAAAAAAAAAAQI9y6CXjc8m454q9f8n+vTP2sB3Tt1dzsQYAwPsxEgEAAAAAAAAAAAB6hHHPvJ49zrq1aOOiL2+ZLQctUbQBAPDfGIkAAAAAAAAAAAAA3dr0WS3Z8Wc3ZOKbU4s1PjpkufzyUxumqqpiDQCAthiJAAAAAAAAAAAAAN3WH297Jkdedn/Rxi3f2zHLLbpg0QYAwJwwEgEAAAAAAAAAAAC6nRcmTc3QE68r2jhut3Wzz9BVijYAAOaGkQgAAAAAAAAAAADQbdR1nW/9+d5cdu/zxRrLDuibMd/ZIX17NRdrAADMCyMRAAAAAAAAAAAAoFu4/YmVHawAACAASURBVMnX8slf31a0cclXhmazVRYv2gAAmFdGIgAAAAAAAAAAAECXNm1mS7b76Zi8PHl6scbHN14+J+85JFVVFWsAAMwvIxEAAAAAAAAAAACgy/r9zU/lmCseLNq4/fDhWXqRvkUbAADtwUgEAAAAAAAAAAAA6HImvjk1W//4uqKNH+2+fj6zxUpFGwAA7clIBAAAAAAAAAAAAOgy6rrO1y+4J1dNeKFYY6XF++Xab2+XPgs0F2sAAJRgJAIAAAAAAAAAAAB0Cbc88Wo+85vbizb+duBW2XilxYo2AABKMRIBAAAAAAAAAAAAGtrUGS3Z8sTRmTR1ZrHGJzddMT/5xAbF3g8A0BGMRAAAAAAAAAAAAICGdc5NT+b4qx4q2rjjiOFZauG+RRsAAB3BSAQAAAAAAAAAAABoOM++PiXb/nRM0cZPP7FB9tp0xaINAICOZCQCAAAAAAAAAAAANIy6rrP/H8Zl1EMvFWusNnChXPPN7dKrualYAwCgMxiJAAAAAAAAAAAAAA3hpsdeyed+e0fRxuVf3zobrLBo0QYAQGcxEgEAAAAAAAAAAAA61ZQZs7Lp8aMyZUZLscbeW66U4z+2frH3AwA0AiMRAAAAAAAAAAAAoNOcef3j+ek1jxRt3HXkTlmyf5+iDQCARmAkAgAAAAAAAAAAAHS4p199Jzv87PqijZ/vNSQf33iFog0AgEZiJAIAAAAAAAAAANATtLYkrz6aPH9v8vKDybQ3k1nTk5YZSXPvZIE+Sd9Fk6UGJ8ttlCy5RtLU3NlX0w3VdZ3Pn3tnbnz0lWKNdZZdJFd8fess0NxUrAEA0IiMRAAAAAAAAAAAALqjuk6eHps88o9k4t3Ji/clM6fM+V/fa6FkmfWT5TdO1vpQsso2SVWVu5ceYcwjL2ffc+8s2rjyoG2y3vIDijYAABqVkQgAAAAAAAAAAEB3MvXNZPxFyV2/ffebQ+bVzHeSZ29793PbmcmSayab7pcM+VSy4KLtdy89wtvTZ2Wj40ZmZktdrLHv1qvk6I+uW+z9AABdgZEIAAAAAAAAAABAd/D6k8nYU5IJl8zdN4bMqVcfTa45LBl9bLL+nsk230wWH9T+HbqdU0c9ll+Mmo/B0hy456gRWWyh3kUbAABdgZEIAAAAAAAAAABAV9YyK7n1tGTMiUnL9PK9mVOSu89799tKhh2ebHVQ0tRcvkuX88Qrb2f4yTcUbfzy0xtl1yHLFW0AAHQlRiIAAAAAAAAAAABd1SuPJJd9NZk4ruPbLdOTUUcnD12RfOzMZOBaHX8DDam1tc5nz7k9tz75WrHGkBUG5G8Hbp3mpqpYAwCgKzISAQAAAAAAAAAA6GpaW9/99pDrTuiYbw+ZnYl3Jb/aNtnxiGToQUlTU+feQ6e69sGXsv8f7irauOab22btZRYp2gAA6KqMRAAAAAAAAAAAALqSlpnJZQcmEy7u7Ev+n5bpybU/SF68/91vFWnu1dkX0cHemjYzGxwzsmjjgO0G5fsfWqdoAwCgqzMSAQAAAAAAAAAA6CpmTksu+ULy6NWdfcn7m3BxMn1ysufvk159O/saOsjJIx/Jadc9XrQx/gc7Z0A/4yMAgLYYiQAAAAAAAAAAAHQFLTMbeyDyvx69OvnLvslef/CNIt3cYy9Nzohf3Fi08au9N84H1lu2aAMAoDsxEgEAAAAAAAAAAGh0ra3JZQc2/kDkfz3yj3fv3f3spKmps6+hnbW21tnr7Ftz1zNvFGtsuvJi+fMBQ9PcVBVrAAB0R0YiAAAAAAAAAAAAje7W05IJF3f2FXNnwsXJMusnW3+jsy+hHV1z/wv5yh/vLtq49lvbZY2lFy7aAADoroxEAAAAAAAAAAAAGtkrjyTXndDZV8yb645P1twlGbhWZ1/CfJo0ZWaGHDeyaOPrw1bPd3bx/xUAgPlhJAIAAAAAAAAAANCoWmYll301aZne2ZfMm5bpyWUHJvuNTJqaO/sa5tGJVz+Us294smjjvmN2ziJ9exVtAAD0BEYiAAAAAAAAAAAAjerW05OJ4zr7ivkz8a7kltOSbb7Z2Zcwlx5+8a184JSbijZ+s8+mGTF46aINAICexEgEAAAAAAAAAACgEb3+ZDLmR519RfsY86Nk8K7J4oM6+xLmQEtrnY+feXPGPzepWGPooCXypy9tkaamqlgDAKAnMhIBAAAAAAAAAABoRGNPSVqmd/YV7aNl+rt/P7v+srMvoQ1XjH8+B114T9HG6EO2z2oD+xdtAAD0VEYiAAAAAAAAAAAAjWbqm8mESzr7iv+PvfuMsrQq0P59787QJMlRkgTJOYNksMcsoI6vacQs6JgByUEMo4wBEyqmQWXUUQQkiySJEiRIzjkjTdNN9/5/aOf/+grUqa6qXedU1XWt1YsPz+7nt88XVvdadfcZWtecmOx6eDJl4W7fhBfw2NMzs+HhZzRtfHTn1fLRnVdv2gAAGOuMRAAAAAAAAAAAAHrNVT9LZk3v9i2G1qzpcz/X5u/r9k34J4eddF2+f8Ftzd4/afy4XHHQLllgsh9ZBABozZ+4AAAAAAAAAAAAekmtyaXHdfsWbVx6XLLZe5NSun0Tkvzlnifyqq+d37Txg3dumh3WXLJpAwCA/8tIBAAAAAAAAAAAoJfcfn7yyE3dvkUbD9+Y3HFBstI23b7JmPbc7Dl59dcvyPX3Pdms8YrVl8jx79o0xSAIAGBYGYkAAAAAAAAAAAD0kr+e0u0btHXDKUYiXfTrP9+df//5VU0bf/jE9llp8alNGwAAvDAjEQAAAAAAAAAAgF5yzxXdvkFb947yz9ejHvnbs9n4iDObNj652xr50A4va9oAAKBvRiIAAAAAAAAAAAC9Ys7s5P6ru32Ltu67eu7nHDe+2zcZMw76zV/yo4vuaPb+qZPG55IDds7UyX4kEQCg2/yJDAAAAAAAAAAAoFc8fGMya3q3b9HWrKeTh29Kllyz2zcZ9a6++/G85usXNG386N82y3arL9G0AQBA/xmJAAAAAAAAAAAA9Ip7r+z2DYbHfVcaiTQ0a/ac7H7MH3PLQ083a+z88qXy3bdvnFJKswYAAPPOSAQAAAAAAAAAAKBXPHhdt28wPMbK5+yCEy+7K5/876ubNs771A5ZYdH5mzYAABgYIxEAAAAAAAAAAIBeMePxbt9geDwzRj7nMHrwqRnZ7MizmjYOmPbyvGe7VZo2AAAYHCMRAAAAAAAAAACAXvHcs92+wfAYK59zmOz3q6tzwiV3NXv/IvNPzEWf2SnzTRrfrAEAwNAwEgEAAAAAAAAAAOgVs2d2+wbDY7aRyFC44s7H8oZjL2za+K+9N89WL1u8aQMAgKFjJAIAAAAAAAAAANArxk/q9g2Gx/jJ3b7BiDbzuTnZ+cvn5s5HpzdrTFt36XzjXzdKKaVZAwCAoWckAgAAAAAAAAAA0CsmjJHxxFj5nA2ccMmd2e9X1zRtXPCZHbPcIvM1bQAA0IaRCAAAAAAAAAAAQK+Yski3bzA85hsjn3MIPfDkjGx+1FlNGwe/eq28a+uVmzYAAGjLSAQAAAAAAAAAAKBXLLlWt28wPMbK5xwiH//FVfnlFXc3e/8SC07OeZ/aIVMmjm/WAABgeBiJAAAAAAAAAAAA9IplN+j2DYbHMmPkcw7SZbc/mj2+dVHTxs/fu0U2X2Wxpg0AAIaPkQgAAAAAAAAAAECvWHz1ZOL8yazp3b5JOxOnJouv1u1b9LQZs2Zn+y/+Ifc/OaNZ47UbLJtj3rRBSinNGgAADD8jEQAAAAAAAAAAgF4xbnyy9HrJXX/q9k3aWWa9uZ+TF/Tji27Pgb+5tmnjov12zDILz9e0AQBAdxiJAAAAAAAAAAAA9JLlNhrdI5FlN+r2DXrSvY8/k62OPrtp4/DXrZO3bbFi0wYAAN1lJAIAAAAAAAAAANBL1piW/OnYbt+inTWndfsGPaXWmn1/dmVOuureZo3lFpkvZ3/iFZk8wTe4AACMdkYiAAAAAAAAAAAAvWSlbZLFVkseuanbNxl6i6+erLh1t2/RM/506yN583fafmvMLz+wZTZecdGmDQAAeoeRCAAAAAAAAAAAQC8pJdl07+T3n+72TYbepnvP/Xxj3IxZs7P10WfnkadnNmvssfHy+dKe6zd7PwAAvclIBAAAAAAAAAAAoNes/+bkrEOTWdO7fZOhM3H+uZ9rjPv++bflsN9d17Rxyf47ZcmFpjRtAADQm4xEAAAAAAAAAAAAes18iyTr7plc8cNu32TorLtnMmXhbt+ia+5+bHq2+fw5TRtHv2HdvHmzlzZtAADQ24xEAAAAAAAAAAAAetE2H02u+lky+9lu32Twxk+e+3nGoFpr3v+Ty3PatQ80a6y8+NSc9tHtMmnCuGYNAABGBiMRAAAAAAAAAACAXrToKskO+ydnHtztmwzeDvvP/TxjzAU3P5y3Hndx08avP7hVNnzpS5o2AAAYOYxEAAAAAAAAAAAAetWWH06u/21yz+XdvsnALbdJstU+3b7FsHpm5uxsdtSZeWrGc80ab9nspfncG9Zt9n4AAEYmIxEAAAAAAAAAAIBeNX5C8rpvJt/aNpn9bLdvM+/GT05ed2wybny3bzJsvn3uLfncqTc0bVx6wM5ZYsHJTRsAAIxMRiJAn0opE5KsmmSlJAsmWSDJjCRPJrkvyV9rrdO7dkEAAAAAAAAAgNFuiTWSHQ9Izjio2zeZdzt+du79x4A7H5me7b54TtPGl/ZcP3tsvHzTBgAAI5uRCAxAKWVikjWTrJNk7b//d/kki/z918JJZid5JsljSe5NcluSq5NcmuTCWuvM4b95/5RS1k3yhiTTkmyQZFIfx2sp5aYkv0/y2yRn11pr+1sCAAAAAAAAAIwhW+6T3P+X5JpfdPsm/bfuXsmWH+72LZqrtebdP7wsZ9/wYLPG6kstkJP33TYTx49r1gAAYHQwEoF+KKWMS7Jhkh2T7JRkmyRTO/y2CUkmZ+5oZOUkW//Ds+mllNOT/DDJ72qtzw35pQeglLJbks8k2X5efluS1f/+a98kN5ZSvpLku7XW2UN+SQAAAAAAAACAsWjcuOR1xybPPpXceGq3b9PZGtPm3nfc6B41nHvjQ3nH9y9p2jjpw9tk3eUXbtoAAGD0MBKBF1FKmZC5g5C9krwuyaJD+Pr5//7O1yW5rZRydJLvdWtUUUpZLsnXkrx+CF63epJvJnl/KeV9tdaLh+CdAAAAAAAAAACMn5jseXxy4jt7eyiyxrRkjx/Mve8o9fSzz2XjI87IjFlzmjXevuWKOey16zR7PwAAo9PonmnDAJRS1i6lfDfJ/Ul+n+TfMrQDkX+2cpJvJ7mklLJhw84LKqVsk+SKDM1A5B+tn+S8UsoHhvi9AAAAAAAAAABj18QpyZt+nKy7V7dv8sLW3SvZ60dz7zlKfeOcm7P2wac1HYhcceAuBiIAAAyIbxKB53t1kr270N0oyUWllI/UWr89HMFSymuTnJik1T/bMDHJsaWUFWutn2nUAAAAAAAAAAAYW8ZPTF7/7WTpdZKzj0xmP9vtGyXjJyc7fjbZ8sPJuNH5bxff9vDT2eFLf2ja+M83b5DXbrBc0wYAAKObkQj0lslJvlVKWa7WelDLUClllyQ/T7uByD/6dCnl6Vrr4cPQAgAAAAAAAAAY/caNS7b+SLL67sn/fCC55/Lu3WW5TZLXHZsssUb37tDQnDk17/jBJTnvpoebNdZedqH85kNbZ8L40TmwAQBg+BiJwODNTnJtkuuT3Jbk4SRPJ5mSZLEkyyTZJsm8/C34wL+PKj4/xHdNkpRSVkryi8wdpXRyTZIfJzkvyU1JnkgyNckKSbZI8qYkOyUpHd5zWCnl6lrrbwZ2awAAAAAAAAAAnmeJNZJ/Oz256OvJOUcN77eKjJ+c7HjA3789ZPzwdYfRWdc/kHf/8LKmjVP23TZrLbtQ0wYAAGOHkQgMzA1JTkpyapKLa63TO/2GUsoySd6bZJ/MHY908rlSyjW11lMGddPn32NC5n6DyCIdjj6QZJ9a64kv8OyJv//6S5LjSimbJvlWko06vPMHpZQNaq13zuO1AQAAAAAAAAB4MeMnJNt8NFnrNcn5xyTXnJjM6vjjLAM3cf5k3T3nNhddpV2ni56aMSvrH3p65tR2jXdvs3IOfNVa7QIAAIxJRiLQf48nOT7Jj2utV8zrb6613pfk0FLKl5Ick2TvDr+lZO4AY61a6+Pz2uvDh5Ns1uHMVUmm1Vrv7c8La62XllK2SvKDJG/p4+hLMvezv6E/7wUAAAAAAAAAYB4sukrymq8mux6eXPWz5NLjkodvHLr3L756suneyfpvTqYsPHTv7TFfOePG/OdZNzVtXHnQLllk/klNGwAAjE1GItDZzUm+mOQn/fnGkE5qrU8neU8p5bwk30/S13dtLpPk00n2G2w3SUopSyQ5pMOxm5PsUmt9aF7eXWt9tpTytiTzJ3ltH0dfX0rZpdZ6xry8HwAAAAAAAACAfpqycLL5+5LN3pvccUFywynJvVck9101b98wMnFqssx6ybIbJWtOS1bcOiml3b277OYH/5adv3xu08Y3/nWj/Mt6yzRtAAAwthmJwIu7MclhSX5Wa5091C+vtf6olDI1ybEdju5TSvlcrfXJIch+Iklf/4zDzCR7zetA5H/VWmeXUt6R5MokK/Vx9LAkRiIAAAAAAAAAAC2Vkqy0zdxfSTJndvLwTcl9VyYPXpc883jy3LPJ7GeT8ZOTCZOT+RZJllwrWWaDZPHVknF9/funo8OcOTVv+e6fcvFtjzZrbLDCIvnlB7bK+HGjd2QDAEBvMBKB53sgyQeTfLfW+lzLUK31m6WULZK8vY9jU5PsleS4wbRKKQsleV+HY8fUWv88mE6t9YlSykeS/KaPY1uUUrattZ43mBYAAAAAAAAAAPNg3PhkyTXn/iJJctq19+d9P768beOj22WNpRds2gAAgP9lJAL/pNb6g2FO7pdkjyTz93HmdRnkSCTJO9L3t4g8nuTIQTaSJLXW35ZSzkuybR/H9k1iJAIAAAAAAAAAwLB74plZWf/Q05s2PrD9qvn07gY5AAAMLyMR6LJa672llBOSvLuPY9uWUsbVWucMIvW2Ds+/U2t9chDv/2f/kb5HIq8upSxca31iCJsAAAAAAAAAANCnL552Q75xzi1NG1cdvGsWnm9i0wYAALwQIxHoDb9L3yORhZKsmOS2gby8lLJakk07HBvsN5X8s5OS3JdkmRd5PjnJG5N8f4i7AAAAAAAAAADwPDc+8FR2/cofmza+9X82zu7rLN20AQAAfTESgd7Qn799rpIBjkSSvLrD88trrTcN8N0vqNY6p5TyiyQf6ePYq2MkAgAAAAAAAABAQ7Pn1OzxrQvz5zsfb9bYbOVF87P3bJFx40qzBgAA9IeRCPSAWuujpZSZSSb1cWyRQSR27vD85EG8u9N7+xqJ7FBKGV9rnd2oDwAAAAAAAADAGHbKNfflgz+9omnjzI9tl5ctuWDTBgAA9JeRCPSOh5Ms28fz+Qby0lLKhCTbdTh25kDe3Q/nJZmRZMqLPF84yaZJ/tSoDwAAAAAAAADAGPT49JnZ4LAzmjb23fFl+diuazRtAADAvDISgd4xf4fnMwb43rWTTO3j+awklwzw3X2qtc4opfw5yZZ9HDMSAQAAAAAAAABgyBx1yvX5zh9vbfb+cSW56uBds+CUic0aAAAwUEYi0ANKKQtm7rdq9OWxAb5+ow7Pr6u1PjvAd/fHZel7JLJhwzYAAAAAAAAAAGPEdfc+mWlfPa9p47i3b5Kd11qqaQMAAAbDSAR6wwZJSocztwzi3X25eoDv7a+rOjw3EgEAAAAAAAAAYMCemz0nrzv2gvzlniebNbZ52eL50b9tlnHjOv2IDwAAdJeRCPSGf+nw/Mkkdw7w3at3eH7TAN/bX53GLas17gMAAAAAAAAAMEr95sp78pGfXdm0cfbHX5FVlligaQMAAIaKkQh0WSllXJK9Ohw7v9Y6Z4CJlTs8v3mA7+2vTu+fWkpZotb6UON7AAAAAAAAAAAwSjz69MxsdPgZTRsf32X17LOTf/8UAICRxUgEuu+16Tzk+O1AXlxKKUlW7HDs3oG8ex7cl2ROknF9nFk5iZEIAAAAAAAAAAAdHfLba3P8hbc3e//kCeNy+YG7ZIHJfrwOAICRx59ioYtKKeOTHNbh2MwkJw4w8ZIkUzqcuX+A7+6XWuvsUsrDSZbs49iyLe8AAAAAAAAAAMDI95d7nsirvnZ+08bx79o026/R14+5AABAbzMSge56X5J1Opz5Ya310QG+f7F+nHlwgO+eFw+m75FIf+4JAAAAAAAAAMAYNGv2nLzqq+fnrw881ayxwxpL5Pvv3DSllGYNAAAYDkYi0CWllBWTHN3h2Kwknx9EZtF+nHlyEO/vr06N/twTAAAAAAAAAIAx5ldX3J2P/eKqpo1zP7l9VlxsatMGAAAMFyMR6IJSyrgkxydZsMPRY2qttwwi9ZIOz6fXWmcP4v39NeJGIqWUDyX54DCkVh2GBgAAAAAAAADAiPLw357NJkec2bTx6d3XzAe296MbAACMLkYi0B2HJtm+w5m7khw+yM6UDs+nD/L9/fV0h+ed7tkNSyRZq9uXAAAAAAAAAAAYaw749TX56cV3Nnv/gpMn5OIDdsr8k/z4HAAAo48/5cIwK6VMS7J/h2M1ybtrrU8NMjepw/PnBvn+/urU6XRPAAAAAAAAAABGuavuejyv/cYFTRs/effm2Wa1xZs2AACgm4xEYBiVUtZKckKScR2Ofr3WesYQJI1EAAAAAAAAAADoaTOfm5Pdjvljbnv46WaNXddaKt9+28YppTRrAABALzASgWFSSlkiyUlJFupw9NIknxiibKcxyuwh6nTSqTN+WG4BAAAAAAAAAEBP+cWld+VTv7y6aeO8T+2QFRadv2kDAAB6hZEIDINSytQkv0uySoejjyTZs9Y6c4jSnb7BY7j+H9CpM2tYbgEAAAAAAAAAQE948KkZ2ezIs5o2PvsvL8/e23b6cR0AABhdjESgsVLKpCS/TLJZh6PPJHltrfWOIcx3GpsM1/8DJnZ4PlSjmKH0UJLrhqGzapLJw9ABAAAAAAAAAOgJn/rvq/KLy+5u9v7Fpk7KBZ/ZMVMmjm/WAACAXmUkAg2VUsYl+UmS3TocnZW53yBywRBfodM3dEwa4t6LGXEjkVrrN5J8o3WnlHJtkrVadwAAAAAAAAAAuu3yOx7LG795YdPGCe/ZIluuuljTBgAA9DIjEWiklFKSfCfJnh2OzknyjlrryQ2u8bcOzxdo0HwhC3V43umeAAAAAAAAAACMUM8+Nzs7func3PP4M80ar1pvmXztLRtm7o/sAADA2GUkAu18Jcm7+3HuA7XWExrd4dEOzyeWUqbUWmc06v+vBTs873RPAAAAAAAAAABGoJ9efEcO+PVfmjYu/MyOWXaR+Zo2AABgpDASgQZKKUck+Ug/jn681vqdhld5pB9nFklyf8M7/G+jL/25JwAAAAAAAAAAI8T9T8zIFp87q2nj0NesnXdstVLTBgAAjDRGIjDESimfTnJAP44eXGv9cuPrPNyPM0un/UhkmQ7PjUQAAAAAAAAAAEaBWmv+/edX5n+uvLdZY+mFpuQPn9w+UyaOb9YAAICRykgEhlApZd8kR/fj6BdrrYe1vk+tdXop5ZEki/VxbKmWdyilzJ9kgQ7H7mh5BwAAAAAAAAAA2rvktkez17cvatr4xfu2zGYrL9q0AQAAI5mRCAyRUsp7khzTj6PfqLV+qvV9/sHt6XsksmLjfn/ef3vjOwAAAAAAAAAA0MiMWbOz3RfOyYNPPdus8YYNl8t/7LV+SinNGgAAMBoYicAQKKW8Lcm3knT6W+j3kuzT/kb/j9uSbNzH89Ua9zu9/4Fa6/TGdwAAAAAAAAAAoIHjL7gth5x0XdPGxfvvlKUWmtK0AQAAo4WRCAxSKWXPJD9IMq7D0ROSvLfWWtvf6v9xbZI9+ni+RuP+6h2eX9u4DwAAAAAAAADAELv38Wey1dFnN20c+fp18tbNV2zaAACA0cZIBAahlPKaJD9NMr7D0f9J8vZa65z2t3qeKzo837Bxf6MOz//cuA8AAAAAAAAAwBCptebD//XnnHzNfc0aKyw6X8782CsyeUKnH8kBAAD+mZEIDFApZbckv0gyscPRU5O8qdb6XPtbvaBOI5HlSylL1lofbNTfuMNzIxEAAAAAAAAAgBHgolseyVu++6emjV99cKts9NKXNG0AAMBoZiQCA1BK2T7Jr5NM7nD07CRvqLXObH6pF1FrvbuUckeSvr57c/vMHbwMqVLKsklW73Ds/KHuAgAAAAAAAAAwdJ6ZOTtbHX1WHps+q1ljr02Wzxf2WL/Z+wEAYKwwEoF5VErZMslJSebrcPT8JK+ptc5of6uOzkzy7j6e75IGI5EkO3d4flOt9Y4GXQAAAAAAAAAAhsBx592aI06+vmnjkgN2ypILTmnaAACAscJIBOZBKWWjJKcmWaDD0UuT/Eut9en2t+qXM9L3SOQ1pZT311pnD3F3jw7PTx/iHgAAAAAAAAAAQ+CuR6dn2y+c07TxhT3Wy16brNC0AQAAY42RCPRTKWWdzB01LNzh6FVJdqu1Ptn+Vv12cpLpSeZ/kedLZu63fpw2VMFSyqJJdutw7MSh6gEAAAAAAAAAMHi11rz3x5fnjOseaNZYZYmp+f1HtsukCeOaNQAAYKwyEoF+KKWsnuTMJIt1OHpdkl1qrY+1v1X/1Vr/Vkr5bZI393FsnwzhSCTJ+5NM6uP53Un+OIQ9AAAAAAAAAAAG4bybHsrbvndJ08ZvPrR11l9hkaYNAAAYy4xEoINSykpJzkqyVIejNyXZudb6UOs7DdD30/dIZFopZYNa65WDDZVSFsjc0UlfflhrrYNtcdEJnwAAIABJREFUAQAAAAAAAAAwOE9Mn5X1Dzu9aeOtm780R75+3aYNAADASAT6VEpZNnMHIst3OHp7kp1qrfc1v9QA1VrPKKVcnWS9FzlSkhyTZPshyO2XZOk+nj+b5OtD0AEAAAAAAAAAYBDeffylOeuGB5s2Lvvszll8gclNGwAAwFxGIvAiSilLJDkzySodjt6dZMda613tbzVon0/y0z6ev6KU8u+11q8MNFBK2TLJpzocO77Wev9AGwAAAAAAAAAADM5Vdz2e137jgqaNL++1ft6wUad/mxUAABhKRiLwAkopiyQ5PcnLOxy9P3MHIre1v9WQOCHJR5Ns2seZz5dSbq61njSvLy+lrJbkl+n7/y1PJTlkXt8NAAAAAAAAAMDgzZlTs8r+pzRtrLn0gjlpn20ycfy4ph0AAOD5/Ckc/kkpZYEkpyTZoMPRh5PsXGu9qf2thkattSb5cJLax7GJSU4spew9L+8upWyd5Nwky3Q4eqhvEQEAAAAAAAAAGH4/uOC25gOR3+2zTX7/0e0MRAAAoEt8kwg83wlJtuzHuZ8n2bKU0p+zQ+G+WuvJg31JrfWSUsrnkuzfx7HJSb5bSnljkoNqrZe+2MFSyopJPp3kPen8/5Rzkxwzj1cGAAAAAAAAAGAQHnt6ZjY8/IymjXdtvVIOfvXaTRsAAEBnRiLwfOv289yHmt7i+c5NMuiRyN8dlGTrJK/ocG73JLuXUm5Icl6Sm5I8mWRqkhWSbJ5kiySlH80Hk/xrrXX2QC8NAAAAAAAAAMC8+T/HXZzzb364aeOKA3fJolMnNW0AAAD9YyQCY1CtdXYp5XVJzkmyQT9+y5p//zVQjyfZrdZ67yDeAQAAAAAAAABAP11+x2N54zcvbNr46ls2zGvWX7ZpAwAAmDdGIjBG1VofL6XsmuSUJJs0TD2Y5NW11isbNgAAAAAAAAAASDJ7Ts2q+5/StLHe8gvnVx/YKhPGj2vaAQAA5p2RCIxhtdaHSinbJvl2krc3SFya5I211rsavBsAAAAAAAAAgH/wnT/ekqNOuaFp49SPbJuXL7NQ0wYAADBwRiIwxtVaZyR5RynlF0m+mmSVIXjtU0kOSfLVWutzQ/A+AAAAAAAAAABexMN/ezabHHFm08Z7t1sl+097edMGAAAweEYiQJKk1npyKeX0JG9Ksm+STQfwmjuSfCvJd2qtjw7l/QAAAAAAAAAAeL49v3VhLr39saaNi/ffKUstNKVpAwAAGBpGIvBPaq0rdfsO3VJrnZXkJ0l+UkpZIckrM3csslaSFZMslGT+JM9m7reF3Jfk+iRXJjmt1npVN+4NAAAAAAAAADDWXHzrI3nTd/7UtPGxXVbPvjut1rQBAAAMLSMR4AXVWu9K8p2//wIAAAAAAAAAoAfMnlOz6v6nNO/cfOQrM2H8uOYdAABgaBmJAAAAAAAAAAAAjADfOOfmfPG0vzZtnPCeLbLlqos1bQAAAO0YiQAAAAAAAAAAAPSwB5+ckc2OOqtpY8OXLpJff3Drpg0AAKA9IxEAAAAAAAAAAIAe9eqvnZ9r7nmiaePSA3bOEgtObtoAAACGh5EIAAAAAAAAAABAj7ng5ofz1uMubtr49O5r5gPbr9q0AQAADC8jEQAAAAAAAAAAgB4xa/acrHbAqc07txw1LePHleYdAABgeBmJAAAAAAAAAAAA9IAvn3FjvnrWTU0b//3+LbPJSos2bQAAAN1jJAIAAAAAAAAAANBF9z3xTLb83NlNG1uuslhOeO8WTRsAAED3GYkAAAAAAAAAAAB0ya5fOTc3PvC3po0rDtwli06d1LQBAAD0BiMRAAAAAAAAAACAYfaHvz6Yd/7g0qaNA1+1Vt69zcpNGwAAQG8xEgEAAAAAAAAAABgmM5+bk9U/e2rzzq1HTcu4caV5BwAA6C1GIgAAAAAAAAAAAMPg6FNvyLfOvaVp438+tHU2WGGRpg0AAKB3GYkAAAAAAAAAAAA0dPdj07PN589p2th+jSVy/Ls2a9oAAAB6n5EIAAAAAAAAAABAI9t94Zzc+ej0po0rD9oli8w/qWkDAAAYGYxEAAAAAAAAAAAAhtiZ1z2QvX90WdPG4a9dO2/bcqWmDQAAYGQxEgEAAAAAAAAAABgizz43O2t89vfNO7d9blpKKc07AADAyGIkAgAAAAAAAAAAMAQOPena/OCC25s2frfPNllnuYWbNgAAgJHLSAQAAAAAAAAAAGAQ7njk6bzii39o2tht7aXy7bdt0rQBAACMfEYiAAAAAAAAAAAAA7TpkWfmoaeebdq4+pBds9CUiU0bAADA6GAkAgAAAAAAAAAAMI9+/5f78v6fXNG0cfQb1s2bN3tp0wYAADC6GIkAAAAAAAAAAAD004xZs7Pmgb9v3rntc9NSSmneAQAARhcjEQAAAAAAAAAAgH444NfX5KcX39m0cepHts3Ll1moaQMAABi9jEQAAAAAAAAAAAD6cOtDf8uO/3Fu08Zr1l82X33Lhk0bAADA6GckAgAAAAAAAAAA8CLWPeS0PDXjuaaNvxy6WxaY7Ee5AACAwfM3CwAAAAAAAAAAgH/y26vuzb4n/Llp4z/2XD9v3Hj5pg0AAGBsMRIBAAAAAAAAAAD4u+kzn8taB53WtDFp/Lj89YjdU0pp2gEAAMYeIxEAAAAAAAAAAIAknzzxqpx4+d1NG2f8+3ZZbakFmzYAAICxy0gEAAAAAAAAAAAY02564Kns8pU/Nm3sufHy+eKe6zdtAAAAGIkAAAAAAAAAAABjUq01q3/21MyaXZt2rjtst8w/yY9qAQAA7fmbBwAAAAAAAAAAMOb88vK78/ETr2ra+OpbNsxr1l+2aQMAAOAfGYkAAAAAAAAAAABjxt+efS7rHHxa08aCUybkmkN2a9oAAAB4IUYiAAAAAAAAAADAmLDvCX/Ob6+6t2nj7I+/IqsssUDTBgAAwIsxEgEAAAAAAAAAAEa16+97Mq/8z/OaNt66+Utz5OvXbdoAAADoxEgEAAAAAAAAAAAYlWqtWXm/U5p3bjh890yZOL55BwAAoBMjEQAAAAAAAAAAYNT52SV35jO/uqZp45tv3SivXHeZpg0AAIB5YSQCAAAAAAAAAACMGk/OmJX1Djm9aWOJBSfn0gN2btoAAAAYCCMRAAAAAAAAAABgVHjfjy/Ladc+0LRx7ie3z4qLTW3aAAAAGCgjEQAAAAAAAAAAYET7yz1P5FVfO79p49+2XjkHvXqtpg0AAIDBMhIBAAAAAAAAAABGpFprVt7vlOadvx6xeyZPGN+8AwAAMFhGIgAAAAAAAAAAwIjz44tuz4G/ubZp47i3b5Kd11qqaQMAAGAoGYkAAAAAAAAAAAAjxuPTZ2aDw85o2lhh0fly3qd2bNoAAABowUgEAAAAAAAAAAAYEd75g0vyh78+1LRx/qd3yPIvmb9pAwAAoBUjEQAAAAAAAAAAoKf9+c7H8vpjL2zaeP8rVs1nXrlm0wYAAEBrRiIAAAAAAAAAAEBPmjOnZpX9T2neufGIV2bShHHNOwAAAK0ZiQAAAAAAAAAAAD3ne+fflsN/d13TxvHv2jTbr7Fk0wYAAMBwMhIBAAAAAAAAAAB6xqNPz8xGh5/RtLHakgvkjI+9omkDAACgG4xEAAAAAAAAAACAnvCW7/wpF936SNPGRfvtmGUWnq9pAwAAoFuMRAAAAAAAAAAAgK667PZHs8e3Lmra2HfHl+Vju67RtAEAANBtRiIAAAAAAAAAAEBXzJ5Ts+r+pzTv3HTkKzNx/LjmHQAAgG4zEgEAAAAAAAAAAIbdN/9wSz7/+xuaNn669+bZ+mWLN20AAAD0EiMRAAAAAAAAAABg2Dz01LPZ9MgzmzbWXW7hnLTPNk0bAAAAvchIBAAAAAAAAAAAGBZvOPaCXHHn400bl+y/U5ZcaErTBgAAQK8yEgEAAAAAAAAAAJq66JZH8pbv/qlp4xO7rp4P77ha0wYAAECvMxIBAAAAAAAAAACaeG72nLzsgFObd24+8pWZMH5c8w4AAECvMxIBAAAAAAAAAACG3FfPuilfPuPGpo2fv3eLbL7KYk0bAAAAI4mRCAAAAAAAAAAAMGQeeHJGNj/qrKaNTVZ8Sf77A1s1bQAAAIxERiIAAAAAAAAAAMCQmPaf5+W6+55s2rjssztn8QUmN20AAACMVEYiAAAAAAAAAADAoJx300N52/cuadrYf9qaee92qzZtAAAAjHRGIgAAAAAAAAAAwIDMmj0nqx1wavPOrUdNy7hxpXkHAABgpDMSAQAAAAAAAAAA5tkXT7sh3zjnlqaNX35gq2y84kuaNgAAAEYTIxEAAAAAAAAAAKDf7n38mWx19NlNG9u8bPH8ZO/NmzYAAABGIyMRAAAAAAAAAACgX3b80h9y68NPN238+cBd8pKpk5o2AAAARisjEQAAAAAAAAAAoE/n3PBg3nX8pU0bB796rbxr65WbNgAAAEY7IxEAAAAAAAAAAOAFzXxuTlb/7KnNO7ceNS3jxpXmHQAAgNHOSAQAAAAAAAAAAHieo065Pt/5461NG7/50NZZf4VFmjYAAADGEiMRAAAAAAAAAADg/3fXo9Oz7RfOadrYac0l8713btq0AQAAMBYZiQAAAAAAAAAAAEmSrY8+O/c8/kzTxlUH7ZqF55/YtAEAADBWGYkAAAAAAAAAAMAYd/q19+e9P768aePI16+Tt26+YtMGAADAWGckAgAAAAAAAAAAY9SMWbOz5oG/b9657XPTUkpp3gEAABjrjEQAAAAAAAAAAGAMOuS31+b4C29v2jh5322y9rILN20AAADwfxmJAAAAAAAAAADAGHL7w09n+y/9oWlj2rpL59i3bty0AQAAwPMZiQAAAAAAAAAAwBix0eFn5NGnZzZtXHPIrllwysSmDQAAAF6YkQgAAAAAAAAAAIxyJ199Xz70X1c0bXxhj/Wy1yYrNG0AAADQNyMRAAAAAAAAAAAYpZ6ZOTsvP+j3TRulJLceNS2llKYdAAAAOjMSAQAAAAAAAACAUWi/X12dEy65q2njtI9ulzWWXrBpAwAAgP4zEgEAAAAAAAAAgFHk5gf/lp2/fG7Txus3XC5fedMGTRsAAADMOyMRAAAAAAAAAAAYBWqtWeug0/LMrNlNO9ceulumTvZjRwAAAL3I39YAAAAAAAAAAGCE+82V9+QjP7uyaeMrb1o/r99w+aYNAAAABsdIBAAAAAAAAAAARqinn30uax98WtPG/JPG59pDd0sppWkHAACAwTMSAQAAAAAAAACAEehjv7gyv7rinqaNMz/2irxsyQWaNgAAABg6RiIAAAAAAAAAADCC/PX+p7LbMX9s2njzpivk6Deu17QBAADA0DMSAQAAAAAAAACAEaDWmlX2PyW1tu1cf9jumW/S+LYRAAAAmjASAQAAAAAAAACAHnfiZXflk/99ddPG1/91w7xqvWWbNgAAAGjLSAQAAAAAAAAAAHrUUzNmZd1DTm/aeMn8E/Png3Zt2gAAAGB4GIkAAAAAAAAAAEAP+tB/XZGTr76vaeOcT2yflRef2rQBAADA8DESAQAAAAAAAACAHnLtvU/kX756ftPG27dcMYe9dp2mDQAAAIafkQgAAAAAAAAAAPSAWmtW3u+U5p0bDt89UyaOb94BAABg+BmJAAAAAAAAAABAl/3XxXdm/19f07Tx7bdtnN3WXrppAwAAgO4yEgEAAAAAAAAAgC554plZWf/Q05s2lll4Si7ab6emDQAAAHqDkQgAAAAAAAAAAHTB3j+8LGde/0DTxnmf2iErLDp/0wYAAAC9w0gEAAAAAAAAAACG0dV3P57XfP2Cpo29t1k5n33VWk0bAAAA9B4jEQAAAAAAAAAAGAZz5tSssv8pzTt/PWL3TJ4wvnkHAACA3mMkAgAAAAAAAAAAjf3wwttz8G+vbdr4/js3yY5rLtW0AQAAQG8zEgEAAAAAAAAAgEYee3pmNjz8jKaNlRefmnM+sX3TBgAAACODkQgAAAAAAAAAADTwtu9dnPNuerhp44LP7JjlFpmvaQMAAICRw0gEAAAAAAAAAACG0BV3PpY3HHth08YHt181n9p9zaYNAAAARh4jEQAAAAAAAAAAGAJz5tSssv8pzTs3HfnKTBw/rnkHAACAkcdIBAAAAAAAAAAABum4827NESdf37Tx43dvlm1XW6JpAwAAgJHNSAQAAAAA+P/Yu+9ou8oCbeDPvjchhRYhdMVQA5HQWyAgvQQH0RFk/BxFwVERFD9nRnpvjjOMiqCM2EdF0JFRSUIJvTeBIJDQghBq6BASbm7298dNPgOm3fLec8vvt9ZZIfecs59ni8u1PMlzXgAAAKCDXnxjdrY6/aqiGRutvnwmHrVz0QwAAAD6BiMRAAAAAAAAAADogIO+f0tun/ZS0Yxbj9k9q684uGgGAAAAfYeRCAAAAAAAAAAAtMMd017Kgd+/pWjGUXtskKP22LBoBgAAAH2PkQgAAAAAAAAAACyF1rl11jt2fPGcR87YNwOam4rnAAAA0PcYiQAAAAAAAAAAwBKcd80j+eblU4pm/PJz22WH9YYXzQAAAKBvMxIBAAAAAAAAAIBFeP71Wdn2jElFMzZ737D875d2LJoBAABA/2AkAgAAAAAAAAAAC7H/d2/MfU+9WjTjjuP2yCrLDyqaAQAAQP9hJAIAAAAAAAAAAAu4+ZEZ+cSFtxXN+Je9R+ZLu65fNAMAAID+x0gEAAAAAAAAAACSzGmdm/WPm1A859Ezx6W5qSqeAwAAQP9jJAIAAAAAAAAAQL/3n1dOzbcnPVw045IvjMk2I1YqmgEAAED/ZiQCAAAAAAAAAEC/9eyrs7L9WZOKZmy3zkr59efHFM0AAACAxEgEAAAAAAAAAIB+au//vD5Tnnu9aMZdx++RlZcbVDQDAAAA5jMSAQAAAAAAAACgX7lu6gv59I9uL5px/H4b57Cd1i2aAQAAAO9mJAIAAAAAAAAAQL/w9py52fD4CcVzHjtzXJqaquI5AAAA8G5GIgAAAAAAAAAA9HnfmPhQvnfto0Uzfnf4Dtli7fcUzQAAAIDFMRIBAAAAAAAAAKDPeurlmRn7jWuKZuy84Sr52We3LZoBAAAAS8NIBAAAAAAAAACAPumD37wmT7w4s2jGPSfumWFDlymaAQAAAEvLSAQAAAAAAAAAgD5l0oPP5dCf3lk049QPfyCfGjOiaAYAAAC0l5EIAAAAAAAAAAB9wuw5rRl5/MTiOY+fNS5VVRXPAQAAgPYyEgEAAAAAAAAAoNc77Y8P5Ic3Pl404w9HjM3o965YNAMAAAA6w0gEAAAAAAAAAIBe6y8vzszO37ymaMaeo1bLDz61ddEMAAAA6ApGIgAAAAAAAAAA9ErbnXlVnnttdtGMe0/aKysOGVg0AwAAALqKkQgAAAAAAAAAAL3KxPufzRf++66iGWd9dHT+Ydu1i2YAAABAVzMSAQAAAAAAAACgV5jV0pqNTphYPOfxs8alqqriOQAAANDVjEQAAAAAAAAAAOjxTrj0/vz81ieKZoz/8k4ZteYKRTMAAACgJCMRAAAAAAAAAAB6rMdnvJld//3aohkf2nSNfPcTWxbNAAAAgO5gJAIAAAAAAAAAQI+02SlX5NW3WopmTD55ryw/eGDRDAAAAOguRiIAAAAAAAAAAPQof7j36Rz5qz8Vzfj3AzfLx7Z6b9EMAAAA6G5GIgAAAAAAAAAA9Agz356TUSdeXjRjYHOVqafvm6qqiuYAAABAIxiJAAAAAAAAAADQcF//zX359Z1PFs244qs7Z8PVli+aAQAAAI1kJAIAAAAAAAAAQMM88vzr2eOc64tm/P2W781/HLRZ0QwAAADoCYxEAAAAAAAAAADodnVdZ+QJE/P2nLlFcx44de8MXcZfkQEAAKB/8P+AAQAAAAAAAADoVr/701P56q/vLZrx7YM3z4c3X6toBgAAAPQ0RiIAAAAAAAAAAHSLN2bPySYnXV40Y/lBA3LfyXulqqqiOQAAANATGYkAAAAAAAAAAFDcURf9KZfe83TRjElf+2DWW2W5ohkAAADQkxmJAAAAAAAAAABQzEPPvpZ9vnVD0Yx/2HbtnPXR0UUzAAAAoDcwEgEAAAAAAAAAoMvVdZ11jhlfPOfBU/fJkGWai+cAAABAb2AkAgAAAAAAAABAl7r4jifzr7+9r2jG+f9ny4wbvUbRDAAAAOhtjEQAAAAAAAAAAOgSr81qyaYnX1E0Y/hyy+TO4/csmgEAAAC9lZEIAAAAAAAAAACd9oWf35WJf362aMa1/7xLRgxftmgGAAAA9GZGIgAAAAAAAAAAdNj901/Nh869sWjGITuMyMn7f6BoBgAAAPQFRiIAAAAAAAAAALRbXddZ55jxxXMeOm2fDB7YXDwHAAAA+gIjEQAAAAAAAAAA2uW/b30ix196f9GMH3xq6+w5arWiGQAAANDXGIkAAAAAAAAAALBUXp3Zks1OvaJoxlrDhuSmo3crmgEAAAB9lZEIAAAAAAAAAABL9Jkf355rprxQNOOGf90171tpaNEMAAAA6MuMRAAAAAAAAAAAWKR7n3wlHz7vpqIZn9953RwzbuOiGQAAANAfGIkAAAAAAAAAAPA35s6ts+6x44vnTD193ywzoKl4DgAAAPQHRiIAAAAAAAAAALzDj258PKf+8YGiGT/+zDbZdeSqRTMAAACgvzESAQAAAAAAAAAgSfLym29ni9OuLJqx3irLZtLXdimaAQAAAP2VkQgAAAAAAAAAAPnED27NzY++WDTjlmN2yxorDimaAQAAAP2ZkQgAAAAAAAAAQD921xMv5e+/d0vRjCN3Wz9f22tk0QwAAADASAQAAAAAAAAAoF9qnVtnvWPHF895+Ix9M7C5qXgOAAAAYCQCAAAAAAAAANDvXHDdozlrwkNFM35x2HbZcf3hRTMAAACAdzISAQAAAAAAAADoJ2a8MTtbn35V0YxN1lohfzxyp6IZAAAAwMIZiQAAAAAAAAAA9AMfPf+m3P2XV4pm3H7s7ll1hcFFMwAAAIBFMxIBAAAAAAAAAOjDbn3sxRz8X7cWzfjanhvmyN03KJoBAAAALJmRCAAAAAAAAABAHzSndW7WP25C8ZxHztg3A5qbiucAAAAAS2YkAgAAAAAAAADQx5w76eH8x5VTi2Zc9E/bZ/t1Vy6aAQAAALSPkQgAAAAAAAAAQB/x/Guzsu2Zk4pmbPX+9+S3X9yhaAYAAADQMUYiAAAAAAAAAAB9wH7fuSF/fvq1ohl3Hr9Hhi83qGgGAAAA0HFGIgAAAAAAAAAAvdiND8/IJ394W9GMY/bdKJ//4HpFMwAAAIDOMxIBAAAAAAAAAOiFWlrnZoPjJhTPefTMcWluqornAAAAAJ1nJAIAAAAAAAAA0Mucc8WUfOfqR4pm/PaLY7LV+1cqmgEAAAB0LSMRAAAAAAAAAIBe4ulX3soOZ19dNGOH9VbOLz+3fdEMAAAAoAwjEQAAAAAAAACAXmD3/7g2j77wZtGMu0/YMystu0zRDAAAAKAcIxEAAAAAAAAAgB7sminP5zM/vqNoxokfGpXPjl2naAYAAABQnpEIAAAAAAAAAEAP9Pacudnw+AnFcx47c1yamqriOQAAAEB5RiIAAAAAAAAAAD3MWRMezAXXPVY049Iv7ZjN3zesaAYAAADQvYxEAAAAAAAAAAB6iCdfmpmd/u2aohm7bbRqfnTINkUzAAAAgMYwEgEAAAAAAAAA6AHGfuPqPPXyW0Uz7j1xr6w4dGDRDAAAAKBxjEQAAAAAAAAAABroygeey+d+dmfRjNMP2CSf3P79RTMAAACAxjMSAQAAAAAAAABogFktrdnohInFcx4/a1yqqiqeAwAAADSekQgAAAAAAAAAQDc7+fd/zk9unlY0449Hjs0ma61YNAMAAADoWYxEAAAAAAAAAAC6yRMvvpkPfvPaohn7brJ6vvfJrYpmAAAAAD2TkQgAAAAAAAAAQDfY+vSrMuON2UUz7jt5r6wweGDRDAAAAKDnMhIBAAAAAAAAAChowuRn8sVf3F004xt/Pzof32btohkAAABAz2ckAgAAAAAAAABQwKyW1mx0wsTiOY+fNS5VVRXPAQAAAHo+IxEAAAAAAAAAgC527O8m55e3/aVoxsSjdspGq69QNAMAAADoXYxEAAAAAAAAAAC6yKMvvJHd/+O6ohkf3nzNfPvgLYpmAAAAAL2TkQgAAAAAAAAAQCfVdZ3RJ1+RN2bPKZpz/yl7Z7lB/roHAAAAsHA+NQAAAAAAAAAA6IT/vWd6vnLRPUUzzjlos3x0y/cWzQAAAAB6PyMRAAAAAAAAAIAOmPn2nIw68fKiGYMGNOWh0/ZJVVVFcwAAAIC+wUgEAAAAAAAAAKCdvnbxvfnt3U8Vzbjq/+6c9VddvmgGAAAA0LcYiQAAAAAAAAAALKWpz72evf7z+qIZB2393vzbxzYrmgEAAAD0TUYiAAAAAAAAAABLUNd11j9uQlrn1kVzHjh17wxdxl/nAAAAADrGpwrQSVVVVUnWS7JNkq3n/bpFkuUW87Yn6roeUb7dO1VVNS3J+7s7dwGfq+v6wgbmAwAAAAAAQNea25rMmJo8fU/y/APJrFeSObOT1reT5mWSAYOSwcOSVUcla26RDN8gaWpudGva6bd3PZWvXXJv0Yxz/2GL/N1maxbNAAAAAPo+IxFop6qq1s5fxyBbz3sMa2gpAAAAAAAAoHvUdTLtxmTK+GT63cmz9yUtM5f+/QOXTVYfnay1ZTJyXDJibFJV5frSKW/MnpNNTrq8aMaKQwbm3pP2KpoBAAAA9B9GIrAYVVWtlrYxyIKnhKzS0FIAAAAAAABA93vrleTei5I7f9h2ckhHtbyZPHlr2+PW85PhGyZbH5psdnAyxHfT9SRH/PLu/PG+Z4pmXPPPu2Sd4csWzQAAAAD6FyMRWLzLk2xGDd7OAAAgAElEQVTW6BIAAAAAAABAg7z0WHLjt5LJl7TvxJClNWNqMvHryaRTktEHJmOPSlZat+tzWGoPPvNa9v32DUUz/nH79+e0AzYpmgEAAAD0T0YiAAAAAAAAAPBurXOSW85NrjkraZ1dPq9lZnL3T9tOK9n12GSHI5Om5vK5/H91XWedY8YXz3notH0yeKB/twAAAEAZRiIAAAAAAAAAsKAXpiSXfjGZflf3Z7fOTq46KXnwD8kB5yerjOz+Dv3Qr27/S475n8lFM77/ya2yzyarF80AAAAAMBIB5rs5yY8LZ5Q9kxkAAAAAAAA6Y+7cttNDrj6je04PWZzpdybf3ynZ7bhkzJFJU1Nj+/RRr81qyaYnX1E0Y7UVBuW2Y/comgEAAAAwn5EIdK06ySNJnkmyc4O7tNfDdV1f2OgSAAAAAAAA0BCtLcmlhyeTL250k79qnZ1ceWLy7P1tp4o0D2x0oz7lcz+7M1c+8FzRjOv/ZdesvfLQohkAAAAACzISgc6ZluSOJHfOe9xV1/WrVVXtkuSaBvYCAAAAAAAAllbLrOSSQ5KpExrdZOEmX5zMfj058CfJwMGNbtPrTX7q1fzdd28smnHo2HVywodGFc0AAAAAWBgjEVh60/POQciddV2/2NhKAAAAAAAAQKe0tvTsgch8Uyckv/lMctDPnCjSQXVdZ51jxhfPmXL6Phk0oLl4DgAAAMDCGInA4p2b5Lkkd9R1XfacYQAAAAAAAKB7zZ2bXHp4zx+IzDdlfFvfj1yQNDU1uk2v8rNbpuXE//1z0Ywffnrr7L7xakUzAAAAAJbESAQWo67rHza6AwAAAAAAAFDILecmky9udIv2mXxxsvroZMcvN7pJr/DKzLez+alXFs0YsfLQXPsvuxbNAAAAAFhaRiIAAAAAAAAA9D8vTEmuPqPRLTrm6tOTDfdOVhnZ6CY92qd+dHuun/pC0Yybjt4taw0bUjQDAAAAoD2cPwsAAAAAAABA/9I6J7n0i0nr7EY36ZjW2cmlhydzWxvdpEf6019ezoijLys6EDl8l/Uy7ez9DEQAAACAHsdJIgAAAAAAAAD0L7d8N5l+V6NbdM70O5Obz03GHtXoJj3G3Ll11j12fPGcqafvm2UG+E5OAAAAoGfyqQUAAAAAAAAA/cdLjyXXnNnoFl3jmjPb7odceMNjxQciP/3stpl29n4GIgAAAECP5iQRAAAAAAAAAPqPG7+VtM5udIuu0Tq77X72/06jmzTMi2/MzlanX1U0Y+Rqy+fyr+5cNAMAAACgqxiJAAAAAAAAANA/vPVKMvmSRrfoWpMvSfY6LRm8YqObdLuPX3BLbnv8paIZtx6ze1ZfcXDRDAAAAICu5AxUAAAAAAAAAPqHey9KWmY2ukXXapnZdl/9yB3TXsqIoy8rOhD5yu4bZNrZ+xmIAAAAAL2Ok0QAAAAAAAAA6PvqOrnjwka3KOOOC5Nt/ympqkY3Kap1bp31jh1fPOeRM/bNgGbfuQkAAAD0TkYiwN+oqqo5yTpJ1k6ySpIhSVqTzEzyWpKnkjxZ1/UbDSsJAAAAAAAA7THtxuTFhxvdoowZU5MnbkpGjG10k2LOv/aR/NvEKUUzfnnYdtlh/eFFMwAAAABKMxIB5lu7qqpTkuyeZIskQ5f0hqqqHktyV5Krk4yv6/ovZSsCAAAAAABAB00pfwJFQz00vk+ORJ5/fVa2PWNS0YzN3rti/veIvvefHQAAANA/GYkA8+0679Ee6857HJgkVVXdkOSCJL+u63pO19YDAAAAAACATph+d6MblPV037u/A867Kfc8+UrRjNuP2z2rLj+4aAYAAABAd2pqdAGgT9kpyX8nebCqqo83ugwAAAAAAAAkSea2Js/e1+gWZT1zX9t99gE3PzojI46+rOhA5F/2HplpZ+9nIAIAAAD0OU4SAUpYP8lFVVV9Msnn6rp+ttGFAAAAAAAA6MdmTE1aZja6RVktbyYzHk5W3ajRTTpsTuvcrH/chOI5j545Ls1NVfEcAAAAgEZwkghQ0oeS3FVV1daNLgIAAAAAAEA/9vQ9jW7QPZ7pvff57aseLj4QufjzYzLt7P0MRAAAAIA+zUkiQGlrJrmuqqr96rq+ttFlllZVVV9Kcng3RK3XDRkAAAAAAAD92/MPNLpB9+iF9/nsq7Oy/VmTimZsu85KufjzY4pmAAAAAPQURiJAkjyS5PYk9yeZnOTxJK/Oe7yV5D1JVk4yPMnWSXZOstO83y+NoUn+UFXVbnVd39G11YtZJcmoRpcAAAAAAACgC8x6pdENusdbves+9/nW9Xno2deLZtx1/B5ZeblBRTMAAAAAehIjEeif6iTXJfl9ksvqup66hNe/MO+RJDcm+VZVVc1JDkryr0k2X4rM5ZL8tqqqLeu6ntGx2gAAAAAAANABc2Y3ukH36CX3ef3UF/KpH91eNOO4cRvnczuvWzQDAAAAoCcyEoH+5aUkv0vyvaUYhixWXdetSX6V5FdVVX0iyfeTLL+Et70vyX8l+WhnsgEAAAAAAKBdWt9udIPu0dqzRyItrXOzwXETiuc8dua4NDVVxXMAAAAAeiIjEehftq3rek5XX7Su619WVXVHkt8k2XQJL/9IVVX71nVd/tNfAAAAAAAASJLmZRrdoHs0D2p0g0X65uUP5bxrHi2a8T+H75At135P0QwAAACAns5IBPqREgORBa79cFVVH0xyTZLNl/DyM5IYiQAAAAAAANA9BvTc8USX6oH3Of2Vt7Lj2VcXzdhpg+H5+aHbFc0AAAAA6C2MRIAuU9f1K1VV7Z/kT0lWXsxLt6iqave6rid1U7WOeCHJA92Qs16SnvdpPQAAAAAAQF8yeFijG3SPIT3rPnf992vz+Iw3i2b86YQ9855l+8lJMQAAAABLwUgE6FJ1XT9ZVdVXk/xsCS/9VJIeOxKp6/q8JOeVzqmq6s9JRpXOAQAAAAAA6NdW7Sd/HNND7vPqh57LZ39yZ9GMU/b/QD69w4iiGQAAAAC9kZEI0OXquv55VVVfS7LZYl724aqqBtZ13dJdvQAAAAAAAOin1ty80Q26xxqNvc/Zc1oz8viJxXMeO3Ncmpqq4jkAAAAAvZGRCFDKt5P8aDHPr5hkiyS3d08dAAAAAAAA+q3hGyYDhyYtMxvdpJyByybDN2hY/Ol/fCAX3vh40YzfH7FjNn3vsKIZAAAAAL2dkQhQyu+SXJBk4GJeMyZGIgAAAAAAAJTW1Jysvmny5K2NblLOGpu23Wc3e/Klmdnp364pmrHHxqvlwk9vXTQDAAAAoK8wEgGKqOv6laqq7kmyzWJetlF39QEAAAAAAKCfW2vLvj0SWXPLbo8cc9akPPPqrKIZ9560V1YcsrjvpQMAAABgQU2NLgD0aXcv4fkR3VECAAAAAAAAMnJcoxuUtVH33d/lf342I46+rOhA5MyPjM60s/czEAEAAABoJyeJACVNW8Lzq3ZHCQAAAAAAAMiIscnKGyQvPtzoJl1v+IbJ+3csHjOrpTUbnTCxeM7jZ41LVVXFcwAAAAD6IiMRoKRXl/D80G5pAQAAAAAAAFWVbHNYMvHrjW7S9bY5rO3+Cjrxf+/Pz255omjGZV8emw+suWLRDAAAAIC+zkgEKOntJTzvbGgAAAAAAAC6z2YHJ5NOSVpmNrpJ1xk4tO2+Cpk2483s8u/XFrt+kuy36Ro57xNbFs0AAAAA6C+MRICShizh+be6pQUAAAAAAAAkyZBhyegDk7t/2ugmXWf0gcngMqdvbHHqFXl5ZkuRa883+eS9svxg3y0HAAAA0FWaGl0A6NNWX8Lzb3RLCwAAAAAAAJhv7FFJ86BGt+gazYPa7qeLXXbfMxlx9GVFByLf/NimmXb2fgYiAAAAAF3MSSJASesv4fnp3dICAAAAAAAA5ltp3WTXY5OrTmp0k87b9di2++kib73dmo1PnNhl11uY5qYqj5yxb6qqKpoDAAAA0F8ZiQAlbbeE5x/vlhYAAAAAAACwoDFHJA/+Ppl+V6ObdNxaWyc7HNlll/v6b+7Lr+98ssuutzBXfHXnbLja8kUzAAAAAPo7IxGgiKqqRiUZsYSX3dcNVQAAAAAAAOCdmgckB3wv+f5OSevsRrdpv+ZByQHnJ03Nnb7UI8+/kT3Oua4LSi3aR7dcK+cctHnRDAAAAADaGIkApXxqKV5zc/EWAAAAAAAAsDCrjEx2Oy658sRGN2m/3Y5v698JdV1n4xMnZlbL3C4qtXB/PmXvLDvIX00AAAAA6C4+iQG6XFVV70ny+SW87NG6rh/tjj4AAAAAAACwUGOOTJ69P5l8caObLL3RByVjjujUJS790/Qc9et7uqjQwn374M3z4c3XKpoBAAAAwN8yEgFKOCvJsCW8phd90g4AAAAAANADzW1NZkxNnr4nef6BZNYryZzZSevbSfMyyYBByeBhyaqjkjW3SIZvkDQ1N7p1z9LUlBxwfjL79WTqhEa3WbKR49r6NjV16O1vzp6TD5x0eReXeqdll2nO/afsnaqqiuYAAAAAsHBGIkCXqqrqY1nyKSKtSX7YDXUAAAAAAAD6jrpOpt2YTBmfTL87efa+pGXm0r9/4LLJ6qOTtbZsGxuMGJv4i/xJ88DkwJ8klxzSs4ciI8clH/txW98O+Oqv78nv/jS9i0u906SvfTDrrbJc0QwAAAAAFs9IBPq4qqpGJXmmruuXuyFrzyQ/X4qXXlLX9aOl+wAAAAAAAPQJb72S3HtRcucP204O6aiWN5Mnb2173Hp+MnzDZOtDk80OToYs6ZD4Pm7g4OTjP08uPTyZfHGj2/yt0Qe1nSDSgYHIlGdfz97fur5Aqb/6h23XzlkfHV00AwAAAIClYyQCfd9eSU6qquqcJOfXdf1iVwdUbWdFfz3JaVny/668leTYru4AAAAAAADQ57z0WHLjt5LJl7TvxJClNWNqMvHryaRTktEHJmOPSlZat+tzeovmgclHLkhW3yS5+oykdXajGyXNg5Ldjk/GHJE0NbXrrXVdZ51jxhcq9lcPnrpPhizTXDwHAAAAgKXTvk+RgN5qWJJTk/ylqqofVFW1Y1dduKqqLZJMTHJWlm54dnJd1493VT4AAAAAAECf0zonufE/k/O2T+7+aZmByIJaZrblnLd92yhlbmvZvJ6sqSnZ8SvJF25I1tqqsV3W2rqtx45fbvdA5OI7nyw+EDn//2yZaWfvZyACAAAA0MM4SQSWoKqqnZNs2M63jVzC88tVVXVYB+pcV9f1wx1433xDkxyW5LCqqp5MclmSK5PcXNf1s0t7kaqqVkrywSSHJ9mjHfm/T/LNdrweAAAAAACgf3lhSnLpF5Ppd3V/duvs5KqTkgf/kBxwfrLKkv7Iqw9bZWTy2SuSW76bXHNm954q0jwo2e24eaeHtG+A8fqslow++YpCxdqsvOwyueuEPYtmAAAAANBxRiKwZJ9N8ukuvubKSX7Qgfd9JklnRiILel+SL8x7pKqqZ5I8lOSxJM8meSnJrCStSd6TZKUkqyTZKskmSap25t2S5JN1XdddUR4AAAAAAKBPmTs3ueXc5OozuneQsDDT70y+v9O8ocKR7T7Fos9oHpCMPSoZtX/bCSuTLyl7qsvAocnoA9syV1q33W8//Bd3Zfzkpf5euA659p93yYjhyxbNAAAAAKBzjESA+daY99i1wLWvTbJ/XdevF7g2AAAAAABA79baklx6eDL54kY3+avW2cmVJybP3t92qkjzwEY3apyV1k32/06y12nJvRcld1yYzJjaddcfvmGyzWHJZgcng1ds99vvn/5qPnTujV3XZyEO2WFETt7/A0UzAAAAAOgaRiJAad9J8rW6ruc0uggAAAAAAECP0zIrueSQZOqERjdZuMkXJ7NfTw78STJwcKPbNNbgFZPtPp9s+0/JEzclD41Pnr47eebe9p0wMnDZZI1NkzW3TDYal7x/x6Sq2l2nruusc8z4dr+vvR46bZ8MHthcPAcAAACArmEkApQyNckX6rq+ptFFAAAAAAAAeqTWlp49EJlv6oTkN59JDvpZ/z5RZL6qSkaMbXskydzWZMbDyTP3JM8/kLz1SjJndttpLM2DkgGDkiHDklVHJWtsngzfIGnq3OjiF7c9keN+d38X3Myi/dc/bpW9PrB60QwAAAAAup6RCPR9DyV5IMmobsp7OMnZSX5e13VLN2UCAAAAAAD0LnPnJpce3vMHIvNNGd/W9yMXJE1NjW7TszQ1J6tu1PYo7NWZLdns1CuKZqw1bEhuOnq3ohkAAAAAlGMkAn1cXdcTk0ysqmrVJLvMe2yTZJMkXXUm+JNJJib57yQ31HVdd9F1AQAAAAAA+qZbzk0mX9zoFu0z+eJk9dHJjl9udJN+6dCf3JFJDz1fNOOGf90171tpaNEMAAAAAMoyEoElqOv6kCSHNLhGp9V1/XySi+c9UlVVc5KNk2yWZN0k75v3eG+SFZMMnfcYlGROkllJXk/yTJLpSaYkmZzkjrqup3TnvQAAAAAAAPRqL0xJrj6j0S065urTkw33TlYZ2egm/ca9T76SD593U9GMf9p53Rw7buOiGQAAAAB0DyMR6Kfqum5Ncv+8BwAAAAAAAN2hdU5y6ReT1tmNbtIxrbOTSw9PDr0iaWpudJs+be7cOuseO754ztTT980yA5qK5wAAAADQPXzSAwAAAAAAANBdbvluMv2uRrfonOl3Jjef2+gWfdqPb3q8+EDkx4dsk2ln72cgAgAAANDHOEkEAAAAAAAAoDu89FhyzZmNbtE1rjkzGbV/stK6jW7Sp7z85tvZ4rQri2ast8qymfS1XYpmAAAAANA4RiIAAAAAAAAA3eHGbyWtsxvdomu0zm67n/2/0+gmfcYnL7wtNz4yo2jGzUfvljWHDSmaAQAAAEBjOTcWAAAAAAAAoLS3XkkmX9LoFl1r8iXJrFcb3aLXu+uJlzPi6MuKDkSO2HX9TDt7PwMRAAAAgH7ASSIAAAAAAAAApd17UdIys9EtulbLzLb72u7zjW7SK7XOrbPeseOL5zx8xr4Z2Oz7IwEAAAD6C58EAQAAAAAAAJRU18kdFza6RRl3XNh2f7TLf13/aPGByM8P3TbTzt7PQAQAAACgn3GSCAAAAAAAAEBJ025MXny40S3KmDE1eeKmZMTYRjfpFWa8MTtbn35V0YxRa6yQ8V/ZqWgGAAAAAD2XkQgAAAAAAABASVPKnhjRcA+NNxJZCgd+/+bcMe3lohm3Hbt7VlthcNEMAAAAAHo2IxEAAAAAAACAkqbf3egGZT3dx++vk2577MV8/L9uLZrxf/fcMF/efYOiGQAAAAD0DkYiAAAAAAAAAKXMbU2eva/RLcp65r62+2xqbnSTHqV1bp31ji1/iswjZ+ybAc1NxXMAAAAA6B2MRAAAAAAAAABKmTE1aZnZ6BZltbyZzHg4WXWjRjfpMb579cP59yumFs341ee2z5j1Vi6aAQAAAEDvYyQCAAAAAAAAUMrT9zS6Qfd45h4jkSTPvzYr2545qWjGlmsPy/8cvmPRDAAAAAB6LyMRAAAAAAAAgFKef6DRDbpHf7nPxdj/uzfmvqdeLZpxx3F7ZJXlBxXNAAAAAKB3MxIBAAAAAAAAKGXWK41u0D3e6if3uRA3PzIjn7jwtqIZX99no3xxl/WKZgAAAADQNxiJ9GJVVS2bZEySNZIMTzIoyatJHktyV13XMxpYDwAAAAAAAJgzu9ENukd/uc8FtLTOzQbHTSie8+iZ49LcVBXPAQAAAKBvMBLphaqqOjjJ4Um2y6L/HdZVVd2R5IIkP6/rurW7+gEAAAAAAADztL7d6Abdo7V/jUTOuWJKvnP1I0UzfvOFMdl6xEpFMwAAAADoe4xEulBVVYOTNC3i6bfquq47ef3RSX6R5APzf7S4l6dtRLJtkn+tqurQuq5v6Uw+AAAAAAAA0E7NyzS6QfdoHtToBt3imVffypizri6aMWbdlfOrf9q+aAYAAAAAfZeRSBepqmr1JE9m4SORt5K8L8nLnbj+vkkuSrJc/joOWdLopJr32CjJtVVVfamu6ws72gEAAAAAAABopwH9YzzRH+5zj3OuyyPPv1E04+4T9sxKy/aTYREAAAAARRiJdJ2PJWleyM/rJP9d13VnBiJjkvwuyfxPAxcchyzqNJH6Xa8bmOSCqqpiKAIAAAAAAADdZPCwRjfoHkP67n1eN/WFfPpHtxfNOOFDo3Lo2HWKZgAAAADQPxiJdJ2D5v367gFHneScjl60qqrlkvwybQOR+dde1DDkHW9d4J/nD0aqJOdVVXV/Xde3drQTAAAAAAAAsJRWHdXoBt2jD97n23PmZsPjJxTPeezMcWlqWpo/AgYAAACAJTMS6QJVVQ1LsmMWPhC5oa7rqZ24/LFJ3p9FD0TqLFq1wK/zhyIDk3y/qqot67qe24leAAAAAAAAwJKsuXmjG3SPNfrWfZ414cFccN1jRTMu/dKO2fx9ffcEFgAAAAAaw0ika2yXvw4x5v863+87etGqqoYn+UqWPBBZ2NfKLHh6yPzXzH/96CRHJPlOR7sBAAAAAAAAS2H4hsnAoUnLzEY3KWfgssnwDRrdoks89fLMjP3GNUUzdh25Sn78mW2LZgAAAADQfxmJdI3tFvNch0ciaRtyDMk7xx7JO8chLyW5KMlNSWYkGZ5kqySfTLLqIt5bJTmpqqoL6rqe3Yl+AAAAAAAAwOI0NSerb5o8eWujm5SzxqZt99nL7fRvV+fJl94qmnHviXtlxaEDi2YAAAAA0L8ZiXSNBUciC54i8khd14925IJVVVVJPvuu682//vxTQf6Y5JC6rl9612t+VVXVyUl+kOTjC7xnwdNEhiU5IMmvO9IPAAAAAAAAWEprbdm3RyJrbtnoBp0y6cHncuhP7yyacdqHP5B/HDOiaAYAAAAAJEYiXWXDvHPMMX+McXcnrrlzkvfmnSeBLDgQuSHJR+q6bl3Ym+u6fiPJP1RVNTTJ3+VvTxRJ2k4bMRIBAAAAAACAkkaOS249v9EtytloXKMbdMjsOa0ZefzE4jmPnzUubd8RCAAAAADlGYl00rwTP963iKfv68Sl//5dv6/f9c+HL2og8i6HJHksyQoLXGP+YGSvqqpWqOv6tU70BAAAAAAAABZnxNhk5Q2SFx9udJOuN3zD5P07NrpFu53yhz/nxzdNK5rxxyPHZpO1ViyaAQAAAADv1tToAn3AmkmWmffP7/76l86MRPbNO4ch869fJxlf1/UDS3ORuq5fTvLdBbot2HFAkt599jMAAAAAAAD0dFWVbHNYo1uUsc1hbffXS/zlxZkZcfRlRQci+3xg9Uw7ez8DEQAAAAAawkkinbeoU0SS5ImOXLCqqhFJ1stfT/x4tx+285K/SHLcIp7bIsm17bweAAAAAAAA0B6bHZxMOiVpmdnoJl1n4NC2++oltjnjqrzw+uyiGfedvFdWGDywaAYAAAAALI6TRDpvucU892oHr7nTu36/4IkibySZ0J6L1XX9UJJpC7lW0jYSAQAAAAAAAEoaMiwZfWCjW3St0Qcmg3v+aRkTJj+TEUdfVnQg8o2/H51pZ+9nIAIAAABAwzlJpPOGLua5jo5EdlzIz6q0DTyuquv67Q5c874kI/K3I5ENOnAtAAAAAAAAoL3GHpXce1HSWvY0i27RPKjtfnqwWS2t2eiEicVzHj9rXKqqKp4DAAAAAEvDSKTzFjcSeb2D19xhMc9d3sFrTnnX7+u0DU96/lf7AAAAAAAAQF+w0rrJrscmV53U6Cadt+uxbffTQx33u8n5xW1/KZox4Ss7ZeM1ViiaAQAAAADtZSTSeYOW8Nys9lysqqoVkozK3574Md817bneAl5cxM99agkAAAAAAADdZcwRyYO/T6bf1egmHbfW1skORza6xUI99sIb2e0/riua8eHN18y3D96iaAYAAAAAdJSRSOe9uZjnhqadI5EkY5M05a8nfSw4Fnm+ruuH23m9+RbV00kiAAAAAAAA0F2aByQHfC/5/k5J6+xGt2m/5kHJAecnTc2NbvI3Rp98eV6fNadoxv2n7J3lBvljdgAAAAB6rqZGF+gDXlvMcyt14Hq7LORn88ciN3fgevO9vYifL+4kFAAAAAAAAKCrrTIy2e24RrfomN2Ob+vfg/z+3qcz4ujLig5Ezjlos0w7ez8DEQAAAAB6PJ9gdd6ri3lugySPtPN6uy3muZvaea0FDV7Ez2d24poAAAAAAABAR4w5Mnn2/mTyxY1usvRGH5SMOaLRLf6/mW/PyagTLy+ascyApkw5bZ9UVVU0BwAAAAC6ipFI5724mOc2TjJhaS9UVdVaSbZI26khC3NDO3q924qL+PkbnbgmAAAAAAAA0BFNTckB5yezX0+mLvUfKTbOyHFtfZuaGt0kSfLPl9yb39z1VNGMK7+6czZYbfmiGXTA3NZkxtTk6XuS5x9IZr2SzJmdtL6dNC+TDBiUDB6WrDoqWXOLZPgGSVNzo1sDAAAAdBsjkc57NG2ncQzJ34479kxyTjuudUCSat515v863xtJ7up4zay5iJ+/3olrAgAAAAAAAB3VPDA58CfJJYf07KHIyHHJx37c1rfBHn7u9ez5n9cXzThwq/fmmwduVjSDdqjrZNqNyZTxyfS7k2fvS1pmLv37By6brD46WWvLtv8ujxibOBkGAAAA6MOMRDqpruu6qqr7kmyfv4465o88dq6qalhd168s5eU+u5CfzR+LXF/X9dxOVB2xiOs+14lrAgAAAAAAAJ0xcHDy8Z8nlx6eTL640W3+1uiD2k4QafBApK7rbHDchMyZ++7v7etaD5y6d4Yu44/Re4S3XknuvSi584dtJ4d0VMubyZO3tj1uPT8ZvmGy9aHJZgcnQ4Z1XV8AAAD4f+zdeZydZX028OueSUgABWSTRSVsCY1ssi9xAdlMKsVW0LZq3eqO+tqqgIgIgrsgAyQAACAASURBVFFrXbAUW1zQvi7Q+uJC2EEFBNlkkS0oRhCQVRYJhGRyv39M0gwhmSQz55lnlu/38zmfZM5zzn39HvSvM7nOD4aJ4bELeOT7VZ+/9/3KkYlJ3r8yB5RSpiV5SZYUTJZ20YCn6/XiPHvTSdK7CQUAAAAAAABoS/f45DVfTfY/Lume0PY0vbonJPsf3ztXywWR/7nmD9n8yFmNFkS+/LcvyZyZMxREhoOH70h+9P7kX/8iOeejgyuILMuDs3vP/de/6M15+I7Ong8AAADQMp9wdcasJO9e6rnFZY+PlFLOrLXesLw3l1K6k3xhBRk/HOhwpZT1krywz0x9Pz1VEgEAAAAAAIC2dXUle38gmXxQcua7k7uvaW+WTXfp3R6ywZT2Zkjy53kLsu0nzm00Y62J43LDsQc2msFK6lmQXH5ScvGnk555zefNn5tce1rvtpJ9jkr2Ojzp6m4+FwAAAKBhSiKdcU6S+5NskGcWMWqSNZKcVUp5Xa31F0u/sZQyMcnXk+ycZ24R6XvOZbXWwXx9ybR+rv1mEOcCAAAAAAAAnbTBlOSt5yWXfyW5+MSh+cfyi3VPSPb9WLLn+1r/x/Lv/+6v8qPr72k046J/enm22OA5jWawkh64rb1yVM+85IJPJLf8eFiUowAAAAAGS0mkA2qtPaWU7yb5QJZs6ehbFNk0yc9KKeeldyPInen9b79jkrcm2azPe5bl64Mccd9+rl0/yLMBAAAAAACATuoel0z7YDL14OTSLyY3ntG79aAp49dItju0N3PdLZrLWQm33PtYXvWlSxrNeMMeL8qnDtmu0QxW0sKFvdtDLjphaAtRy3L31ckpL11UlDq8d7sPAAAAwAhUaq0rfhUrVErZJMktSRZ/1UzfjSCLf17Wf+ylN4cs/Z45SabUWucPYrY7sqSI0jf34Vrr+gM9Fxi8UspNSaYu/fzUqVNz0003tTARAAAAAAAw7Dz1aHL995KrTk0enN25c9efnOz69mSH1ycT1+7cuQNQa83mR85qPOfW4w/KxPHtbklhkZ75yZnvSW48ve1Jnm27w3q3inSPb3sSAAAAYBW8+MUvzs0337ysSzfXWl881PO0xSaRDqm13lNKOTbJ5/PMMkjfjSLL2hTStxDS1+L3HT3IgsjOSSb1ye/75xUDPRcAAAAAAAAYIhPXTnZ/Z7LbO5LfX5bcOiu559rk3utXbcPI+DWTjbdPNtkp2WZ6stneSVnWrzCH1veuvDNH/ODGRjNOecNOOWjbjRvNYBXMfyo5483J7LPbnmTZbjw9mfd4cug3k/ET254GAAAAYJUoiXTWl5IcmmSPPLMU0rcosix9P3mtff48u9b6nUHO9KZ+rl0+yLMBAAAAAACAoVJKMmla7yNJFvYkD96e3Htdcv/NyZOPJAvmJT3zku4JybgJyerrJBtOTTbeMVl/66Rr+GzReOyp+dn+2PMazdjwuRNy5cf2azSDVdQzf3gXRBabfXby329JDvuWjSIAAADAiKIk0kG11oWllIOT/DzJNnnmlpCV+Qqevq+fneTvBjNPKWXCojOWV065cDDnAwAAAAAAAC3q6k423Kb3McK889tX59yb7ms042cffkU2W2/NRjNYRQsXJme+Z/gXRBa7bVbvvK/5atLV1fY0AAAAACvFpxgdVmt9MMneSc7PkmJIXclHFr3nsiQvr7U+Nshx/j7Jen3O7VsWebDWesUgzwcAAAAAAABYab+++9FMOuKsRgsib91788yZOUNBZDi6/KTkxtPbnmLV3Hh6cvlX2p4CAAAAYKXZJNKAWuufkhxYSnlzkmOSTOp7eamX990w8kCSzyf5Qq11fgdG+VCfvL65NckI+WoWAAAAAAAAYKSrtWbzI2c1nnPbpw7KhHHdjecwAA/cllx0QttTDMxFn0omH5hsMKXtSQAAAABWSEmkQbXWb5ZSTkuyX5LpSXZNsmWSddJbDnk4yf1JrkxyYZIf11rndiK7lPI3Sab285KfdCIHAAAAAAAAoD/fvnxOPv7DmxrNOPVNu2S/qc9vNINB6FmQnPnupGde25MMTM+85Mz3JG87L+lSQgIAAACGNyWRhtVaa5LzFz2G0pwkr+nn+nlDNAcAAAAAAAAwBj0y9+nseFyzvyZ90bpr5Ocf2afRDDrg8q8kd1/T9hSDc/fVyS9OSqZ9sO1JAAAAAPqlJDJK1VqvSTLCP2UDAAAAAAAARqI3f+PK/PS2BxrNuPSj++QFz1uj0Qw64OE7kotPbHuKzrj4xGTqwcm6W7Q9CQAAAMBydbU9AAAAAAAAAACjw3V3PZJJR5zVaEHkXS/fMnNmzlAQGSku/WLSM6/tKTqjZ17v/QAAAAAMYzaJAAAAAAAAADAoCxfWbHHUrMZzZn/qVVltnO9CHDGefCS58Yy2p+isG89IDjg+mbh225MAAAAALJNPzwAAAAAAAAAYsFMvuaPxgsg337Jr5sycoSAy0lz/vWT+3Lan6Kz5c3vvCwAAAGCYskkEAAAAAAAAgFX28BNPZ6fjz280Y+sNn5PzP/TyRjNoSK3JVae2PUUzrjo12e0dSSltTwIAAADwLEoiAAAAAAAAAKyS13318vzydw83mnH5kftm47VXbzSDBs25NHno9ranaMaDs5PfX5ZMmtb2JAAAAADPoiQCAAAAAAAAwEq5es7Dee0plzea8f59t8qHDpjSaAZD4LZZbU/QrFtnKYkAAAAAw5KSCAAAAAAAAAD96llYs+VRzf+j/9+c8KqM6+5qPIchcPe1bU/QrHtG+f0BAAAAI5aSCAAAAAAAAADL9e8//W0+c86tjWb837fvnr23Wr/RDIbQwp7kjze0PUWz7r2h9z67utueBAAAAOAZlEQAAAAAAAAAeJYHHp+XXU+4oNGM7TZdOz8+fFqjGbTgwdnJ/LltT9Gs+U8kD96ebLhN25MAAAAAPIOSCAAAAAAAAADPcMi/XZbr7nqk0Ywrj3plNlxrYqMZtOSe69qeYGjce52SCAAAADDsKIl0SCnlmLZnGIha63FtzwAAAAAAAAAMD1fc8VBe/x9XNJrx4QOn5L37bNVoBi27/+a2JxgaY+U+AQAAgBFFSaRzjk1S2x5iAJREAAAAAAAAYIxb0LMwW33s7MZzfnvi9HR3lcZzaNlTzW6hGTaeHCP3CQAAAIwoSiKdN5I+0RyJpRYAAAAAAACgg750we35wgWzG834/jv2yO5brNdoBsPIgnltTzA0xsp9AgAAACOKkkjnjZTixUgqswAAAAAAAAAddt9jT2X3Ey9sNGPXSc/LGe/aq9EMhqGep9ueYGj0KIkAAAAAw4+SSOeNhPLFSCmyAAAAAAAAAA141ZcuyS33PtZoxtVH75f1nzOh0QyGqe7V2p5gaHT7/zcAAAAw/CiJAAAAAAAAAIwRl97+YN7wtV82mnHU9G3yjpdt2WgGw9y4MVKeGCv3CQAAAIwoSiKd1+aWjuVtMbE5BAAAAAAAAMaw+T0Ls/XHzm48544Tp6era3m/tmTMmLhO2xMMjdXHyH0CAAAAI4qSSGe1+WlnzZIyyNJz+BQWAAAAAAAAxqjPnXtr/u3i3zaa8T/v3is7b/a8RjMYQTac2vYEQ2Os3CcAAAAwoiiJdEittWsockopqyVZL8m6SV6QZK8key96TMizyyI1yUlJPlxrnT8UMwIAAAAAAADtu+eRJ7PXzIsazZi21fr5r7fv3mgGI9AmO7Y9wdDYeIzcJwAAADCiKImMMLXWp5Pcu+hxU5Jzk6SUskGS9yZ5V5INs6QsUpIcnmTvUspf1lrva2NuAAAAAAAAYOjs+y8/zR0PPtFoxq8+vn+et+ZqjWYwQq0/ORm/RjJ/btuTNGf8msn6W7c9BQAAAMCzDMn2C5pXa32g1npskq2S/N/0lkOSJUWRnZNcVkrZvJ0JAQAAAAAAgKZdfOv9mXTEWY0WRD7x6qmZM3OGggjL19WdbLR921M0a+Pte+8TAAAAYJixSWSUqbX+OckbSykXJDk1vUWgxUWRLZJcUErZo9b6QItjAgAAAAAAAB309IKFmXz02Y3n3HHi9HR1lRW/EDbdKbnriranaM4mO7U9AQAAAMAy2SQyStVaT0vyvjxzo0iSbJ7kh6UUX2kCAAAAAAAAo8AJZ93ceEHkh+/dO3NmzlAQYeVNmd72BM3aZpTfHwAAADBi2SQyitVav1pKmZrk8PSWRBZvFNk9yRFJTmhxPAAAAAAAAGAQ7np4bl762YsbzXjlNhvma2/etdEMRqlJ05L1tk4eur3tSTpv/cnJZnu3PQUAAADAMimJjH7HJPn7JM9b9PPiosjRpZTTaq1/aG0yAAAAAAAAYED2+vSFuefRpxrNuP6YA7L2GuMbzWAUKyXZ9e3JOR9te5LO2/XtvfcHAAAAMAx1tT0Azaq1Pprks+kthvS1WpJ/GvqJAAAAAAAAgIE676Y/ZtIRZzVaEDnhNdtmzswZCiIM3g6vT8av0fYUnTV+jd77AgAAABimbBIZG76bZGafnxdvE3lrKeWjtdan2xkLAAAAAAAAWBlPze/JNh8/p/Gc3316eooNCXTK6usk2x2aXHta25N0znaHJhPXbnsKAAAAgOWySWQMqLXeleTmZVx6TpJXDvE4AAAAAAAAwCr4xA9/3XhB5CeHT8ucmTMUROi8aR9Muie0PUVndE/ovR8AAACAYUxJZOy4PL3bQ5amJAIAAAAAAADD0JwHn8ikI87KaZf/vrGM6dttlDkzZ2TbTW1GoCHrbpHsc1TbU3TGPkf13g8AAADAMDau7QEYMvct5/nthnQKAAAAAAAAYIV2Ov78PPzE041m3HjsAXnuxPGNZkCSZM/3Jbf8KLn7mrYnGbhNd0n2OrztKQAAAABWyCaRseOBpX6u6d0sMrmFWQAAAAAAAIBlOOuGezPpiLMaLYh89rXbZ87MGQoiDJ3ucckh/550T2h7koHpnpAccnLS1d32JAAAAAArZJPI2NGznOfXGdIpAAAAAAAAgGd58ume/MUx5zSaUUpyx4nTU0ppNAeWaYMpyb4fS84/pu1JVt2+R/fODwAAADACKImMHRsu5/k1h3QKAAAAAAAA4BmO/MEN+e6VdzWacc4HX5ptNlqr0QxYoT0PT/746+TG09ueZOVtd1iy5/vangIAAABgpSmJjB2bLef5BUM6BQAAAAAAAJAk+c39f85+//qzRjNe85JN84XX7dhoBqy0rq7kkJOTeY8ns89ue5oVmzK9d96urrYnAQAAAFhpSiJjxwFJ6jKef3yoBwEAAAAAAICxrNaaqcecmyfn9zSac9MnD8yaE/xKmGGme3xy6DeTM948vIsiU6Ynr/1G77wAAAAAI4ivuxgDSimvSPL8xT8u9Weze6sBAAAAAACA//XD6+7O5kfOarQg8oXX7ZA5M2coiDB8jZ+YvO7byXaHtT3Jsm13WHLYt3rnBAAAABhhfCo4ypVSSpLPLedyTXLbEI4DAAAAAAAAY9IT8xbkxZ84t9GM1cd35+bjDkzvrwhhmOsen7zmq8lG2yYXnZD0zGt7oqR7QrLv0cme70u6fOcmAAAAMDIpiYx+JybZOb2FkGV9Gnz50I4DAAAAAAAAY8uHvn9dfvCruxvNuOBDL8tWGz630QzouK6uZO8PJJMPSs58d3L3Ne3NsukuySEnJxtMaW8GAAAAgA5QEhmlSinjksxM8n+y/IJIkswasqEAAAAAAABgDLntj4/nwC/+vNGM1+3ywnzmtds3mgGN22BK8tbzksu/klx84tBuFemekOz7sUXbQ7qHLhcAAACgIUoio0wppSvJjCSfTTI5veWQ2ucltc9zV9Ra7xjyIQEAAAAAAGAUq7Vmi6NmpdYVv3YwbjnuoKy+mn/UzijRPS6Z9sFk6sHJpV9MbjwjmT+3ubzxayTbHdqbue4WzeUAAAAADDElkRGulLJakilJtk+yZ5K/SbJhlmwO6W+LyOcaHxAAAAAAAADGkDOuvisf/u8bGs34yt+9JH+5/SaNZkBr1t0iOfjLyQHHJ9d/L7nq1OTB2Z07f/3Jya5vT3Z4fTJx7c6dCwAAADBMKIl0SCllKDdylCRrJHlukgnLuJYs2R7StyDSd4vIz2utZzY5JAAAAAAAAIwVjz81P9sde16jGeusMT7XHXNAoxkwbExcO9n9nclu70h+f1ly66zknmuTe69ftQ0j49dMNt4+2WSnZJvpyWZ7J2V537MIAAAAMPIpiXTOpPS/tWOo9F1avXRBZLGHk7xlaMYBAAAAAACA0e2937k2Z91wb6MZF//zK7L5+ms2mgHDUinJpGm9jyRZ2JM8eHty73XJ/TcnTz6SLJiX9MxLuick4yYkq6+TbDg12XjHZP2tk67udu8BAAAAYAgpiXReXfFLGrd0UaXvVpG5Sf661jpnSCcCAAAAAACAUeamex7NjC9f2mjGm/bcLMf91baNZsCI0tWdbLhN7wMAAACAZ1ESGflWtLmkb0HkviSvqbVe0exIAAAAAAAAMHrVWrP5kbMaz7n1+IMycbwNCAAAAADAylMS6bwVlTaatvQmk8Xz/L8k76613j/E8wAAAAAAAMCo8X9/+ft87P/9utGMU96wcw7adqNGMwAAAACA0UlJpPOWLmm0oW9R5dwkM2utP2trGAAAAAAAABjpHn1yfnb45HmNZmy01sRccdQrG80AAAAAAEY3JZHOanuLSJLMTfLLJOckOaPWOqfdcQAAAAAAAGBke/tpV+WCW+5vNOOSj+yTF667RqMZAAAAAMDopyTSOacNYVZNsiDJvCSPJrk/yZ1Jbksyu9baM4SzAAAAAAAAwKh0wx8eycFfuazRjLdP2zxH/+XURjMAAAAAgLFDSaRDaq1vaXsGAAAAAAAAYPAWLqzZ4qhZjefc9qmDMmFcd+M5AAAAAMDYoSQCAAAAAAAAsMg3L/tdjv3xzY1mfP3Nu2TfbZ7faAYAAAAAMDYpiQAAAAAAAABj3p+eeDovOf78RjM2X3/NXPzPr2g0AwAAAAAY25REAAAAAAAAgDHtjV/7ZS65/cFGMy47Yt9sus7qjWYAAAAAACiJAAAAAAAAAGPStXf+KX998i8azXjvPlvmwwdu02gGAAAAAMBiSiIAAAAAAADAmLJwYc0WR81qPOf2E16V8d1djecAAAAAACymJAIAAAAAAACMGf/x89/mxFm3NprxrbfulpdN3qDRDAAAAACAZVESAQAAAAAAAEa9h/48Lzt/6oJGM7bZ6Lk554MvazQDAAAAAKA/SiIAAAAAAADAqHboKb/IVXP+1GjGFUe+MhutPbHRDAAAAACAFVESAQAAAAAAAEalK3/3cA776uWNZvyf/SbnA/tt3WgGAAAAAMDKUhIBAAAAAAAARpWehTVbHjWr8ZzfnPCqjOvuajwHAAAAAGBlKYkAAAAAAAAAo8a/XfybfO7c2xrN+M4/7p69tly/0QwAAAAAgIFQEgEAAAAAAABGvPsffyq7nXBhoxk7vnCdnPnevRvNAAAAAAAYDCURAAAAAAAAYEQ7+CuX5oY/PNpoxpUfe2U2fO7ERjMAAAAAAAZrzJdESilvWpnX1Vq/1YlzhpsV3RcAAAAAAAAMV7/4zYP5u1N/2WjGRw6akve8YqtGMwAAAAAAOmXMl0SSfDNJXYnXrahMsbLnDDdKIgAAAAAAAIwoC3oWZquPnd14zm9PnJ7urtJ4DgAAAABApyiJLNHfp7urUv4YSZ8Sj8RSCwAAAAAAAGPYv54/O1++8PZGM854157ZddK6jWYAAAAAADRBSWSJ5RUmVrX0MVKKFyOpzAIAAAAAAMAY98dHn8oen76w0YzdN18333/nno1mAAAAAAA0SUlkiWWVJgZS+BgJ5YuRUmQBAAAAAACAHPiFn+e2+x5vNOOao/fLes+Z0GgGAAAAAEDTlEQAAAAAAACAYelnsx/IP3z9ykYzjp7xF3n7S7doNAMAAAAAYKgoiSzRqe0atnQAAAAAAADAIDy9YGEmH3124zl3nDg9XV2l8RwAAAAAgKGiJNKrU5/8+gQZAAAAAAAABuEz59yaf//pbxvN+MF79spOL3peoxkAAAAAAG1QEkk2H2bnAAAAAAAAwJjzhz/NzbTPXNxoxssmb5BvvXW3RjMAAAAAANo05ksitdbfD6dzAAAAAAAAYKx5+ecuzu8fmttoxnXH7J911lit0QwAAAAAgLaN+ZIIAAAAAAAA0I4Lb7kvbzvt6kYzjvurF+dNe05qNAMAAAAAYLhQEgEAAAAAAACG1LwFPZly9DmN5/zu09NTSmk8BwAAAABguFASAQAAAAAAAIbM8T+5OV+79HeNZvz4fdOy3QvWbjQDAAAAAGA4UhIBAAAAAAAAGnfnQ3Pzss9d3GjG/lOfn/980y6NZgAAAAAADGdKIgAAAAAAAECjdj/xgtz32LxGM67/xAFZe/XxjWYAAAAAAAx3SiIAAAAAAABAI8759b15139d22jGp/96u/ztbi9qNAMAAAAAYKRQEgEAAAAAAAA66qn5Pdnm4+c0nvO7T09PKaXxHAAAAACAkUJJBAAAAAAAAOiYo8+8Mf91xZ2NZsx6/0szdZO1Gs0AAAAAABiJlEQAAAAAAACAQfvdg09kn3/5aaMZf7n9xvnK3+3UaAYAAAAAwEimJAIAAAAAAAAMyg6fPC+PPjm/0Yxff/LAPGeCX2923MKe5MHZyT3XJfffnDz1SLJgXtLzdNK9WjJuQjJxnWTDqckmL0nW3zrp6m57agAAAABgOXyKOkKVUrZIsn+SlybZOMn6SSYkeTTJHUmuTnJWrfXW1oYEAAAAAABgVPvx9ffk8O/+qtGMfzl0h7x25xc0mjGm1JrMuTS5bVZy97XJH29I5s9d+fePXzPZaLtk052SKdOTSdOSUpqbFwAAAABYJUoiI0wpZZckn0pvQeQZl/r8fZckhyX5bCnlkiRH11ovHaIRAQAAAAAAGOXmPr0gU485t9GM8d0lsz/1qhQFhM548pHk+u8lV3+td3PIQM1/Irnrit7HFScn609OdnlbssPrk9XX6dy8AAAAAMCAKIl0UCnlHVn+f9Pv1VofHuT5n0xy9OIfl/GSuuj5vtdeluRnpZRTknyw1trsnm8AAAAAAABGtY/89/U5/eo/NJpx3v95WSY//7mNZowZD9+RXPrF5MYzVm1jyMp6cHZyzkeTCz+ZbHdoMu2DybpbdD4HAAAAAFgpSiIdUkrZLckp6S1qLO2OWuvJgzz/tCRvyJICyLJylvX84tLIu5JMKaUcXGtt4NNfAAAAAAAARrPf3P949vvXnzea8Tc7vSCfP2yHRjPGjJ4FyeUnJRd/OumZ13ze/LnJtaf1bivZ56hkr8OTru7mcwEAAACAZ1AS6ZzDFv259IaPmuRLgzm4lPLxJG/sc96ycpan7+v3SfL9JK8ezDwAAAAAAACMHbXWTPn4OXl6wcJGc24+7sCssZpfX3bEA7clZ747ufuaoc/umZdc8Inklh8nh5ycbDBl6GcAAAAAgDGsq+0BRpFD01vI6PtIkkeTfH2gh5ZStk/y8T5nLt4MsrSlc//3iEWPxe+dXkr554HOAwAAAAAAwNjxP9f8IZsfOavRgsiXXr9j5sycoSDSCQsXJpd9KTnlpe0URPq6++reOS77Uu9cAAAAAMCQ8ElrB5RStkrywiwpYvT98ye11rmDOP5f0vu/0+Iz+1q6ELKs58tSz5ckx5RSvlNrvWcQcwEAAAAAADBK/Xnegmz7iXMbzXjuhHG54dgDUsqyvh+NVdYzPznzPcmNp7c9yRI985Lzj0n++OverSLd49ueCAAAAABGPSWRzti9n2s/GuihpZQ9kuyX/gsii59/OslDSdZNMqHPa/puH1n8njXTWz75u4HOBgAAAAAAwOj0/u/+Kj+6vtnvGrvwn16eLTd4TqMZY8r8p5Iz3pzMPrvtSZbtxtOTeY8nh34zGT+x7WkAAAAAYFTranuAUWKPPn/vu8VjfpJzBnHuB5bx3OLix2KnJdmt1jqx1rpprXX1JNsnOWU5My0ujRxWSnnhIGYDAAAAAABgFLn1j49l0hFnNVoQ+dvdXpQ5M2coiHRSz/zhXRBZbPbZyX+/pXdeAAAAAKAxNol0xs5L/bx4a8dVtdY/D+TAUso6SQ7Jswsei89fkORNtdbvLf3eWuuvk7ynlPKTJD9IMj5LyiF9z/j7JDMHMh8AAAAAAACjQ601mx85q/GcW48/KBPHdzeeM6YsXJic+Z7hXxBZ7LZZvfO+5qtJl+8zBAAAAIAm+OStMzbPM8sci904iDP/KsmERX8vfZ5fXPT4zLIKIn3VWmcl+eBS7+97zhsHMR8AAAAAAAAj3PevurPxgsjJf79T5sycoSDShMtPSm48ve0pVs2NpyeXf6XtKQAAAABg1LJJZJBKKROTPD/P3tSRJDcM4uhDlvq577mPJPn0yhxSaz2llPLOJDssNWNJsk0pZfNa6+8GMScAAAAAAAAjzGNPzc/2x57XaMb6z5mQq4/er9GMMe2B25KLTmh7ioG56FPJ5AOTDaa0PQkAAAAAjDo2iQzeZv1cG9AmkVLKuCT75tnbSRYXPL5ea527Ckd+vp9rO63ieAAAAAAAAIxg7/r2NY0XRH724VcoiDSpZ0Fy5ruTnnltTzIwPfOSM9+TLOxpexIAAAAAGHWURAbv+f1ce2CAZ+6c5LmL/l6Wcf1bq3jej5MsWPT3pYsnL1nFswAAAAAAABiBfn33o5l0xFk556Y/Npbx5r0mZc7MGdlsvTUbyyDJ5V9J7r6m7SkG5+6rk1+c1PYUAAAAADDqjGt7gFFgjX6uPTbAM6ct9XPfYscdtdZV2lBSa320lHJdkl3y7JLIDgOYDwAAAAAAgBGi1prNj5zVeM6txx+UieO7G88Z8x6+I7n4xLan6IyLT0ymHpysu0XbkwAAAADAqGGTyOD109avsgAAIABJREFUVxJ5dIBn7r2M50p6Cx4D/QT/luWcuckAzwMAAAAAAGCY+/YVv2+8IPKfb9olc2bOUBAZKpd+MemZ1/YUndEzr/d+AAAAAICOsUlk8PoriTw1wDP3zLM3fix24QDPvGOpn2t6SyJrD/A8AAAAAAAAhqlH587PDsed12jGC563ei796L6NZrCUJx9Jbjyj7Sk668YzkgOOTyb6tSUAAAAAdIKSyOCVfq6tmeTPq3RYKVsmeX6WlDj6lkVqkp+t6oCLPL6c59ca4HkAAAAAAAAMQ2/5xpW5+LYHGs245CP75IXr9vddajTi+u8l8+e2PUVnzZ/be1+7v7PtSQAAAABgVOhqe4BR4LF+rg3kk/GXL+O5xUWUm2utjw7gzGT5ZZXnDvA8AAAAAAAAhpHr7nokk444q9GCyDtftkXmzJyhINKGWpOrTm17imZcdWrv/QEAAAAAg2aTyOD1V9p4QZL7V/G8Vyzn+ZrkslU8q6/lFYL624QCAAAAAADAMLdwYc0WR81qPGf2p16V1cb5DrrWzLk0eej2tqdoxoOzk99flkya1vYkAAAAADDi+RR38PrbJLL1AM7bL72FkGW5dADnLbb6cp5/fBBnAgAAAAAA0KKvXfq7xgsi33jLrpkzc4aCSNtua74I1KpbR/n9AQAAAMAQsUlk8O7q59pOSb6/sgeVUvZIslF6SyLL2vBxyaqN9gwbLOf5Pw/iTAAAAAAAAFrwpyeezkuOP7/RjK02fE4u+NDLG81gFdx9bdsTNOueUX5/AAAAADBElEQGqdb6QCnl3iwpdyxWkrwqyUdX4bhDlz6+z9/n1FrvHNiUSZJNlvp5cQmlv00oAAAAAAAADDN/959X5Be/fajRjMuP3Dcbr728RfUMuYU9yR9vaHuKZt17Q+99dnW3PQkAAAAAjGh2QnfGr7KkdFGypNzx4lLKS1bmgFLKhCT/kGcWQ/qed+EgZ5y8jOdqksEUTwAAAAAAABgiV895OJOOOKvRgsjh+26VOTNnKIgMNw/OTubPbXuKZs1/Innw9ranAAAAAIARzyaRzrgqyfTlXDsuyatX4ox3JVk3vcWNsozrFwxstP81Nc8uoCTJbwd5LgAAAAAAAA3qWViz5VGzGs+5/YRXZXy375gblu65ru0Jhsa91yUbbtP2FAAAAAAwovmUtzO+v9TPi7d/lCTTSyn/3N+bSymTk3wyzyxx9P37E0l+MtDhSil/kWStPrP19ZuBngsAAAAAAECzTvnZbxsviPzX23bPnJkzFESGs/tvbnuCoTFW7hMAAAAAGmSTSAfUWm8tpVyVZNcsKYf0LYp8ppSyZZJP1lr/2Pe9pZSDkvxnekscS28RWXzGGbXWweyPfmk/1+xsBgAAAAAAGGYeeHxedj1hsIvm+7ftpmvlJ4f392skho2nHml7gqHx5Bi5TwAAAABokJJI53wtvSWRvvoWRd6R5G2llKuT3Jne//Y7JNliqdcty38McraD+rl25SDPBgAAAAAAoIP++uTLcu2dzf5j+SuPemU2XGtioxl00IJ5bU8wNMbKfQIAAABAg5REOufUJO9Osn2eWfjoWwAZl2T3RY/0eU1d6qza530/qbX+cqBDlVImJtm/T0bfrNtrrX8a6NkAAAAAAAB0zhV3PJTX/8cVjWb80/6Tc/grt240gwb0PN32BEOjR0kEAAAAAAZLSaRDaq0LSynvTnLZ4qfy7KJI8sxtIX0LG8sqjMxPcsQgRzs4yZp5ZvFk8Z+/GOTZAAAAAAAADNKCnoXZ6mNnN57zmxNelXHdXY3n0IDu1dqeYGh0T2h7AgAAAAAY8ZREOqjWekUp5dgkn0xvCWNZRZGlt4aUPNvi136o1nrLIMd6Uz/XLuvnGgAAAAAAAA076cLb8/nzZzea8b137JE9tliv0QwaNm6MlCfGyn0CAAAAQIOURDqs1np8KeU5ST6cZ5ZCSpZdCPnfty7180m11pMHM0spZVKSg5Zx9mLnDuZ8AAAAAAAABub+x57Kbide2GjGzps9L//z7r0azWCITFyn7QmGxupj5D4BAAAAoEFKIg2otX60lHJ9kpOSPC/L3iCyLCXJ0+ndIDKogsgi70vS1Se77ww31lr/0IEMAAAAAAAAVsGML1+Sm+55rNGMq4/eL+s/x1aGUWPDqW1PMDTGyn0CAAAAQIOURBpSa/1OKWVWkg8leUuSTVfwlj8n+XaSmbXWuwabX0p5XpJ/zLLLKTXJTwabAQAAAAAAwMq79PYH84av/bLRjCNftU3e+fItG82gBZvs2PYEQ2PjMXKfAAAAANAgJZEG1VofSXJMkmNKKTsk2TXJlknWSe/WkIeT3J/kyiRX1loXdDD+HUkWJlne11D9qINZAAAAAAAALMf8noXZ+mNnN57z2xOnp7urNJ5DC9afnIxfI5k/t+1JmjN+zWT9rdueAgAAAABGPCWRIVJrvT7J9UOY95kknxmqPAAAAAAAAJ7t8+fdlpMu+k2jGf/z7j2z82brNppBy7q6k422T+66ou1JmrPx9r33CQAAAAAMipIIAAAAAAAAdNg9jzyZvWZe1GjGXluul+/84x6NZjCMbLrT6C6JbLJT2xMAAAAAwKigJAIAAAAAAAAd9MrP/zS/feCJRjOu/fj+WXfN1RrNYJiZMj254uS2p2jONtPbngAAAAAARgUlEQAAAAAAAOiAi2+7P2/5xlWNZhzzl1Pz1mmbN5rBMDVpWrLe1slDt7c9SeetPznZbO+2pwAAAACAUUFJBAAAAAAAAAbh6QULM/nosxvPuePE6enqKo3nMEyVkuz69uScj7Y9Seft+vbe+wMAAAAABq2r7QEAAAAAAABgpPr0rFsaL4j88L17Z87MGQoiJDu8Phm/RttTdNb4NXrvCwAAAADoCJtEAAAAAAAAYBXd9fDcvPSzFzeasc+UDfKNt+zWaAYjzOrrJNsdmlx7WtuTdM52hyYT1257CgAAAAAYNZREAAAAAAAAYBXsPfOi3P3Ik41mXH/MAVl7jfGNZjBCTftgcv33kp55bU8yeN0Teu8HAAAAAOiYrrYHAAAAAAAAgJHg/Jvvy6Qjzmq0IHL8IdtmzswZCiIs37pbJPsc1fYUnbHPUb33AwAAAAB0jE0iAAAAAAAA0I+n5vdkm4+f03jO7z49PaWUxnMYBfZ8X3LLj5K7r2l7koHbdJdkr8PbngIAAAAARh0lEQAAAAAAAFiOY390U775izmNZvzk8GnZdtO1G81glOkelxzy78kpL0165rU9zarrnpAccnLS1d32JAAAAAAw6iiJAP0qpYxLsmWSSUmem+Q5SZ5K8liSe5PcVmud29qAAAAAAADQgN8/9ERe/rmfNppx0Is3yilv3LnRDEaxDaYk+34sOf+YtidZdfse3Ts/AAAAANBxY74kUkr5etsztKjWWt/W9hAMP6WU7ZL8dZLpSXZMslo/L6+llNuTnJPkR0kuqrXW5qcEAAAAAIBm7PKp8/Pgn59uNOOGYw/IWhPHN5rBGLDn4ckff53ceHrbk6y87Q5L9nxf21MAAAAAwKg15ksiSd6cZCz+g/aS3vtWEhmkUkpJ76aNXZPssujPl6R348by/L7WOqn56VZNKeXAJEckecWqvC3J5EWP9yeZXUr5QpL/rLX2dHxIAAAAAABoyFk33Jv3fufaRjM++zfb57BdX9hoBmNIV1dyyMnJvMeT2We3Pc2KTZneO29XV9uTAAAAAMCopSSyRGl7AEaGUsqLsqQMssuixzqtDjVIpZRNk5yU5DUdOG5ykn9P8q5Syjtrrb/swJkAAAAAANCYp+b3ZJuPn9N4zu8+PT293z0FHdQ9Pjn0m8kZbx7eRZEp05PXfqN3XgAAAACgMUoiS4y1bSJ+A7ESSinPT28ZpO+WkA1aHarDSinTkvxPkg07fPQOSS4ppXyg1vrvHT4bAAAAAAA64sgf3JjvXnlnoxnnfPCl2WajtRrNYIwbPzF53beTM9+T3Hh629M823aH9W4QURABAAAAgMYpiSwxlkoTY60QMxjnprfsMCqVUv4qyRlJmvpEfnySk0spm9Vaj2goAwAAAAAAVtlvH/hzXvn5nzWa8Vc7bpIvvf4ljWbA/+oen7zmq8lG2yYXnZD0zGt7oqR7QrLv0cme70u6utqeBgAAAADGBCWRJRQnGFNKKfsn+X6aK4j09dFSyhO11uOHIAsAAAAAAJar1pptP3Funni6p9Gcmz55YNac4FdxDLGurmTvDySTD0rOfHdy9zXtzbLpLr3bQzaY0t4MAAAAADAG+boWGINKKZOSnJ5kwkq8/MYkH0myZ5L101sqWSfJdkn+MckFWbmS1XGLNpcAAAAAAEArfnjd3dn8yFmNFkS+8LodMmfmDAUR2rXBlOSt5yX7fbJ3m8dQ6p6Q7H9c8rbzFEQAAAAAoAU+nU7ujC0ijCGllHHp3SCyzgpeel+Sw2utZyzj2qOLHr9OcmopZdckpyTZaQVnfqOUsmOt9c5VHBsAAAAAAAZs7tMLMvWYcxvNmDi+K7ccd1BKKY3mwErrHpdM+2Ay9eDk0i8mN56RzJ/bXN74NZLtDu3NXHeL5nIAAAAAgH6N+ZJIrXVS2zMwqtQkv0lyb5KXtTzL8rwvyW4reM31SabXWu9ZmQNrrVeVUvZK8o0kf9vPS5+X5ItJ/nplzgUAAAAAgMH60OnX5QfX3t1oxgUfelm22vC5jWbAgK27RXLwl5MDjk+u/15y1anJg7M7d/76k5Nd357s8Ppk4tqdOxcAAAAAGJAxXxKBQZqT5KokVy96XFNrfbSU8ookF7c41zKVUjZIcuwKXvabJPvXWh9YlbNrrfNKKW9MskaSv+rnpa8ppexfaz1/Vc4HAAAAAIBVMfu+x3PAF37eaMbrdnlhPvPa7RvNgI6ZuHay+zuT3d6R/P6y5NZZyT3XJvdev2obRsavmWy8fbLJTsk205PN9k5s0AEAAACAYUNJBFbe3XlmIeTqWutD7Y60yv45SX9f4fR0ksNWtSCyWK21p5TyD0muSzKpn5cel0RJBAAAAACAjqu1ZquPnZ2ehbXRnFuOOyirr9bdaAY0opRk0rTeR5Is7EkevD2597rk/puTJx9JFsxLeuYl3ROScROS1ddJNpyabLxjsv7WSZf/7wMAAADAcKUkAv07Kcl9Sa6qtd7X9jCDUUpZK8k7V/CyL9ZafzWYnEWbVD6Q5If9vGyPUspLa62XDCYLAAAAAAD6OuPqu/Lh/76h0YyT/vYlefUOmzSaAUOqqzvZcJveBwAAAAAw4imJQD9qrV9re4YO+of0v0XkkSQndCKo1vqjUsolSV7az8ven0RJBAAAAACAQfvzvAXZ9hPnNpqxzhrjc90xBzSaAQAAAAAAg6UkAmPHG1dw/T9qrY91MO/z6b8k8upSytq11kc7mAkAAAAAwBjz3u9cm7NuuLfRjIv/+RXZfP01G80AAAAAAIBOUBKBMaCUsnWSXVfwslM7HPvjJPcm2Xg51yck+ZskX+9wLgAAAAAAY8DN9zyW6V9udmH1G/fYLMcfsm2jGQAAAAAA0ElKIjA2vHoF16+ptd7eycBa68JSyulJPtDPy14dJREAAAAAAFZBrTWbHzmr8Zxbjz8oE8d3N54DAAAAAACd1NX2AMCQ2G8F189qKHdF5+5TSvEbNgAAAAAAVsp3fnln4wWRU96wc+bMnKEgAgAAAADAiGSTCIxypZRxSV62gpdd0FD8JUmeSjJxOdfXTrJrkisaygcAAAAAYBR47Kn52f7Y8xrN2GitibniqFc2mgEAAAAAAE1TEoHR78VJ1uzn+vwkVzYRXGt9qpTyqyR79vMyJREAAAAAAJbrH791dc6/+b5GM37+4X3yovXWaDQDAAAAAACGgpIIjH47reD6zbXWeQ3mX53+SyIvaTAbAAAAAIAR6oY/PJKDv3JZoxlvm7Z5Pv6XUxvNAAAAAACAoaQk0rJSyovT+4/kt03ygiSbJlkryepJJiQpi15aa61btjIkI92OK7h+Q8P516/gupIIAAAAAAD/q9aazY+c1XjObZ86KBPGdTeeAwAAAAAAQ0lJZIiVUrqTvDrJYUn2S7Lesl62jOfqKuas8//Zu+8oPcs6feDXPSEkdKQXSwgdBZGmFOlSEtdFV9TVdWXVxYZt10IRRIWQVX/qrspasK11xYK6Cb1IL9KRXoJ0CEgNCcnk/v0xiZkkUzLJPO87k/l8znnPzLz3M8/1fQ45+SPDNd8ka/Vy/ESt9cmB3I9hbYt+zu9oOP+ufs43bzgfAAAAAIBh4keXTstnf//nRjO+966dst/W6zeaAQAAAAAA7aIk0iKllFWSfCTJR5OsO//tPr6leymkr+t6s12S83s5OzPJhKW4J8PTJv2c39lwfn/3X6WUsm6t9bGG5wAAAAAAYIh6csYL2f7zZzeaMW7tlXPBJ/dpNAMAAAAAANpNSaQFSin/nOTL6doa0r3wMaDtIANRa72wlHJRkj17OH5dKWXDWutDTeUzNJRSSpKX9XPZgw2P8VCSuUk6+rhmkyRKIgAAAAAAI9A/f//KXHh7s/9EfMmR+2bjNVdqNAMAAAAAAIaCvv6nbZZRKWWNUsofkvwgyTrpKojUbq/Me6+v17L4yryPi2Z2JHnHMt6b4eFFScb2c83DTQ5Qa+1MMr2fyzZqcgYAAAAAAIaea/7y14w7ckqjBZEP7L1ppk2eqCACAAAAAMCIYZNIQ0op45OckWTTLCiH/O14kcsX3SiyrOWQ+f6QZFoW3yRRkhyWru0mLN/WXoJrHm18iq6M9fo4X5I5AQAAAABYDsydWzP+6KmN59x+wsFZcQW/Lw0AAAAAgJHFv4w3oJSyaZILkmyWhQsi3beD9LVRZFDUWmuS/+l2z+6zbF1K2Wywshiy1lqCa55ufIr+M5ZkTgAAAAAAhrlTLrq78YLIj969S6ZNnqggAgAAAADAiGSTyCArpayeZEqSF2fhAsh8Pb33UJK/JHk8yTpJdpl33WAURn6c5LhezvZPcucgZDB0vaif8xm11s4WzDHsSiKllA8l+WALojZtQQYAAAAAQFs9/uys7HjCOY1mbLn+ajnz43s2mgEAAAAAAEOdksjg+2GSLdJ7QWT+11cm+W6SC2qtd82/oJTynnSVRAZFrfWuUspNSV7Rbab59k/yrcHKYkga28/5jJZMkTzXz3l/c7bDukm2afcQAAAAAADD3Vu/fVmuuOeJRjMuP2q/bLDGUPynZgAAAAAAaC0lkUFUSnlTkkOyeEGk+9fXJfm3WusFLRxtarpKIvPNL6vs3cIZaI8V+zmf05Ip+s/pb04AAAAAAIaZq6Y9kUO/dVmjGR/db/N8/HVbNJoBAAAAAADDiZLIICmljErype5vzfvYfXvId5J8tNY6q5WzJbkgyae6zTW/tPKiUsrWtdZbWjwPraMkAgAAAABAS3XOrdn06KmN59x54sFZYVRH4zkAAAAAADCcKIkMnn9MskkWLoXM/7wm+VKt9cg2zXZ5FhRD6iJnWydREll+9ffTsc6WTNF/zqiWTAEAAAAAQKNOvuDOfPGM2xrN+Nl7X53dNlun0QwAAAAAABiulEQGz3sW+bp7QeTXbSyIpNb6ZCnlviQv6eF4q1bPQ0v1t8GjVX8H9JczuyVTAAAAAADQiEefmZldTjy30YxXvniN/O6IPRrNAAAAAACA4U5JZBCUUjZMsmd63tbxbJIPtnyoxd2a5KVZfJOIksjy7YV+zlv1d8Dofs77m7MdHktycwtyNk0ypgU5AAAAAACN+PtvXJzr73+q0Ywrj9kv6602ttEMAAAAAABYHiiJDI69s2BryKIf/1+tdXr7Rvube3t5f3xLp6DV+tvQsWJLphiGJZFa6zeTfLPpnFLKn5Ns03QOAAAAAMBgu/Su6Xn7d69oNOOTB26ZD+2zWaMZAAAAAACwPFESGRy793H2/ZZN0beHe3ivJFmz1YPQUs/2c75qS6ZIVu/nvL85AQAAAAAYIuZ0zs1mx5zeeM5dkyZkVEdpPAcAAAAAAJYnSiKDY8tun8/fIpIkN9da72/DPD356yJfz59ztTbMQus80c/56FLK2FrrzIbn6O/PWX9zAgAAAAAwBHztnNvztXPuaDTj1Pfvmp3HrdVoBgAAAAAALK+URAbHJukqXXRXk1zShll601sJQElk+fb4ElyzZnreNDOY+ttYsyRzAgAAAADQJg8/NTOvOencRjN22WSt/PJ9uzaaAQAAAAAAyzslkcHR26+zeqSlUyydVds9AI2avgTXbJDmSyIb9nOuJAIAAAAAMEQd9LULc+vDzzSacfVn9s/aq45pNAMAAAAAAEYCJZHBsUov7z/a0in69qJe3u9s6RS0VK11Rinl8SRr93HZ+k3OUEpZOf2Xke5tcgYAAAAAAAbuwtsfyz9//8pGMz4zceu897XjG80AAAAAAICRREmkWaPaPUA3vW07mdHSKWiHaem7JPKyhvOX5P7TGp4BAAAAAIAlNLtzbjY/5vTGc+6eNCEdHaXxHAAAAAAAGEmURAbHc0nW6OH93ooZ7dBbSeDplk5BO9yTZMc+zjdvOL+/+z9Sa1VWAgAAAAAYAr54xq05+YK7Gs34zQd3yw4v7W0BOgAAAAAAsCyURAbH0+m5JNLX9oZWe9UiX5ckNcn9bZiF1vpzkjf3cb5lw/lb9HP+54bzAQAAAADoxwNPPp/dJ5/XaMZrN18nP37PqxvNAAAAAACAkU5JZHD8JclL01W66O6VbZhlMaWUNZJsm8XnS5J7WzwOrXdNP+eLFogG2w79nF/bcD4AAAAAAH3Y+0vnZ9rjzS58vu6412XNlVdsNAMAAAAAAFASGSx3J9mj29c1XZs6di6lrFhrfaE9Y/3NHkk6smCu7mWRG9syEa3UX0nkxaWU9WqtjzaUv2M/50oiAAAAAABtcO4tj+Q9P/pToxmf//uX5593HddoBgAAAAAAsICSyOC4Jsk/z/u8ewljxSR7JjmnHUN1c1gfZ1e1agjao9Z6fynl3iQv6+OyvZP8crCzSykbJdmin8suHuxcAAAAAAB6N2tOZ7b8zBmN59w9aUI6OkrjOQAAAAAAwAId7R5gOXFJH2cfadkUPSilbJrkjVlQXOm+ReSFJFe0fCjaob+i0usayt2/n/M7aq33NpQNAAAAAMAivvB/NzdeEPnDEXtk2uSJCiIAAAAAANAGSiKD49okj837vHsZoySZUErZui1TdTkmC/47l24fa5Lzaq3PtWUqWu3sfs7fUEoZ1UDum/s5P6uBTAAAAAAAFvGXx2dk3JFT8r2L72ksY/+t18+0yROz7YvXaCwDAAAAAADo2wrtHmB5UGudW0r5dZL3Z0E5ZH5ZpCPJKaWUPWutna2cq5RyaJLDus20qFNbOQ9tNSXJjCQr93K+Xrq2fpw5WIGllLWSHNjPZf4MAgAAAAA07DWTzs3DT89sNOP6zx6QNVYa3WgGAAAAAADQP5tEBs8pi3zdvSjymiSTWjlMKWWLeTPVbm93//yJJD9v5Uy0T6312SS/7+eyDw9y7PuTrNjH+f1JLhzkTAAAAAAA5jnjpocz7sgpjRZETnrTtpk2eaKCCAAAAAAADBE2iQySWus1pZRzk+yXBZs7SrfPP1FKeb7WenzTs5RSXpPkt0lWy+JbRObP9O1a66ymZ2FI+X6St/VxPqGUsn2t9bplDSqlrJr+Syc/qrXWfq4BAAAAAGCAZs7uzFbHntF4zj0nTUgpPS0yBwAAAAAA2sUmkcH1mSzY1jH/Y/eiyLGllB+WUlZraoBSynuSnJ9k/SxcEOn+P+NPT/LFpmZgaKq1np3khj4uKUm+NkhxRyXZoI/zWUm+MUhZAAAAAADMc+xpNzVeEJn6kddm2uSJCiIAAAAAADAEKYkMolrrFUm+m4U3dyQLF0XemeTOUsrhpZRRg5VdSnl9KeWaJN9JMiYLl0IWneOYWuvTg5XNsPIf/ZzvVUr5+LIElFJ2TfKpfi77Ya314WXJAQAAAABggXumP5dxR07Jjy+/t7GMidttmGmTJ2abjVZvLAMAAAAAAFg2K7R7gOXQJ5LslWSLLLzJo3tRZN0k/53kxFLKb5L8OsnVtdbHlzSkdP16rt2SvD7JG5JslcW3hnT/en7+lFrrKUv1ZCwPfp7kY0l27uOa/yil3Flr/cNAb15K2Txdf577+rvlmSTHD/TeAAAAAAD0bPvPn5UnZ8xuNOPG4w/IamNHN5oBAAAAAAAsOyWRQVZrfbaU8qYklyZZPT0XReZ/vnaS9857pZTyWJJne7t3KeUrSTZJMn7ea+Vu9/rbCIu8132jyF1JDhvoM7H8qLXWUsoRSS7P4htv5hud5NRSyhEDKRSVUnZPcmqSDfu59HO2iAAAAAAALLs/XP9gPvzzaxvN+NKbt8uhO72k0QwAAAAAAGDwKIk0oNZ6SyllQpIzkqyanosii5Y5kmS9dG0ZySLXz//40R6+52+xPZx1f++RJAfWWp8Y0MOQUsqe6doMMxBb9nO+ainlvUsxzh9rrXcsxff9Ta31ylLKSUmO7uOyMUm+W0r5hyTH1Vqv6u3CUsrLknw6yb+m/79T/pjkawMcGQAAAACAbp5/oTNbH3dGoxkrdJTcceLB6VpsDgAAAAAADBdKIg2ptV5WSjkwyW/TVf7oXtjovuWjLvKtff20pacCSG/f1z3v3iQH1VrvWYLRWdy7k7xrkO+5dpLvLsX3/UuSZSqJzHNckt2T7NXPdQclOaiUcmuSi+ZlP51klSQvSfLqJK9J339u53s0ydtrrZ1LOzQAAAAAwEj36V/dkP/9032NZpz18T2zxfqrNZoBAAAAAAA0Q0mkQbXWy0spuyT5dZKdsvgGkZ6KHbWH97ufd9fXRpH555cleXOt9aEBjM5yrtbaWUo5JMn5SbZfgm/Zat5raT2Zrk02Dy7DPQDTQFeBAAAgAElEQVQAAAAARqw7H30m+3/lwkYz3rTDxvnKW5bkn4wBAAAAAIChSkmkYbXW+0opuyb5dJJjk4zJ4mWR9PB5T/o6X7QcMjvJSUk+X2udO6ChGRFqrU+WUg5IMjVdJaamPJrk72qt1zWYAQAAAACwXKq1ZuvjzsjM2c3+U/+fP3dgVhnjx0YAAAAAADDcdbR7gJGg1tpZa52UZPMk30vSmQWFj9rDa4lu28P3zL/nb5JsU2s9XkGEvtRaH0vy2iT/01DEVUl2qrVe2dD9AQAAAACWW7+99v5sctTURgsi//m27TNt8kQFEQAAAAAAWE74F/8WqrXen+RfSynHJnl3kncm2XLRy7LkRZHum0UeS/KLJN+otd6xrLMyctRaZyZ5Vynll0n+K8n4QbjtM0mOT/JftdY5g3A/AAAAAIAR47lZc/Lyz57ZaMaqY1bIjccfkFL6W3IOAAAAAAAMJ0oibVBrfTjJpCSTSinjkxycZJckr0qyRZIVl+A2jyW5NskVSc5JcnGtdUnLJbCYWuuUUspZSd6a5CNJdl6K29yb5FtJvlNrfWIw5wMAAAAAGAk+9otrc9p1Dzaace6/75VN11210QwAAAAAAKA9lETarNZ6d5JvznslSUop6yfZKMlqSVZKMjrJrCQzkjye5C+11hmtn3ZkqrUeluSwNo/RErXW2Ul+kuQnpZSXpKvAtHOSbZK8LMnqSVZO15/HZ5I8lOSWJNclObPWen075gYAAAAAGO5uffjpHPS1ixrN+MddXpqT3rRtoxkAAAAAAEB7KYkMQbXWR5I80u45GNlqrfcl+c68FwAAAAAADai1ZpOjpjaec8vnD8pKK45qPAcAAAAAAGgvJREAAAAAAIA2+OVV9+VTv76h0YyT37FDJmy7YaMZAAAAAADA0KEkAgAAAAAA0EJPz5yd7Y4/q9GMtVdZMVcf+7pGMwAAAAAAgKFHSQQAAAAAAKBFPvjTqzP1xocbzbjgE3tn3DqrNJoBAAAAAAAMTUoiAAAAAAAADbvpgafy+q9f3GjGYbuNy/FveHmjGQAAAAAAwNCmJAIAAAAAANCQWms2OWpq4zm3fuGgjB09qvEcAAAAAABgaFMSAQAAAAAAaMBPLr83nzntpkYzvvPOHXPAyzdoNAMAAAAAABg+lER6UUp5UZIvJeno47Jza60/bdFIfSqljE3yxSSr9nHZpbXWU1o0EgAAAAAAjEhPzZidV37+rEYzNl5zpVxy5L6NZgAAAAAAAMOPkkjvTkzy7iS1l/MbknykdeP0rdY6s5QyNcnvk/S2T/4fSynn11rvauFoAAAAAAAwYrznh1fl3FsfbTTjok/tk5estXKjGQAAAAAAwPDU15aMEauUsl2Sw9NVECk9vB5JMqHW+mzbhuxBrfWMJB9O14zJ4nOPSfLV9kwHAAAAAADLr+vvezLjjpzSaEHk8D3HZ9rkiQoiAAAAAABAr2wS6dnx6SrQ1Cy8SaQkmZvknbXWh9owV79qrd8upeyd5K1ZfAtKSTKxlPLqWusVLR8OAAAAAACWM3Pn1ow/emrjObefcHBWXMHv/gIAAAAAAPrmpwmLmLdF5O+zoGDRfStHTfKlWuu57ZhtAA5Pck+3r8si58e3bhQAAAAAAFg+/eCSexoviPzgsJ0zbfJEBREAAAAAAGCJ2CSyuI9kQSFk/sf5pmUYFCxqrc+UUj6S5A9ZuOwy/5kOKKVsXWu9pV0zAgAAAADAcPXX517Iq75wdqMZ49ddJef9+96NZgAAAAAAAMsfJZFuSimrJ3lbFi6GJAsKFh+ttc5q+WBLodY6pZTyf0lenwXlkO4+kK5CDAAAAAAAsITeccrlueTOxxvNuPTIfbPRmis1mgEAAAAAACyf7CZf2JuTrDzv80W3iVxea/2/dg22lI7OgsJL948lyT+VUpSEAAAAAABgCVx97xMZd+SURgsiR+yzWaZNnqggAgAAAAAALDUlgYX9Qx9nJ7VsikFSa71p3jaRv8vChZckWSPJ65Kc3qbxAAAAAABgyOucW7Pp0VMbz7njxIMzepTf7QUAAAAAACwbP22Yp5SySpL9svjmjSS5cxhuEZnvq32cvbFlUwAAAAAAwDDznQvvarwg8pP3vDrTJk9UEAEAAAAAAAaFTSIL7JZkxSy8cWP+x5+1ca5lUmu9oJRyX5IXZ+ECTEmyb9sGAwAAAACAIWr6s7Oy0wnnNJqxzYarZ+pHX9toBgAAAAAAMPIoiSywVx9nw7YkMs8vknwyCxdfkmSTUsrGtdYH2jYZAAAAAAAMIW/+70vzp3v/2mjGFUfvl/VXH9toBgAAAAAAMDLZXb7Ajt0+r90+v6/WekerhxlkZ/dxtnPLpgAAAAAAgCHqirsfz7gjpzRaEPn3122RaZMnKogAAAAAAACNsUlkgVdk4XLI/I0bf2zPOIPq0iSz0/Xfuy5y9ookp7V8IgAAAAAAGALmdM7NZsec3njOnScenBVG+d1dAAAAAABAs5REkpRSVkmycboKFPPLIfNd1ZahBlGtdUYp5ZYk22XxksjWbRgJAAAAAADa7hvn3ZEvn3V7oxm/OPw1ec34tRvNAAAAAAAAmE9JpMvGfZzd0bIpmnVHukoii3pxqwcBAAAAAIB2evTpmdll0rmNZrzqpWvmtx/cvdEMAAAAAACARSmJdNmwj7O7WjZFsxZ9jvlbU/p6dgAAAAAAWK68/usX5aYHnm4046pj9s+6q41pNAMAAAAAAKAnSiJdXtTH2ZMtm6JZf+3l/b6eHQAAAAAAlgsX3zE9//S9KxrNOPLgrfL+vTZtNAMAAAAAAKAvSiJdVurj7JmWTdGsZ3t5v69nBwAAAACAYW1259xsfszpjefcNWlCRnWUxnMAAAAAAAD6oiTSpa+d7y+0bIpm9fYc9t0DAAAAALBc+spZt+W/zruz0Yxff2DX7PiytRrNAAAAAAAAWFJKIl36KoKskt63cAwnK/fy/pyWTgEAAAAAAA176Knns+tJ5zWasev4tfPzw1/TaAYAAAAAAMBAKYl0mdHH2cpZPkoiq/Tyfl/PDgAAAAAAw8r+X/lj7ny02X/Wv+bY12WtVVZsNAMAAAAAAGBpKIl06asosXGSR1s1SIM26uV9JREAAAAAAIa98297NP/yg6sazTju9dvk3Xts0mgGAAAAAADAslAS6TK9j7NNklzbqkEatOhPrcq8j4+1ehAAAAAAABgsL8yZmy0+c3rjOXdPmpCOjtL/hQAAAAAAAG2kJNJlWh9nW7dqiIZtk6Qu8l5Ncm8bZgEAAAAAgGV20um35Nt/vLvRjNM+tHu2f8majWYAAAAAAAAMFiWRJLXWJ0opzyZZJYsXKXZvw0iDqpSyYZKXpevZShZ+xmntmAkAAAAAAJbW/X+dkT3+4/xGM/bZct384F92aTQDAAAAAABgsCmJLHBbkh2zoEAxv1CxayllhVrrnLZNtuz27uPs1lYNAQAAAAAAy+q1Xzwv9z3xfKMZ1x93QNZYeXSjGQAAAAAAAE3oaPcAQ8hl3T4v3T5fPclBLZ5lsL2lj7PLWzYFAAAAAAAspbNvfiTjjpzSaEHkC4e8ItMmT1QQAQAAAAAAhi2bRBa4PMkRvZy9I8n/tXCWQVNKWTtdJZfuG1Lmey7JDS0fCgAAAAAAltDM2Z3Z6tgzGs+556QJKaX0fyEAAAAAAMAQpiSywAVZvEhR07VV5B9KKZvWWu9qx2DL6KNJxmTBs3T/eFGttfbxvQAAAAAA0Daf+8Of84NLpjWa8X8f3iOv2HiN/i+c25lMvz158Lrk0ZuTmU8mc2YlnS8ko1ZMVhiTjF0zWW+bZKNXJetsnnSManR2AAAAAACARSmJzFNrfbCUclmS3bJwkSJJRiU5Lsm72jTeUimlrJOu7Si9FUF+1cJxAAAAAABgidz7+HPZ60sXNJpx0Ms3yLfeuWPvF9SaTLs4uW1q8sA1ycM3JLNnLHnA6FWSDbZNNt4h2XJCMm6PxKYSAAAAAACgYUoiC/tVukoi83XfvPFPpZQf1lrPb8tkS+erSdbM4qWXJJmT5LR2DAUAAAAAAL3Z+cRz8tgzsxrNuOH4A7L62NE9Hz7/ZHL9L5I/fa9rc8jSmv1cct/lXa/LT07W2SLZ6T3JK9+WrLTm0t8XAAAAAACgD0oiC/tpkklJxmRBsSLdPv9+KWWnWuvjbZpviZVS3pLkHVn4OZIFZZHTaq1/bcdsAAAAAACwqNNvfCgf+Ok1jWb8xz9sm7fu/NKeD5+4O7n4a8mNpw5sY8iSmn57csank3M/l2x7aLLHx5K1xg9+DgAAAAAAMKIpiXRTa32slPLjJP+aBVs3um/geGmSX5VSDqi1zm7HjEuilLJDku9n4c0hi/p/LRoHAAAAAAB6NXN2Z7Y69ozGc+45aUJKKYsfdM5JLvt6cv5JSWezG0ySdBVQrvlR17aSfY5Odvtw0jGq+VwAAAAAAGBEUBJZ3JeTvDtJRxZs4SjdPt8zye9KKW+qtc5s25S9KKXslOSMJCun520oNclFtdYr2zMhAAAAAAB0Ofq3N+ZnV/yl0YzTP/rabL3h6j0fPnZbctoHkgeubnSGHnXOSs75bHLLH5JDTk7W3bL1MwAAAAAAAMudjnYPMNTUWu9IcnIWlCvm614UOTDJOaWUjVo8Xp9KKYckOSfJWlm8IDLf3CQfb/FoAAAAAADwN3c99mzGHTml0YLI32+/UaZNnthzQWTu3OSS/0y+9dr2FES6e+BPXXNc8p9dcwEAAAAAACwDm0R6dmyStyZZNwuXLboXRXZLcl0p5X211t+2Zcr5Q5WySpJJSY7IghkXu2ze+9+ttV7bwvEAAAAAAOBvtj3+zDwzc06jGTd97sCsOqaXH4F0zk5O+2By4y8bnWFAOmclZx+XPHxT11aRUaPbPREAAAAAADBM2STSg1rr00nel8W3iSQLlzDWSfKrUsoZpZTtWjXf3wYppaOU8q4kt2XxgsiiW0RqknuSHNnSIQEAAAAAIMnvrnsg446c0mhB5CtveWWmTZ7Ye0Fk9szkf985tAoi3d34y675Zs9s9yQAAAAAAMAwZZNIL2qtvyulfDnJJ7LwNpFk8TLG65JcW0o5K8k3kpxZa23sp1yllPWTvCPJR5K8JIsXQnr6emaSN88rwAAAAAAAQEvMeGFOtjnuzEYzVlyhI7d94aCU0tPvfpqnc3Zy6mHJ7ac3Ossyu/305Ff/krzlf2wUAQAAAAAABkxJpG9HJdkuyQHpvSjS/f0D5r2eKqX8Psl5SS6otf5lWYYopXQk2THJ3kkOSrJnurbA9FYOWfS9uUkOr7VetyxzAAAAAADAQHzi1Ovzq6vvbzTj7I/vmc3XX63vi+bOTU774NAviMx329Sued/47aTDUngAAAAAAGDJKYn0odbaWUo5JMkZ6Spm9FQUSRYvaayZ5J3zXimlPJHk5iS3JnkwycNJpqdru8fMJHOSjJn3WjXJekk2SPKyJNsk2WLeWW+53d/LIu/VJB+ptf5kCR8bAAAAAACWye2PPJMDvnphoxmH7vjifOnQVy7ZxZd9Pbnxl43OM+hu/GWywbbJ7h9p9yQAAAAAAMAwoiTSj1rrzFLKxCR/SNcmj562dvRX2lg7yR7zXgPVU/mjr3LIohtEPlZrPXkpcgEAAAAAYEBqrdn8mNMzZ27t/+JlcPPnD8zKKy7hjzgeuy0578RG52nMeSckWxyYrLtluycBAAAAAACGCTvKl0Ct9bkkByQ5JT0XQuYri5x3f5WlfPV0r0Wz0u26+WfPJjmk1vqNgT4vAAAAAAAM1K+vvj+bHDW10YLI1//xVZk2eeKSF0Q65ySnfSDpnNXYTI3qnJWc9sFkbme7JwEAAAAAAIYJm0SWUK11TpLDSylXJ/lSklXT81aRnr7uXu5YWj1tFOl+/+7XXZ/kn2qtf17GTAAAAAAA6NOzs+bkFZ89s9GM1ceukBuOP3Dg33jZN5IHrh78gVrpgT8ll3492eNj7Z4EAAAAAAAYBpREBqjW+u1SyllJvpdk7yxeAOmpzNFXwWOZxlkkY3aSE5NMmldqAQAAAACAxnzk59fm99c/2GjGef++V8avu+rAv/GJu5PzJw3+QO1w/qRkmzcka41v9yQAAAAAAMAQ19HuAYajWus9tdZ9k7wxyU3pKmjML4LUDM7mkF7jF7l/mff5T5JsVWv9vIIIAAAAAABNuuWhpzPuyCmNFkTe8eqXZtrkiUtXEEmSi7+WdM4a3KHapXNW1/MAAAAAAAD0wyaRZVBr/V0p5fdJ3pTk/Un2zeJlkUUNZKtIb0WT+fd4KsnPknyj1nrLAO4LAAAAAAADVmvNJkdNbTzn1i8clLGjRy39DZ5/Mrnx1MEbaCi48dTkgC8kY9do9yQAAAAAAMAQpiSyjGqtNcmvk/y6lDI+yduTTEyycxbe1FIX+TgQ3YslTyc5O8nvk/yq1vr8UtwPAAAAAAAG5BdX/iVH/ubGRjO+9U875KBXbLjsN7r+F8nsGct+n6Fk9oyu53r1+9o9CQAAAAAAMIQpiQyiWuvdSU5IckIpZe0keyXZMcmrkmybZMMsXBzpz8wkdye5Lsm1Sa5Mclmtdc5gzg0AAAAAAL15eubsbHf8WY1mrLfamFx5zP6Dc7Nak6tOGZx7DTVXnZLscnhSBrK0HAAAAAAAGEmURBpSa308yW/mvZIkpZRRSTZKsnGSNZKMTbJSuv47zEry/LzX9CT3z7sHAAAAAAC0xeH/86ecdfMjjWZc+Ml98tK1Vx68G067OHn8jsG731Ay/fbk3kuScXu0exIAAAAAAGCIUhJpoVprZ5L75r0AAAAAAGBIuvH+p/J337i40Yx3775Jjvu7bQb/xrdNHfx7DiW3TlUSAQAAAAAAeqUkAgAAAAAAJElqrdnkqOZLFredcFDGrDCqmZs/cE0z9x0qHlzOnw8AAAAAAFgmSiIAAAAAAEB+fNm0HPu7Pzea8b137ZT9tl6/uYC5ncnDNzR3/6HgoRu6nrOjoZINAAAAAAAwrCmJAAAAAADACPbkjBey/efPbjTjpWutnAs/tU+jGUmS6bcns2c0n9NOs59Lpt+RrLdVuycBAAAAAACGICURAAAAAAAYod71/Svzx9sfazTj4k/vkxe/aOVGM/7mwetak9NuD12nJAIAAAAAAPRISQQAAAAAAEaYa//y17zx5EsbzfjA3pvm0we1uMjw6M2tzWuXkfKcAAAAAADAgCmJAAAAAADACDF3bs34o6c2nnP7CQdnxRU6Gs9ZzMwnW5/ZDs+PkOcEAAAAAAAGTEkEAAAAAABGgFMuujsnTLml0YwfvXuX7LXFuo1m9GnOrPZlt9JIeU4AAAAAAGDAlEQAAAAAAGA59vizs7LjCec0mrH5eqvm7H/bq9GMJdL5QrsnaI1OJREAAAAAAKBnSiIAAAAAALCceuu3L8sV9zzRaMblR+2XDdYY22jGEhu1YrsnaI1RY9o9AQAAAAAAMEQpiQAAAAAAwHLmqmlP5NBvXdZoxkf32zwff90WjWYM2AojpDwxUp4TAAAAAAAYMCURAAAAAABYTnTOrdn06KmN59x54sFZYVRH4zkDNnbNdk/QGiuNkOcEAAAAAAAGTEkEAAAAAACWAydfcGe+eMZtjWb87L2vzm6brdNoxjJZb5t2T9AaI+U5AQAAAACAAVMSAQAAAACAYeyxZ2Zl5xPPaTRjuxevkd8fsUejGYNio+3bPUFrbDhCnhMAAAAAABgwJREAAAAAABimDvnmJbnuvicbzbjymP2y3mpjG80YNOtskYxeOZk9o92TNGf0Ksk6m7d7CgAAAAAAYIhSEgEAAAAAgGHm0rum5+3fvaLRjE8euGU+tM9mjWYMuo5RyQbbJfdd3u5JmrPhdl3PCQAAAAAA0AMlEQAAAAAAGCbmdM7NZsec3njOXZMmZFRHaTynERvvsHyXRDbaod0TAAAAAAAAQ1hHuwcAAAAAAAD695/n3NF4QeSX79s10yZPHL4FkSTZckK7J2jWVsv58wEAAAAAAMvEJhEAAAAAABjCHnl6Zl496dxGM3Ye96Kc+v7dGs1omXF7JGtvnjx+R7snGXzrbJG8bPd2TwEAAAAAAAxhSiIAAAAAADBEHfyfF+WWh55uNONPn9k/66w6ptGMliol2fm9yRmfbvckg2/n93Y9HwAAAAAAQC862j0AAAAAAACwsAtvfyzjjpzSaEHkmAlbZ9rkictXQWS+V74tGb1yu6cYXKNX7nouAAAAAACAPtgkAgAAAAAAQ8TszrnZ/JjTG8+5e9KEdHQsxxspVloz2fbQ5JoftXuSwbPtocnYNdo9BQAAAAAAMMQpiQAAAAAAwBDwpTNvzTfPv6vRjF9/YLfs+LIXNZoxZOzxseT6XySds9o9ybIbNabreQAAAAAAAPqhJAIAAAAAAG304JPPZ7fJ5zWascdm6+Qn7311oxlDzlrjk32OTs75bLsnWXb7HN31PAAAAAAAAP1QEgEAAAAAgDbZ98sX5O7pzzWace2xr8uLVlmx0Ywha9cjklt+nzxwdbsnWXob75Ts9uF2TwEAAAAAAAwTHe0eAAAAAAAARprzbn0k446c0mhB5Pi/2ybTJk8cuQWRJBm1QnLIfyejxrR7kqUzakxyyMlJx6h2TwIAAAAAAAwTNokAAAAAAECLzJrTmS0/c0bjOXdPmpCOjtJ4zrCw7pbJvsckZx/X7kkGbt/PdM0PAAAAAACwhJREAAAAAACgBU6ccnO+e9E9jWb8/ojds92L12w0Y1ja9cPJwzclN/6y3ZMsuW3fkux6RLunAAAAAAAAhhklEQAAAAAAaNB9T8zIa794fqMZ+2+9Xk55186NZgxrHR3JIScns55Jbj+93dP0b8sJXfN2dLR7EgAAAAAAYJhREgEAAAAAgIbsdtK5efCpmY1mXP/ZA7LGSqMbzVgujBqdHPrD5NTDhnZRZMsJyZt/0DUvAAAAAADAAPkVVAAAAAAAMMjO/PPDGXfklEYLIpPeuG2mTZ6oIDIQo8cmb/1xsu1b2j1Jz7Z9S/KW/+maEwAAAAAAYCnYJAIAAAAAAINk5uzObHXsGY3n3HPShJRSGs9ZLo0anbzx28kGr0jOOzHpnNXuiZJRY5J9P5PsekTS4fd7AQAAAAAAS09JBAAAAAAABsFnf3dTfnTZvY1mTPnIHnn5Rms0mjEidHQku3802eKg5LQPJA9c3b5ZNt4pOeTkZN0t2zcDAAAAAACw3FASAQAAAACAZTBt+nPZ+8sXNJoxcdsN88137NBoxoi07pbJu89KLvtGcv6k1m4VGTUm2feYedtDRrUuFwAAAAAAWK4piQAAAAAAwFLa4Qtn54nnXmg048bjD8hqY0c3mjGijVoh2eNjyTZvSC7+WnLjqcnsGc3ljV452fbQrsy1xjeXAwAAAAAAjEhKIgAAAAAAMEBTbngoH/rZNY1mfPHN2+UtO72k0Qy6WWt88ob/Sg74QnL9L5KrTkmm3z54919ni2Tn9yavfFsydo3Buy8AAAAAAEA3SiIAAAAAALCEnn+hM1sfd0ajGR0luWvShJRSGs2hF2PXSF79vmSXw5N7L0lunZo8eE3y0PUD2zAyepVkw+2SjXZItpqQvGz3xH9TAAAAAACgYUoiAAAAAACwBI76zQ35+ZX3NZpx5sf2zJYbrNZoBkuolGTcHl2vJJnbmUy/I3nouuTRm5Pnn0zmzEo6ZyWjxiQrjElWWjNZb5tkw+2TdTZPOka19xkAAAAAAIARR0kEAAAAAAD6cOejz2b/r/yx0Yw3vmrjfPWt2zeawTLqGJWst1XXCwAAAAAAYIhSEgEAAAAAgB7UWrP1cWdk5uy5jeb8+XMHZpUx/rkeAAAAAACAZeenTgAAAAAAsIjTrn0gH/vf6xrN+Npbt88hr9q40QwAAAAAAABGFiURAAAAAACY57lZc/Lyz57ZaMbKK47Knz93YEopjeYAAAAAAAAw8iiJAAAAAABAko//73X57bUPNJpxzr/tlc3WW7XRDAAAAAAAAEYuJREAAAAAAEa02x5+Jgd+7cJGM/5xl5fkpDdt12gGAAAAAAAAKIkAAAAAADAi1VqzyVFTG8+55fMHZaUVRzWeAwAAAAAAAEoiAAAAAACMOKf+6b588lc3NJrxzbfvkInbbdhoBgAAAAAAAHSnJAIAAAAAwIjxzMzZ2fb4sxrNeNHKo3PtcQc0mgEAAAAAAAA9URIBAAAAAGBE+NBPr8mUGx9qNOOCT+ydceus0mgGAAAAAAAA9EZJBAAAAACA5dpNDzyV13/94kYzDtttXI5/w8sbzQAAAAAAAID+KIkAAAAAALBcqrVmk6OmNp5z6xcOytjRoxrPAQAAAAAAgP4oiQAAAAAAsNz56RX35pjf3tRoxnfeuWMOePkGjWYAAAAAAADAQCiJAAAAAACw3Hhqxuy88vNnNZqx4Rpjc9lR+zWaAQAAAAAAAEtDSQQAAAAAgOXCe390Vc655dFGMy761D55yVorN5oBAAAAAAAAS0tJBAAAAACAYe36+57M33/zkkYzDt9zfI6esHWjGQAAAAAAALCslEQAAAAAABiW5s6tGX/01MZzbjvhoIxZYVTjOQAAAAAAALCslEQAAAAAABh2fnjJPTn+Dzc3mvGDw3bOPlut12gGAAAAAAAADCYlEQAAAAAAho2/PvdCXvWFsxvNGL/OKjnvE3s3mgEAAAAAAABNUBIBAAAAAGBYeOf3rshFd0xvNOPSI/fNRmuu1GgGAAAAAAAANEVJBAAAAACAIe3qe/+af/jvSxvNOGKfzfKJA7dsNAMAAAAAAACapiQCAAAAAMCQNHduzfijpzaec8eJB2f0qI7GcwAAAAAAAKBpSiIAAAAAAAw537nwrkyaemujGT9+zy557ebrNpoBAAAAAAAAraQkAgAAAADAkDH92VnZ6YRzGs3YalCh5UcAACAASURBVIPVcsbH9mw0AwAAAAAAANpBSQQAAAAAgCHh0G9dmqum/bXRjCuO3i/rrz620QwAAAAAAABoFyURAAAAAADa6oq7H89bv3N5oxkf33+LfHT/zRvNAAAAAAAAgHZTEgEAAAAAoC0659ZsevTUxnPuPPHgrDCqo/EcAAAAAAAAaDclEQAAAAAAWu6b59+ZL515W6MZP//X12TXTdduNAMAAAAAAACGEiURAAAAAABa5tFnZmaXE89tNGP7l6yZ0z60e6MZAAAAAAAAMBQpiQAAAAAA0BJv+MbFueH+pxrNuOqY/bPuamMazQAAAAAAAIChSkkEAAAAAIBGXXrn9Lz9lCsazfj0QVvlA3tv2mgGAAAAAAAADHVKIgAAAAAANGJO59xsdszpjefcNWlCRnWUxnMAAAAAAABgqFMSAQAAAABg0H3l7NvzX+fe0WjGr96/a3Yat1ajGQAAAAAAADCcKIkAAAAAADBoHnrq+ex60nmNZrxm/Fr5xeG7NpoBAAAAAAAAw5GSCAAAAAAAg+LAr16Y2x55ptGMqz+zf9ZedUyjGQAAAAAAADBcKYkAAAAAAP+fvfuM0quu1z5+7ZmEhFCFEGlCaEmMhN4JSJMSLKCC3SPq0SOKcqwQqpQQe0GxHBVRjwXUgwohdKRLEwgtoYUSOhhaSDKZ2c+LwfP48ABp8589M/fns9a8ys18f3stfZPJNRuWyl9nPJ5/+9k1RRtHvXlsPjJ+vaINAAAAAAAA6O+MRAAAAAAAWCLzF3Rl1JHnFO/cM2lC2tqq4h0AAAAAAADo74xEAAAAAABYbF+Zekd+cMndRRv/c/AO2Xyd1xRtAAAAAAAAwEBiJAIAAAAAwCJ78B9zMv4rFxdtvHHUajntw9sUbQAAAAAAAMBAZCQCAAAAAMAieePXLs59T84p2rjx6Ddl5WHLFG3QAro6kydmJA/dmDx2WzJ3drJgXtI5P2lfJhk0JBm6cjJibLLm5snwjZK29qavBgAAAAAAWGpGIgAAAAAAvKoLb380HzntuqKN49/2hnxg+5FFGwxgdZ3MvDyZPiWZdUPyyM1Jx2IMmgYvl6w+Lllri2T0hGTk+KSqyt0LAAAAAABQiJEIAAAAAAAva96Czow+cmrxzr0nTUjlH+SzJF6Yndz02+S6n3a/OWRJdTyfPHB199fVpyTDRyVbfSTZ9N3Jsiv33L0AAAAAAACFGYkAAAAAAPD/Oe4vt+VnV9xbtHHWIeOz8VorFW0wQD11T3L5t5NpZyzeG0MW1RMzkqlfSi78cjLugGT8ockq6/d8BwAAAAAAoIcZiQAAAAAA8L/uf3JOdv7axUUbe73htfnRB7Yq2mCA6lyQXHVycvFJSee88r2OOckNp3W/rWTXickOhyRt7eW7AAAAAAAAS8hIBAAAAACAJMk2J16Qx54t+w/vbz52z6w4dHDRBgPU49OTMz+RzLq+99ud85ILjklu/0uy3ynJaqN7/wYAAAAAAIBF0Nb0AQAAAAAANGvqLQ9n5GFnFx2ITH77uMycvK+BCIuvqyu54jvJD3dqZiDyr2Zd133HFd/pvgsAAAAAAKCP8SYRAAAAAIAWNbejM2OOmlq8c+9JE1JVVfEOA1BnR3Lmwcm005u+5P/qnJecf3TyyC3dbxVpN3wCAAAAAAD6DiMRAAAAAIAWdOSZ0/Krq+8v2jjnMzvl9WusWLTBANYxNznjQ8mMc5q+5OVNOz2Z92xywM+TwUObvgYAAAAAACCJkQgAAAAAQEu55/Hnsts3/lq08dZN18x337N50QYDXGdH3x6I/NOMc5LfH5Qc+AtvFAEAAAAAAPoEIxEAAAAAgBYx7thz8+zcBUUbt3x5ryw/xF89sxS6upIzD+77A5F/mj6l+979f5S0tTV9DQAAAAAA0OL8pA4AAAAAYID7y00P5ZDf/L1o4xsHbJp3bLl20QYt4qqTk2mnN33F4pl2erL6uGTHTzd9CQAAAAAA0OKMRAAAAAAABqg58xdk7NHnFm0Mbq8y44R9UlVV0Q4t4vHpyUUnNn3FkrnohGTUXslqo5u+BAAAAAAAaGFGIgAAAAAAA9AXzrgpZ1z/YNHG+f+5czZ67QpFG7SQzgXJmZ9IOuc1fcmS6ZyXnHlw8pHzkrb2pq8BAAAAAABalJEIAAAAAMAAcuejz+ZN37q0aOOALdfO1w7YtGiDFnTV95JZ1zd9xdKZdV1y5cnJ+EObvgQAAAAAAGhRRiIAAAAAAANAXdcZfeTUzO/sKtq57bi9MmwZf7VMD3vqnuTiSU1f0TMunpSMfWuyyvpNXwIAAAAAALSgtqYPAAAAAABg6fzh+gez3uFTig5EvvuezTNz8r4GIpRx+beTznlNX9EzOud1Pw8AAAAAAEAD/DQPAAAAAKCfem7egmx8zLlFGysMHZRpx+5VtEGLe2F2Mu2Mpq/oWdPOSPY8Phm6UtOXAAAAAAAALcZIBAAAAACgH/r0b/6eP9/0UNHGRZ97Y9ZfbfmiDchNv0065jR9Rc/qmNP9XNt+vOlLAAAAAACAFmMkAgAAAADQj9z+8DPZ5zuXFW28b9t1cuL+44o2IElS18m1P2n6ijKu/UmyzceSqmr6EgAAAAAAoIUYiQAAAAAA9AN1XWe9w6cU79xx/N4ZOri9eAeSJDMvT568s+krynhiRnLfFcnI8U1fAgAAAAAAtJC2pg8AAAAAAODV/e7a+4sPRH7wvi0yc/K+BiL0runlh0+NumOAPx8AAAAAANDneJMIAAAAAEAf9czcjmxy7HlFG6utMCTXHrFH0Qa8olk3NH1BWQ8N8OcDAAAAAAD6HCMRAAAAAIA+6D9+eX2m3vpI0cZfv7BL1l11uaINeEVdnckjNzd9RVkP39z9nG3e0AMAAAAAAPQOIxEAAAAAgD7klllP580nX160cdCOI3PMW95QtAEL9cSMpGNO01eU1fF88sSdyYgxTV8CAAAAAAC0CCMRAAAAAIA+oK7rrHf4lOKdO47fO0MHe6sBfcBDNzZ9Qe94+EYjEQAAAAAAoNcYiQAAAAAANOyXV9+Xo868pWjjJx/cKnuMfW3RBiyWx25r+oLe0SrPCQAAAAAA9AlGIgAAAAAADXl6Tkc2Pe68oo3XrbJsLvvibkUbsETmzm76gt7xQos8JwAAAAAA0CcYiQAAAAAANOCgU6/JxdMfL9q4/Eu7Zu3XDCvagCW2YF7TF/SOVnlOAAAAAACgTzASAQAAAADoRTc+MDv7ff+Koo2Pv3H9HL7P64s2YKl1zm/6gt7RaSQCAAAAAAD0HiMRAAAAAIBe0NVVZ/2JU4p3ZpywT5YZ1Fa8A0utfZmmL+gd7UOavgAAAAAAAGghRiIAAAAAAIX99PJ7c/xZtxVt/PygrbPL6BFFG9CjBrXIeKJVnhMAAAAAAOgTjEQAAAAAAAp56vn52eL484s2NhyxfC747BuLNqCIoSs3fUHvWLZFnhMAAAAAAOgTjEQAAAAAAAp4739dnSvvfrJo46rDd8saKy1btAHFjBjb9AW9o1WeEwAAAAAA6BOMRAAAAAAAetB1M5/KO394VdHGp3fbMJ/dc3TRBhS35mZNX9A71miR5wQAAAAAAPoEIxEAAAAAgB7Q2VVng4lTinfuPHGfDG5vK96B4oaPSgYPSzrmNH1JOYOXS4Zv1PQVAAAAAABACzESAQAAAABYSj/8692ZfM4dRRv//dFts+OGw4s2oFe1tSerb5I8cHXTl5SzxibdzwkAAAAAANBLjEQAAAAAAJbQ48/Oy9YnXlC0sfFaK+asQ3Yq2oDGrLXFwB6JrLlF0xcAAAAAAAAtxkgEAAAAAGAJvP2UK3LD/bOLNq6ZuHtGrDi0aAMaNXpCcvUpTV9RzpgJTV8AAAAAAAC0GCMRAAAAAIDFcPU9T+bdPy775oPP7zkqn9pto6IN6BNGjk9W3Sh58s6mL+l5w0cl6+7Y9BUAAAAAAECLMRIBAAAAAFgECzq7suER5xTv3HXiPhnU3la8A31CVSVbfzSZ+qWmL+l5W3+0+/kAAAAAAAB6kZ80AgAAAAAsxMkX3ll8IPK7j22XmZP3NRCh9Wz67mTwsKav6FmDh3U/FwAAAAAAQC/zJhEAAAAAgFfw6DNzs+2kC4s2tlr3Nfn9J3Yo2oA+bdmVk3EHJDec1vQlPWfcAcnQlZq+AgAAAAAAaEFGIgAAAAAAL2Pf716WWx96pmjjuiP3yPDlhxRtQL8w/tDkpt8mnfOavmTptQ/pfh4AAAAAAIAGtDV9AAAAAABAX3L5nU9k5GFnFx2ITJwwJjMn72sgAv+0yvrJrhObvqJn7Dqx+3kAAAAAAAAa4E0iAAAAAABJOjq7stER5xTv3DNpQtraquId6He2/1Ry+5+TWdc3fcmSW2urZIdDmr4CAAAAAABoYd4kAgAAAAC0vK+fO734QOQPn9g+MyfvayACr6R9ULLfD5L2fvqGnfYhyX6nJG3tTV8CAAAAAAC0MG8SAQAAAABa1kOzX8gOky8q2thxw1Xz3x/drmgDBozVRie7HZGcf3TTlyy+3Y7svh8AAAAAAKBBRiIAAAAAQEva7RuX5J7Hny/a+PtRb8prllumaAMGnO0PSR65JZl2etOXLLpxBybbf6rpKwAAAAAAAIxEoBVVVVU3fMKb6rq+oOEbAAAAgBZ18fTHctCp1xZtHPOWsTlox/WKNmDAamtL9jslmfdsMuOcpq9ZuNETuu9ta2v6EgAAAAAAACMRAAAAAKA1zF/QlVFHlv8H5/dMmpC2tqp4Bwa09sHJAT9PzvhQ3x6KjJ6QvPPU7nsBAAAAAAD6AL/WCgAAAAAY8CZNub34QORPn9wxMyfvayACPWXw0ORdv0zGHdj0JS9v3IHJgb/ovhMAAAAAAKCP8CYRAAAAAGDAeuCpOdnpqxcXbew+ZkR++qGtizagZbUPTvb/UbL6xslFJyad85q+KGkfkux2ZLL9p5I2v4sLAAAAAADoW4xEAAAAAIABacfJF2XW7BeKNm46es+sNGxw0Qa0vLa2ZMfPJKP2Ts78RDLr+uZuWWurZL9TktVGN3cDAAAAAADAqzASAQAAAAAGlPNvezT//ovrijZO3H/jvG/bdYs2gJdYbXTy4fOSq76XXDypd98q0j4k2e2IF98e0t57XQAAAAAAgMVkJAK81F+S/Llw47bC3x8AAABoQXM7OjPmqKnFO/eeNCFVVRXvAC+jfVAy/tBk7FuTy7+dTDsj6ZhTrjd4WDLugO7mKuuX6wAAAAAAAPQQIxHgpW6o6/onTR8BAAAAsDiO/fOt+fmVM4s2zjpkfDZea6WiDWARrbJ+8tbvJnsen9z02+TanyRPzOi57z98VLL1R5NN350M9f97AAAAAACg/zASAQAAAAD6rZlPPJ9dvn5J0caEcavnlPdtWbQBLKGhKyXbfjzZ5mPJfVckd0xJHrohefimxXvDyODlkjU2SdbcIhkzIVl3x8QbgwAAAAAAgH7ISAQAAAAA6Je2PP78PPn8/KKNm4/dMysOHVy0AfSAqkpGju/+SpKuzuSJO5OHb0weuy15YXayYF7SOS9pH5IMGpIsu3IyYmyyxmbJ8I2StvZmnwEAAAAAAKAHGIkAAAAAAP3K2Tc/nE/++oaija++c5McuNXrijaAgtrakxFjur8AAAAAAABaiJEIAAAAANAvvDC/M68/emrxzr0nTUhVVcU7AAAAAAAAAD3NSAQAAAAA6PMO/+O0/Oaa+4s2ph66U8asvmLRBgAAAAAAAEBJRiIAAAAAQJ9112PPZY9v/rVoY//N18q33rVZ0QYAAAAAAABAbzASAQAAAAD6nLqus/Ex5+b5+Z1FO7d+ea8sN8RfkwIAAAAAAAADg59+AgAAAAB9yp9unJXP/PbGoo1vvWvT7L/52kUbAAAAAAAAAL3NSAQAAAAA6BOen7cgbzjm3KKNZQe357bj9kpVVUU7AAAAAAAAAE0wEgEAAAAAGvfZ02/MH2+YVbRxwWd3zoYjVijaAAAAAAAAAGiSkQgAAAAA0Jjpjzybvb59adHGu7d+XSa/Y5OiDQAAAAAAAIC+wEgEAAAAAOh1dV1nwyPOSWdXXbRz+3F7Z9ll2os2AAAAAAAAAPoKIxHgFVVVNTjJBknWSbJKkqFJOpK8kGR2kgeTPFDX9QuNHQkAAAD0O2dc90C+8Pubiza+997N8+ZN1izaAAAAAAAAAOhrjESAlxpbVdVXk+yaZFySIQv5fFdVVTOSXJfkgiTn1HX9WOEbAQAAgH7o2bkdGXfseUUbKw8bnBuP3rNoAwAAAAAAAKCvMhIBXuqAxfx8W5IxL369P92jkalJfpjkrLqu6x6+DwAAAOiHPvnrG3L2zQ8XbVz8+V2y3vDlijYAAAAAAAAA+jIjEaCntSWZ8OLXDVVVfamu6wsavgkAAABoyK0PPZ19v3t50cYHt183x71t46INAAAAAAAAgP7ASAQoaYsk51dVdWqSQ+u6fqbpgwAAAIDeUdd11jt8SvHOHcfvnaGD24t3AAAAAAAAAPoDIxGgNxyUZLuqqt5S1/XdTR8DAAAAlPXrv92fif8zrWjjRx/YMnu9YfWiDQAAAAAAAID+xkgE6C2vT3J1VVW71HV9a9PHLExVVZ9McnAvpDbohQYAAAD0iqdf6MimXz6vaGP1FYfm6om7F20AAAAAAAAA9FdGIsC/uiXJ9Ummvfj1QJKnX/yan2SVJKsmGZFkuyQ7J9kxyYqL+P2HJzm/qqod67q+t2dP73GrJRnb9BEAAADQX/z7L67L+bc9WrRx2Rd3zetWGVa0AQAAAAAAANCfGYlAa+tMMjXJWUnOruv6gYV8/tEXv25LckmSyVVVDU3yoSSfz6K9FWONJH+oqmqHuq7nLuHdAAAAQB9x84Oz89bvXVG08dHx6+XIN/tdDgAAAAAAAAALYyQCrenhJD9J8qO6rmctzTd6cejxw6qqfpzk00m+mmTwQv6zzZNMSvLZpWkDAAAAzanrOusdPqV4Z/oJe2fIoPbiHQAAAAAAAICBwEgEWtM6dV0v6MlvWNd1V5JvV1V1ZZLTk6y7kP/kkKqqTq3relpP3gEAAACUd9qVM3PMn28t2vjZh7bKbmNeW7QBAAAAAAAAMNAYiUAL6umByEu+9zVVVe2c5LIk67zKRwclOS7J/qVuAQAAAHrWP56fn82PP79oY+Sqw3LJF3Yt2gAAAAAAAAAYqIxEgB5X1/X9VVXtn+SKJENf5aNvrapqo7qu7+yl0xbH40lu64XOBkmG9EIHAAAAlsoHf3ZNLp3xeNHGFYftlrVWXrZoAwAAAAAAAGAgMxIBiqjr+oaqqial+20hr6QtyfuTHNM7Vy26uq6/n+T7pTtVVd2aZGzpDgAAACypG+7/R95+ypVFGwfvskG+uPeYog0AAAAAAACAVmAkApT0tSSfTPLaV/nMO9MHRyIAAADQ6rq66qw/cUrxzp0n7pPB7W3FOwAAAAAAAACtwE9fgWLqup6b5EcL+djYqqpG9MY9AAAAwKL5yWX3FB+I/OLD22Tm5H0NRAAAAAAAAAB6kDeJAKWdnuTohXxm+yR/6oVbAAAAgFfx5HPzsuUJFxRtjFl9hUw9dOeiDQAAAAAAAIBWZSQCFFXX9a1VVT2W5NXeFjImRiIAAADQqHf96Kr87d6nijauPnz3rL7S0KINAAAAAAAAgFZmJAL0hr8n2etV/nxkL90BAAAAvMS1M5/KAT+8qmjj0D02yqF7jCraAAAAAAAAAMBIBOgdMxfy56/2lhEAAACggM6uOhtMnFK8c9eJ+2RQe1vxDgAAAAAAAABGIkDveHohfz6sV64AAAAAkiSnXHJXvjp1etHGr/992+ywwfCiDQAAAAAAAAD+X0YiQG+Yv5A/H9wrVwAAAECLe+zZudnmxAuLNjZde6X86VPjizYAAAAAAAAAeHlGIkBvWHYhf/5Cr1wBAAAALext37s8Nz24sJd9Lp1rjtg9I1YYWrQBAAAAAAAAwCszEgF6w+oL+fPneuUKAAAAaEFX3v1E3vtffyva+MJeo/PJXTcs2gAAAAAAAABg4YxEgN6wsH8lMqtXrgAAAIAWsqCzKxsecU7xzt2TJqS9rSreAQAAAAAAAGDhjESAoqqqGpJks4V87N7euAUAAABaxbfOn5HvXHhn0cYZ/7F9th65StEGAAAAAAAAAIvHSAQobfckQxbymZt74xAAAAAY6B55em62O+nCoo1t1lslp398+6INAAAAAAAAAJaMkQhQ2gcX8ucdSa7tjUMAAABgINvrW5dm+qPPFm1cf+QeWXX5hf0uCAAAAAAAAACaYiQCFFNV1UZJ3rmQj11a1/Xc3rgHAAAABqJLZzyeD/7smqKNI/d9fT660/pFGwAAAAAAAAAsPSMRoKTvJmlfyGdO741DAAAAYKCZv6Aro448p3jnnkkT0tZWFe8AAAAAAAAAsPSMRIAiqqr6fJK9F/KxZ5L8rhfOAQAAgAHlq1PvyCmX3F208ceDd8gW67ymaAMAAAAAAACAnmUkAi2iqqotktxe1/ULvdD6tyRfWYSPnlLX9dOl7wEAAICB4sF/zMn4r1xctLHTRsPzy49sW7QBAAAAAAAAQBlGItA6PpjkwKqqJif5aV3Xz/d0oKqqZZJ8NclnFuHjj2bRhiQAAABAkl2+dnFmPjmnaOPGo9+UlYctU7QBAAAAAAAAQDltTR8A9Ko1knwnyQNVVX2rqqpNe+obV1W1S5LLs2gDkST5dF3Xs3uqDwAAAAPVhbc/mpGHnV10IHLc296QmZP3NRABAAAAAAAA6Oe8SQRa02uSHJrk0KqqZiQ5K8lFSa6q6/qpRf0mVVWtnmSPJIck2WYx+ifXdX36YnweAAAAWs68BZ0ZfeTU4p17T5qQqqqKdwAAAAAAAAAoz0gEGJXksy9+1VVVPZDkjiQzkzyS5B9J5r342dckWTXJiCTbJtloCXpnvtgCAAAAXsHxZ92Wn15+b9HGXz41PuPWXqloAwAAAAAAAIDeZSQC/KsqyTovfpXwuyQfqOt6QaHvDwAAAP3a/U/Oyc5fu7ho401jX5v/+uBWRRsAAAAAAAAANMNIBOgNnUmOrOt6ctOHAAAAQF+13aQL88gzc4s2bjpmz6y07OCiDQAAAAAAAACaYyQClHZtko/VdX1j04cAAABAXzT1lkfyH7+6vmjjpLePy3u2KfXiUAAAAAAAAAD6CiMRaB1/T3JPkvV7qXdDkklJ/ljXdd1LTQAAAOg35nZ0ZsxRU4t37j1pQqqqKt4BAAAAAAAAoHlGItAi6ro+LclpVVWtk2TXJDsn2SrJ65MM7qHMXUnOSvKruq7L/gpUAAAA6MeOOvOW/PLq+4o2pnx6p4xdc8WiDQAAAAAAAAD6FiMRaDF1Xd+f5LQXv1JV1TJJNk6ySZL1krzuxa+1kqyYZNkkw5IMSTI/ydwkTyd5OMmDSe5IcnOSq1/83gAAAMAruPeJ57Pr1y8p2njzJmvke+/domgDAAAAAAAAgL7JSARaXF3X85Pc8OIXAAAAUMhmx52X2XM6ijamHbtnVhjaUy8MBQAAAAAAAKC/MRIBAAAAgIL+ctNDOeQ3fy/a+PoBm+adW65dtAEAAAAAAABA32ckAgAAAAAFvDC/M68/emrRxqC2KneeuE+qqiraAQAAAAAAAKB/MBIBAAAAgB72pd/fnN9d90DRxnn/uXNGvXaFog0AAAAAAAAA+hcjEQAAAADoIXc99mz2+OalRRvv2GLtfOPATYs2AAAAAAAAAOifjEQAAAAAYCnVdZ3XHz01czu6inZuO26vDFvGX+kBAAAAAAAA8PL8RBkAAAAAlsL//P3B/Ofvbira+M67N8vbNluraAMAAAAAAACA/s9IBAAAAACWwHPzFmTjY84t2lh+yKBMO3bPVFVVtAMAAAAAAADAwGAkAgAAAACL6dDf/j1n3vhQ0caFn3tjNlht+aINAAAAAAAAAAYWIxEAAAAAWER3PPJM9v72ZUUb79lmnZz09nFFGwAAAAAAAAAMTEYiAAAAALAQdV1nvcOnFO/cftzeWXaZ9uIdAAAAAAAAAAYmIxEAAAAAeBWnX/tAvviHm4s2TnnfFpkwbo2iDQAAAAAAAAAGPiMRAAAAAHgZz8ztyCbHnle0MXz5ZXLdkW8q2gAAAAAAAACgdRiJAAAAAMBLHPzf12fKtEeKNi75/C4ZOXy5og0AAAAAAAAAWouRCAAAAAC86JZZT+fNJ19etPGhHUbm2Le+oWgDAAAAAAAAgNZkJAIAAABAy6vrOusdPqV4547j987Qwe3FOwAAAAAAAAC0JiMRAAAAAFrar66+L0eeeUvRxo8/sGX2fMPqRRsAAAAAAAAAYCQCAAAAQEt6ek5HNj3uvKKNtVZeNlcctlvRBgAAAAAAAAD8k5EIAAAAAC3nIz+/Nhfe8VjRxmVf3DWvW2VY0QYAAAAAAAAA/CsjEQAAAABaxk0PzM7bvn9F0cbHd14/h094fdEGAAAAAAAAALwcIxEAAAAABryurjrrT5xSvDPjhH2yzKC24h0AAAAAAAAAeDlGIgAAAAAMaKdecW++/JfbyjYO2jq7jh5RtAEAAAAAAAAAC2MkAgAAAMCA9I/n52fz488v2thgteVy4ed2KdoAAAAAAAAAgEVlJAIAAADAgPPe/7o6V979ZNHGVYfvljVWWrZoAwAAAAAAAAAWh5EIAAAAAAPG9fc9lXf84KqijUN22zCf23N00QYAAAAAAAAALAkjEQAAAAD6vc6uOhtMnFK8c+eJ+2Rwe1vxDgAAAAAAAAAsCSMRAAAAAPq1H196dyZNuaNo41cf2TbjNxpetAEAAAAAAAAAS8tIBAAAAIB+6Ynn5mWrEy4o2hi7xoqZ8pmdijYAAAAAAAAAoKcYiQAAAADQ77zjB1fm+vv+UbRxzcTdM2LFoUUbAAAAAAAAANCTjEQAWOY6hwAAIABJREFUAAAA6Df+ds+TedePry7a+NybRuWQ3Tcq2gAAAAAAAACAEoxEAAAAAOjzOrvqbDBxSvHOXSfuk0HtbcU7AAAAAAAAAFCCkQgAAAAAfdr3LrozXz9vRtHGbz+2XbZbf9WiDQAAAAAAAAAozUgEAAAAgD7psWfmZptJFxZtbLHOyvnjwTsWbQAAAAAAAABAbzESAQAAAKDPefPJl+WWWc8UbVx35B4ZvvyQog0AAAAAAAAA6E1GIgAAAAD0GZff+UTe/9O/FW0cvs+YfPyNGxRtAAAAAAAAAEATjEQAAAAAaFxHZ1c2OuKc4p27J01Ie1tVvAMAAAAAAAAATTASAQAAgJ7W1Zk8MSN56MbksduSubOTBfOSzvlJ+zLJoCHJ0JWTEWOTNTdPhm+UtLU3fTU05pvnTc93L7qraOMPn9g+W667StEGAAAAAAAAADTNSAQAAACWVl0nMy9Ppk9JZt2QPHJz0jFn0f/7wcslq49L1toiGT0hGTk+qbzpgIHvodkvZIfJFxVtbL/+qvnNx7Yr2gAAAAAAAACAvsJIBAAAAJbUC7OTm36bXPfT7jeHLKmO55MHru7+uvqUZPioZKuPJJu+O1l25Z67F/qQPb7519z12HNFGzcc9aasstwyRRsAAAAAAAAA0JcYiQAAAMDieuqe5PJvJ9POWLw3hiyqJ2YkU7+UXPjlZNwByfhDk1XW7/kONODi6Y/loFOvLdo4+s1j8+Hx6xVtAAAAAAAAAEBfZCQCAAAAi6pzQXLVycnFJyWd88r3OuYkN5zW/baSXScmOxyStLWX70IB8xd0ZdSR5xTv3DNpQtraquIdAAAAAAAAAOiLjEQAAABgUTw+PTnzE8ms63u/3TkvueCY5Pa/JPudkqw2uvdvgKVw0jm350d/vado48xP7pjNXrdy0QYAAAAAAAAA9HVGIgAAAPBqurq63x5y0Ym98/aQVzPruuSHOyW7HZFsf0jS1tbsPbAQDzw1Jzt99eKijV1Hr5ZTD9qmaAMAAAAAAAAA+gsjEQAAAHglnR3JmQcn005v+pL/q3Necv7RySO3dL9VpH1w0xfBy9rpqxflgadeKNq46eg9s9Iw/x8AAAAAAAAAgH8yEgEAAICX0zE3OeNDyYxzmr7k5U07PZn3bHLAz5PBQ5u+Bv7X+bc9mn//xXVFG8fvt3E+sN26RRsAAAAAAAAA0B8ZiQAAAMBLdXb07YHIP804J/n9QcmBv/BGERo3t6MzY46aWrxz70kTUlVV8Q4AAAAAAAAA9EdGIgAAAPCvurqSMw/u+wORf5o+pfve/X+UtLU1fQ0t6st/uTWnXjGzaOOsQ8Zn47VWKtoAAAAAAAAAgP7OSAQAAAD+1VUnJ9NOb/qKxTPt9GT1ccmOn276ElrMfU8+nzd+7ZKijX02Xj0/eP+WRRsAAAAAAAAAMFAYiQAAAMA/PT49uejEpq9YMhedkIzaK1ltdNOX0CK2PvGCPP7svKKNm4/dMysOHVy0AQAAAAAAAAADSVvTBwAAAECf0LkgOfMTSWfZf/ReTOe85MyDk67Opi9hgDtn2sMZedjZRQciX3nHuMycvK+BCAAAAAAAAAAsJm8SAQAAgCS56nvJrOubvmLpzLouufLkZPyhTV/CADS3ozNjjppavHPvSRNSVVXxDgAAAAAAAAAMREYiAAAA8NQ9ycWTmr6iZ1w8KRn71mSV9Zu+hAFk4v9My6//dn/RxtRDd8qY1Vcs2gAAAAAAAACAgc5IBAAAAC7/dtI5r+krekbnvO7neet3m76EAeDux5/L7t/4a9HG2zZbM9959+ZFGwAAAAAAAADQKoxEAAAAaG0vzE6mndH0FT1r2hnJnscnQ1dq+hL6sXHHnptn5y4o2rjly3tl+SH+egoAAAAAAAAAekpb0wcAAABAo276bdIxp+krelbHnO7ngiXwpxtnZeRhZxcdiHzzwE0zc/K+BiIAAAAAAAAA0MP8JB4AAIDWVdfJtT9p+ooyrv1Jss3Hkqpq+hL6iTnzF2Ts0ecWbSwzqC3Tj987lf9dAgAAAAAAAEARRiIAAAC0rpmXJ0/e2fQVZTwxI7nvimTk+KYvoR/4/Bk35ffXP1i0ccFnd86GI1Yo2gAAAAAAAACAVmckAgAAQOuaPqXpC8q6Y4qRCK9qxqPPZs9vXVq0ceBWa+er79y0aAMAAAAAAAAA6GYkAgAAQOuadUPTF5T10AB/PpZYXdfZ6IhzsqCrLtq57bi9MmwZf/0EAAAAAAAAAL3FT+kBAABoTV2dySM3N31FWQ/f3P2cbe1NX0If8ofrH8znzripaOPk92yet2y6ZtEGAAAAAAAAAPD/MxIBAACgNT0xI+mY0/QVZXU8nzxxZzJiTNOX0Ac8N29BNj7m3KKNFYcOys3H7lW0AQAAAAAAAAC8MiMRAAAAWtNDNzZ9Qe94+EYjEfLp3/w9f77poaKNiz+/S9YbvlzRBgAAAAAAAADw6oxEAAAAaE2P3db0Bb2jVZ6Tl3X7w89kn+9cVrTx/u3WyQn7jSvaAAAAAAAAAAAWjZEIAAAArWnu7KYv6B0vtMhz8v+o6zrrHT6leOeO4/fO0MHtxTsAAAAAAAAAwKIxEgEAAKA1LZjX9AW9o1Wek//122vuz2F/nFa08cP3b5G9N16jaAMAAAAAAAAAWHxGIgAAALSmzvlNX9A7Oo1EWsUzczuyybHnFW2MWGFIrjlij6INAAAAAAAAAGDJGYkAAADQmtqXafqC3tE+pOkL6AUf+8V1Oe+2R4s2Lv3Crlln1WFFGwAAAAAAAADA0jESAQAAoDUNapHxRKs8Z4ua9uDTecv3Li/a+PCO6+Xot4wt2gAAAAAAAAAAeoaRCAAAAK1p6MpNX9A7lm2R52wxdV1nvcOnFO9MP2HvDBnUXrwDAAAAAAAAAPQMIxEAAABa04gWeTNCqzxnC/nlVTNz1J9uLdr46b9tld1f/9qiDQAAAAAAAACg5xmJAAAA0JrW3KzpC3rHGi3ynC1g9pz52ey484s21lllWC794q5FGwAAAAAAAABAOUYiAAAAtKbho5LBw5KOOU1fUs7g5ZLhGzV9BT3g3352Tf464/GijSsO2y1rrbxs0QYAAAAAAAAAUJaRCAAAAK2prT1ZfZPkgaubvqScNTbpfk76rb/f/4/sf8qVRRuf2GWDfGnvMUUbAAAAAAAAAEDvMBIBAACgda21xcAeiay5RdMXsIS6uuqsP3FK8c6ME/bJMoPaincAAAAAAAAAgN7hXwEAAADQukZPaPqCssYM8OcboH5y2T3FByKnfXibzJy8r4EIAAAAAAAAAAww3iQCAABA6xo5Pll1o+TJO5u+pOcNH5Wsu2PTV7AYnnxuXrY84YKijVGvXT7n/ecbizYAAAAAAAAAgOYYiQAAANC6qirZ+qPJ1C81fUnP2/qj3c9Hv/CuH12Vv937VNHG1YfvntVXGlq0AQAAAAAAAAA0q63pAwAAAKBRm747GTys6St61uBh3c9Fn3ftzKcy8rCziw5EPrP7Rpk5eV8DEQAAAAAAAABoAd4kAgAAQGtbduVk3AHJDac1fUnPGXdAMnSlpq/gVXR21dlg4pTinbtO3CeD2v2OEAAAAAAAAABoFf6VAAAAAIw/NGkf0vQVPaN9SPfz0GedcsldxQciv/7otpk5eV8DEQAAAAAAAABoMd4kAgAAAKusn+w6MbngmKYvWXq7Tux+Hvqcx56dm21OvLBoY9O1V8qfPjW+aAMAAAAAAAAA6LuMRAAAACBJtv9Ucvufk1nXN33Jkltrq2SHQ5q+gpex3/evyI0PzC7auOaI3TNihaFFGwAAAAAAAABA39bW9AEAAADQJ7QPSvb7QdI+pOlLlkz7kGS/U5K29qYv4V9cefcTGXnY2UUHIl/Ya3RmTt7XQAQAAAAAAAAA8CYRAAAA+F+rjU52OyI5/+imL1l8ux3ZfT99woLOrmx4xDnFO3dPmpD2tqp4BwAAAAAAAADoH4xEAAAA4F9tf0jyyC3JtNObvmTRjTsw2f5TTV/Bi75zwZ351gUzijZO//j22Wa9VYo2AAAAAAAAAID+x0gEAAAA/lVbW7LfKcm8Z5MZ5d8EsdRGT+i+t62t6Uta3iNPz812J11YtLHNyFVy+n9sX7QBAAAAAAAAAPRfRiIAAADwUu2DkwN+npzxob49FBk9IXnnqd330qh9vnNZbn/4maKN64/cI6suP6RoAwAAAAAAAADo3/yaUQAAAHg5g4cm7/plMu7Api95eeMOTA78RfedNObSGY9n5GFnFx2IHDHh/7B331F2lQXbh+89k0YooYRA6EUILQRCJ/QuKoKKIBbEhiIoFlSKgAiIYgFFbLwq+ooIilgohpBQQidACC30FmpAICGkTfb3R3jbp8ykzDNnZs51rTXLP/bO/j1Hl1kL1rlnb5jHz3iHgQgAAAAAAAAA0CFvEgEAAIC30to3OeBnycqbJGNPS9pmNfpESWv/ZLcTku2OTFr87odGmdM2L+sdX/4tM4+evm9aWqriHQAAAAAAAACgdzASAQAAgPa0tCSjPp+sv09y6WeSKRMad5ZVt0z2PzdZcVjjzkDO/McD+fG4R4o2Ljli+4xcY7miDQAAAAAAAACg9zESAQAAgAWx4rDkY6OTm85Jxp3etW8Vae2f7Hb8m28Pae26Lv/HlFfeyKgzxhZt7Lje4Pz249sUbQAAAAAAAAAAvZeRCAAAACyo1j7JDkcnG+2XjD8rmXRxMmdGuV7fgcnwA+c3l1+nXIcO7fbda/Lo1NeLNu78+p5Zbsl+RRsAAAAAAAAAQO9mJAIAAAALa/l1kv1+mOz1zWTihclt5yVTH+y85w9eP9nqE8mIg5MBgzrvuSy0sQ88n4/9+vaijW/st3EO3X6tog0AAAAAAAAAoDkYiQAAAMCiGjAo2ebwZOtPJU/ckDxwefLMHcmzExfuDSN9l0yGbpqsMjLZYN9kzVFJVZU7Nx2aNbctw064snjn0dP3TUuL/60BAAAAAAAAgM5hJAIAAACLq6qStXaY/5Mk89qSqQ8lz96VvHBf8sYrydxZSduspLV/0qd/ssSyyZCNkqGbJYPXS1paG/sZ+G+nXXZffnH9Y0Ubfz1yVDZdbdmiDQAAAAAAAACg+RiJAAAAQGdraU2GbDD/hx7jqZdnZMfvjCva2GPDITnv0K2KNgAAAAAAAACA5mUkAgAAADS97b91dZ55dWbRxsST9sqgJfoWbQAAAAAAAAAAzc1IBAAAAGha/7j3uRz+2wlFG6cfMDyHbLNG0QYAAAAAAAAAQGIkAgAAADShmXPassHXryzeeexb+6aqquIdAAAAAAAAAIDESAQAAABoMif95Z6cf9MTRRuXfW6HbLzKoKINAAAAAAAAAID/n5EIAAAA0BQen/p6dvnuNUUb7xg+ND/+4MiiDQAAAAAAAACAt2IkAgAAAPR6I795VV5+fXbRxqST98rSA/oWbQAAAAAAAAAAtMdIBAAAAOi1Lrv72Xz2gjuKNs5836Y5cMvVizYAAAAAAAAAABaEkQgAAADQ67wxuy0bnnhl0UZrS5WHT3t7qqoq2gEAAAAAAAAAWFBGIgAAAECvcuwld+f3tz5VtPGPo3fKsJWXLtoAAAAAAAAAAFhYRiIAAABAr/DwC9Ozx/evLdp4z+ar5vsHbVa0AQAAAAAAAACwqIxEAAAAgB6trutseOKVmTlnXtHOvd/YO0v2969SAAAAAAAAAIDuyzcbAAAAgB7r0jun5Og/3FW0cdZBm2X/zVct2gAAAAAAAAAA6AxGIgAAAECP8/qsudn4pH8UbSzZrzX3fGPvVFVVtAMAAAAAAAAA0FmMRAAAAIAe5Qt/uCt/vnNK0cbVX9o56664VNEGAAAAAAAAAEBnMxIBAAAAeoTJz03L3mddV7Txga1Xz7fes2nRBgAAAAAAAABAKUYiAAAAQLdW13XWPvby4p37T9knS/RrLd4BAAAAAAAAACjFSAQAAADoti6+/akc88e7izbO/eDI7Dt8aNEGAAAAAAAAAEBXMBIBAAAAup1pM+dk+MmjizaWG9g3d564V9EGAAAAAAAAAEBXMhIBAAAAupUjfjchl096rmjjmi/vkrUGL1m0AQAAAAAAAADQ1YxEAAAAgG7hnimv5p0/Gl+08dHt18rJ+21ctAEAAAAAAAAA0ChGIgAAAEBD1XWdtY+9vHjngW/ukwF9W4t3AAAAAAAAAAAaxUgEAAAAaJjf3fJEjv/zPUUbP//wFtlr45WLNgAAAAAAAAAAugMjEQAAAKDLvTpjTkacMrpoY+igAbnp2N2LNgAAAAAAAAAAuhMjEQAAAKBL/eSaR/LtKx8o2rj+K7tm9eUHFm0AAAAAAAAAAHQ3RiIAAABAl3jipdez85nXFG18aqd1cty+GxZtAAAAAAAAAAB0V0YiAAAAQFF1XeewX9+Waya/WLQz+dR90r9Pa9EGAAAAAAAAAEB3ZiQCAAAAFDNu8gs57Fe3FW386qNbZdcNhhRtAAAAAAAAAAD0BEYiAAAAQKebPmtuRp5yVWa3zSvWWGfFJTP2S7sUez4AAAAAAAAAQE9jJAIAAAB0qh9d/VC+d9WDRRs3fm23rLLsEkUbAAAAAAAAAAA9jZEIAAAA0CkefXF6dvvetUUbR+76tnx572FFGwAAAAAAAAAAPZWRCAAAALBY5s2r8+Ff3pIbHn6paOeh096evq0tRRsAAAAAAAAAAD2ZkQgAAACwyMbc93w+8ZvbizZ++/Gts+N6KxZtAAAAAAAAAAD0BkYiAAAAwEJ7beacbHry6KKNDYcukys+v2PRBgAAAAAAAABAb2IkAgAAACyU74+enB+Ofbho45bjds9Kywwo2gAAAAAAAAAA6G2MRAAAAIAF8vAL07LH968r2jj3gyOz7/ChRRsAAAAAAAAAAL2VkQgAAADQrnnz6hz885tz6+MvF2tsseZyuejw7dLaUhVrAAAAAAAAAAD0dkYiAAAAwFu68p5n8+n/vKNoY/QXdsr6Ky1dtAEAAAAAAAAA0AyMRAAAAIB/8eqMORlxyuiijc/uum6O2XuDog0AAAAAAAAAgGZiJAIAAAD8H9++8oH85JpHijYmnrRXBi3Rt2gDAAAAAAAAAKDZGIkAAAAASZLJz03L3mddV7Tx8w9vkb02XrloAwAAAAAAAACgWRmJAAAAQJNrm1fnPefekIlPv1qsse06y+eCT2yblpaqWAMAAAAAAAAAoNkZiQAAAEAT+/vdz+TIC+4s2hjzxZ3ztiFLFW0AAAAAAAAAAGAkAgAAAE3pn6/PzubfvKpo4/O7r5cv7Ll+0QYAAAAAAAAAAP/DSAQAAACazKl/vy/njX+s2PP7tFS588Q9s/SAvsUaAAAAAAAAAAD8KyMRAAAAaBL3PvNq3vHD8UUbv/zoltltg5WKNgAAAAAAAAAA+PeMRAAAAKCXm9s2L+8654bc/+xrxRo7rjc45x+2dVpaqmINAAAAAAAAAADaZyQCAAAAvdhf7pqSz194V9HGuC/vkrUHL1m0AQAAAAAAAABAx4xEAAAAoBd6afqsbHHqmKKNY/Yels/u+raiDQAAAAAAAAAAFpyRCAAAAPQyJ/3lnpx/0xPFnj+wX2tuO36PLNnfv1YAAAAAAAAAAOhOfJsDAAAAeolJT7+ad50zvmjj/I9tnZ3XX7FoAwAAAAAAAACARWMkAgAAAD3cnLZ5efvZ1+fhF6YXa+yx4ZD84iNbpqqqYg0AAAAAAAAAABaPkQgAAAD0YBff/lSO+ePdRRvXHbNr1lhhYNEGAAAAAAAAAACLz0gEAAAAeqAXp83KVqeNKdo49u0b5PCd1y3aAAAAAAAAAACg8xiJAAAAQA9z7CV35/e3PlXs+YOW6Jubj909S/RrLdYAAAAAAAAAAKDzGYkAAABAD3Hnk//MAefeWLTxu09sk1FvG1y0AQAAAAAAAABAGUYiAAAA0M3Nnjsve/7g2jzx0oxijbdvsnLO/eDIVFVVrAEAAAAAAAAAQFlGIgAAANCN/f7WJ3PsJZOKNsZ/ddesttzAog0AAAAAAAAAAMozEgEAAIBu6IXXZmbr068u2jjpXRvlsFFrF20AAAAAAAAAANB1jEQAAACgm/nSRRPzpzueLvb8wUv1z/iv7poBfVuLNQAAAAAAAAAA6HpGIgAAANBNTHji5bz3JzcVbfzhU9tmm3VWKNoAAAAAAAAAAKAxjEQAAACgwWbOacuu370mz746s1hjvxGr5OyDN0tVVcUaAAAAAAAAAAA0lpEIAAAANNBvb3o8X//LvUUbNx27W4YOWqJoAwAAAAAAAACAxjMSAQAAgAZ49tU3st23xhZtfHP/TfLhbdcs2gAAAAAAAAAAoPswEgEAAIAuVNd1Pn/hXfnrxGeKNVYZNCDjjtkl/fu0Fmt0qnltydQHk2fuSl64L5n5SjJ3VtI2O2ntl/TpnwxYNhmyUbLK5sng9ZKWHvLZAAAAAAAAAAC6kJEIAAAAdJGbH30pB//85qKNP356u2y51vJFG4utrpPHxyeTL0+m3JE8d3cyZ8aC//m+SyYrD09WHZkM2zdZa4ekqsqdFwAAAAAAAACghzASAQAAgMJmzmnLDt8em6nTZxdrvHfkavne+0cUe36neOOVZOKFye3/Mf/NIYtqzuvJUzfP/7n53GTw+smWH09GHJwssWznnRcAAAAAAAAAoIcxEgEAAICCfjn+sZzy9/uKNm45bvestMyAoo3F8vKjyfizkkkXL9wbQxbU1AeTK7+aXP2NZPiByQ5HJ8uv0/kdAAAAAAAAAIBuzkgEAAAACnj6nzOyw7fHFW2c8Z7hOXjrNYo2Fkvb3OSmHyXjvpW0zSrfmzMjueP8+W8r2fW4ZPujkpbW8l0AAAAAAAAAgG7CSAQAAAA6UV3XOeJ3d+SKe54r1lhrhYEZ/YWd069PS7HGYntxcnLpZ5IpE7q+3TYrGXNScv/fkv3PTVYc1vVnAAAAAAAAAABoACMRAAAA6CQ3Pjw1h5x3S9HGn4/YPpuvsVzRxmKZN2/+20PGntY1bw9pz5Tbk5/umOx2fLLdUUlLNx7VAAAAAAAAAAB0AiMRAAAAWExvzG7LNqePyWsz5xZrfGDr1fOt92xa7Pmdom1OcukRyaSLGn2S/9E2K7nqxOS5e+a/VaS1b6NPBAAAAAAAAABQjJEIAAAALIafX/dITr/8gaKN247fIysu3b9oY7HNmZlc/NHkwSsafZJ/b9JFyaxpyYG/TvoOaPRpAAAAAAAAAACKMBIBAACARfDkSzOy05njijbOfN+mOXDL1Ys2OkXbnO49EPkvD16R/PGw5P2/8UYRAAAAAAAAAKBXMhIBAACAhVDXdT75m9sz5v4XijXWG7JULv/8junb2lKs0WnmzUsuPaL7D0T+y+TL55/3gJ8lLT3gv18AAAAAAAAAgIVgJAIAAAAL6LoHX8xHfnlr0cbfjtwhw1cbVLTRqW76UTLpokafYuFMuihZeXgy6nONPgkAAAAAAAAAQKcyEgEAAIAOvD5rbrY8dUzemNNWrPGR7dbMKe/epNjzi3hxcjL2tEafYtGMPTVZf+9kxWGNPgkAAAAAAAAAQKcxEgEAAIB2/HjcwznzH5OLNiacsEdWWKp/0Uana5ubXPqZpG1Wo0+yaNpmJZcekXx8dNLS2ujTAAAAAAAAAAB0CiMRAAAA+Dcen/p6dvnuNUUbZx20WfbffNWijWJuOieZMqHRp1g8U25PbvxRssPRjT4JAAAAAAAAAECnMBIBAACA/6Wu6xz6q9ty3YMvFmtsNHSZ/PXIUenT2lKsUdTLjybjTm/0KTrHuNOTjfZLll+n0ScBAAAAAAAAAFhsRiIAAADwprEPPJ+P/fr2oo3LPrdDNl5lUNFGcePPStpmNfoUnaNt1vzPs98PG30SAAAAAAAAAIDFZiQCAABA05s2c042P+WqzJ1XF2t8fIe18/V3blTs+V3mjVeSSRc3+hSda9LFyV7fTAb08PEOAAAAAAAAAND0jEQAAABoamePeSg/GPNg0cadX98zyy3Zr2ijy0y8MJkzo9Gn6FxzZsz/XNsc3uiTAAAAAAAAAAAsFiMRAAAAmtIjL07P7t+7tmjjnEM2zzs3XaVoo0vVdXLbeY0+RRm3nZds/amkqhp9EgAAAAAAAACARWYkAgAAQFOZN6/OB8+7JTc9+lKxxojVl80ln9k+rS29bHDw+PjkpYcafYoypj6YPHFDstYOjT4JAAAAAAAAAMAiMxIBAACgaYy+97l86rcTijauPHrHbLDyMkUbDTP58kafoKwHLjcSAQAAAAAAAAB6NCMRAAAAer3XZs7JpiePLto4fOd1cuzbNyzaaLgpdzT6BGU908s/HwAAAAAAAADQ6xmJAAukqqr+SdZPslqSpZMMTDIjybQkTyeZXNf17MadEAAA/r3v/mNyzhn3cNHGxBP3yqCBfYs2Gm5eW/Lc3Y0+RVnP3j3/c7a0NvokAAAAAAAAAACLxEgEeEtVVW2bZP8kb0+ycZL2vinVVlXVvUkuT/KXuq5v7oIjAgDAW3ro+WnZ8wfXFW389EMjs88mQ4s2uo2pDyZzZjT6FGXNeT2Z+lAyZINGnwQAAAAAAAAAYJEYiQD/oqqqg5J8JcnIhfhjrUk2ffPna1VVTUhyZl3XfyhwRAAAeEtt8+q8/2c3ZcIT/yzW2Gqt5XLhp7ZLa0tVrNHtPHNXo0/QNZ69y0gEAAAAAAAAAOixjESA/1ZV1QZJfppk50543BZJLqyq6tNJPl3X9eROeCYAALTriknP5jO/u6No46ov7JT1Vlq6aKNbeuG+Rp+gazTL5wQAAAAAAAAAeiUjESBJUlXVe5Kcn2SpTn70Lklur6rqI3Vd/7mTnw0AAEmSV2fMyYhTRhdtHLXb2/KlvYYVbXRrM19p9Am6xhtN8jkBAAAAAABKCQHyAAAgAElEQVQAgF7JSARIVVWfTfKjJFWhxFJJ/lRV1ZF1XZ9bqAEAQJP61uX352fXPVrs+VWVTDxprywzoG+xRo8wd1ajT9A1muVzAgAAAAAAAAC9kpEINLmqqg5N2YHIf6eSnFNV1fS6rn9TuAUAQBO4/9nX8vazry/a+MVHtsyeG61UtNFjtM1u9Am6RpuRCAAAAAAAAADQcxmJQBOrqmqrJL/Igg1EbkxywZv/+XiSaUmWTrJOku2THJJk246SSX5RVdX9dV3ftojHBgCgyc1tm5cDzr0xk6a8Wqwx6m0r5Lcf2yYtLaW31D1Ia79Gn6BrtPZv9AkAAAAAAAAAABaZkQg0qaqqlknyhyR9O7j1oSSfqev66n9z7Z9JJrz586OqqvZKcm6Sddt5Xr8kf6iqarO6rl9b+JMDANDM/jrxmXzu93cWbVz9pZ2z7opLFW30SH2aZDzRLJ8TAAAAAAAAAOiVjESgeZ2SZO0O7hmT5H11XS/Qr2iu63p0VVVbJrkkya7t3Lp2kpOTfHFBngsAAP98fXY2/+ZVRRtf2GP9fH6P9Yo2erQByzb6BF1jiSb5nAAAAAAAAABAr2QkAk2oqqqNkny2g9tuSvLuuq5nLMyz67p+paqqdyUZm2Trdm49qqqqX9R1ff/CPB8AgObzjb/dm1/d8Hix5/fr05I7vr5nlurvH5HbNWSjRp+gazTL5wQAAAAAAAAAeiXfgIHmdFLa////y0kOWtiByH+p6/r1qqren+SuJG/1a3j7JDkxyQcWpQEAQO93z5RX884fjS/a+NVhW2XXYUOKNnqNVTZr9Am6xtAm+ZwAAAAAAAAAQK9kJAJNpqqqdZK8t4PbTqjr+qnF6dR1/URVVSclObud2w6squq4uq4fW5wWAAC9y9y2eXnnj8bngeemFWvsMmzF/OqjW6WqqmKNXmfw+knfgcmcRdqS9wx9l0wGr9foUwAAAAAAAAAALLKWRh8A6HKfTdLazvWHkvy8k1rnJnm0neutSY7opBYAAL3AJXc8nbcdf0XRgci1x+ySXx+2tYHIwmppTVbetNGnKGvopvM/JwAAAAAAAABAD2UkAk2kqqrWJB/o4LYf1HXd1hm9uq7nJvlhB7cdUlWVv4sAAJrc1OmzstbXLssXL5pYrPGVfYbl8TPekTVXWLJYo9dbdWSjT1DWKr388wEAAAAAAAAAvZ4vZkNz2S3J0Hauz0zyn53cPD/J7Haur5Jkl05uAgDQg5xw6aRseeqYYs9fqn+f3HfK3jlil7cVazSNYfs2+gRlbdDLPx8AAAAAAAAA0Ov1afQBgC71rg6uX1bX9bTODNZ1/UpVVVckeXc7t70rydjO7AIA0P3d/fQr2e+cG4o2fvvxrbPjeisWbTSVtXZIVlgveemhRp+k8w1eP1lzVKNPAQAAAAAAAACwWIxEoLns0cH1ywp1L0v7I5E9C3UBAOiGZs+dl33Oui6PTn29WGPPjVbKzz+8RaqqKtZoSlWVbPWJ5MqvNvoknW+rT8z/fAAAAAAAAAAAPZiRCDSJqqqGJtmwg9vGFMpf1cH1jauqWrmu6+cK9QEA6CYuuu2pfOVPdxdtXP+VXbP68gOLNpraiIOTq7+RzJnR6JN0nr4D538uAAAAAAAAAIAezkgEmsfWHVx/qq7rp0qE67p+vKqqZ5MMbee2rZL8rUQfAIDGe2HazGx92tVFGye8Y8N8Ysd1ijZIssSyyfADkzvOb/RJOs/wA5MBgxp9CgAAAAAAAACAxdbS6AMAXWZkB9fvKNy/vYPrmxfuAwDQIF/9491FByLLDeyb+0/Zx0CkK+1wdNLav9Gn6Byt/ed/HgAAAAAAAACAXsCbRKB5bNbB9bsL9ycmeVc7141EAAB6mQlP/DPv/cmNRRsXfHKbbL/u4KIN/o3l10l2PS4Zc1KjT7L4dj1u/ucBAAAAAAAAAOgFjESgeazfwfWHCvcf6eD6eoX7AAB0kVlz27L7967N0/98o1jjHcOH5pxDNk9VVcUadGC7I5P7/5pMmdDokyy6VbdMtj+q0acAAAAAAAAAAOg0RiLQPNbs4PrDhfsdPX/twn0AALrABbc8meP+PKlo44av7ZZVl12iaIMF0Non2f8nyU93TNpmNfo0C6+1f7L/uUlLa6NPAgAAAAAAAADQaYxEoAlUVbVyko6+RfdM4WNM6eD6wKqqhtR1/ULhcwAAUMBzr87Mtt+6umjjG/ttnEO3X6tog4W04rBkt+OTq05s9EkW3m4nzD8/AAAAAAAAAEAvYiQCzWGVBbjnucJnWJDnr5LESAQAoAep6zpfumhiLrmzo03woltpmf659phdM6CvNz50S9sdlTx3TzLpokafZMENf3+y3ZGNPgUAAAAAAAAAQKczEoHmsEIH11+r63pWyQPUdf1GVVXTkyzVzm0dnRMAgG7ktsdfzoE/valo46LDt8vWay9ftMFiamlJ9j83mTUtefCKRp+mY8P2nX/elpZGnwQAAAAAAAAAoNMZiUBz6Ohbda91ySnmd9obiXSbb/9VVfXZJEd0QWrdLmgAAHSqmXPasvOZ4/L8a+V2xgdsvmq+//4RqaqqWINO1No3OfDXycUf7d5DkWH7Ju/71fzzAgAAAAAAAAD0QkYi0ByW6+B6V45EVmnnercZiSRZMclGjT4EAEB385ubHs+Jf7m3aOPmY3fPyoMGFG1QQN8ByUG/TS49Ipl0UaNP86+Gv3/+G0QMRAAAAAAAAACAXsxIBJpDR9+wm9Elp0he7+C6bwICAHRTz7zyRrY/Y2zRxmkHbJIPbrNm0QaFtfZNDvhZsvImydjTkrZyb5tZ8DP1T3Y7IdnuyKSlpdGnAQAAAAAAAAAoykgEmkO/Dq7P7ZJTdNzp6JwAAHSxuq5z1O/vzN/vfrZYY7XllsjVX9o5/fu0FmvQhVpaklGfT9bfJ7n0M8mUCY07y6pbzn97yIrDGncGAAAAAAAAAIAuZCQCzcFIBACAhXbTIy/lA7+4uWjjT5/ZPlusuVzRBg2y4rDkY6OTm85Jxp3etW8Vae2f7Hb8m28PMT4CAAAAAAAAAJqHkQg0h5YOrrd1ySk67vj2FgBANzBzTlu2P2NsXn59drHGgVusljMPHFHs+XQTrX2SHY5ONtovGX9WMuniZM6Mcr2+A5PhB85vLr9OuQ4AAAAAAAAAQDdlJALNoaM3eHTV3wUddeZ0ySkWzItJ7uuCzrpJ+ndBBwBggZx3/aM59bL7izZuPW73DFlmQNEG3czy6yT7/TDZ65vJxAuT285Lpj7Yec8fvH6y1SeSEQcnAwZ13nMBAAAAAAAAAHoYIxFoDh39Cuiu+rugbwfXy/2q6oVU1/WPk/y4dKeqqnuTbFS6AwDQkadenpEdvzOuaOPb7x2eg7Zao2iDbm7AoGSbw5OtP5U8cUPywOXJM3ckz05cuDeM9F0yGbppssrIZIN9kzVHJVVV7twAAAAAAAAAAD2EkQg0h47e0NGvS07Rg0YiAADNoq7rfPo/J+Qf9z5frLHO4CVz5dE7pV+flmINepiqStbaYf5PksxrS6Y+lDx7V/LCfckbryRzZyVts5LW/kmf/skSyyZDNkqGbpYMXi9paW3sZwAAAAAAAAAA6IaMRKA5TO/g+tJdcopkmQ6ud3ROAAA60fiHpuZD/3FL0calnx2VzVZftmiDXqClNRmywfwfAAAAAAAAAAAWmZEINIeXO7jeVSORjjodnRMAgE4wY/bcbHPa1Zk2a26xxiHbrJHTDxhe7PkAAAAAAAAAAMC/MhKB5vBSB9e76lc7D+rgekfnBABgMf302kdyxhUPFG3cfsIeGbxU/6INAAAAAAAAAADgXxmJQHOY2sH1/lVVLVvX9SulDlBV1QpJ+nVwm5EIAEAhT7z0enY+85qije8dOCLv3WK1og0AAAAAAAAAAOCtGYlAc3hyAe5ZKUmxkcibz+/IgpwTAICFUNd1Pn7+7Rn7wAvFGsNWWjp//9wO6dvaUqwBAAAAAAAAAAB0zEgEmkBd19OrqnopyQrt3LZmkskFj7FmB9dfqOv69YJ9AICmc83kF/LRX91WtPH3o3bIJqsOKtoAAAAAAAAAAAAWjJEINI/H0v5IZL0kowv21+vg+mMF2wAATWX6rLkZ+c2rMnvuvGKNj26/Vk7eb+NizwcAAAAAAAAAABaekQg0j3uTbNnO9WGF++t3cP3ewn0AgKZwztiH8t3RDxZt3PH1PbP8kv2KNgAAAAAAAAAAgIVnJALN444kh7ZzffPC/ZEdXL+zcB8AoFd7bOrr2fW71xRtnH3wZnn3ZqsWbQAAAAAAAAAAAIvOSASaxx0dXN+sqqrWuq7bOjtcVVWfJCM6uM1IBABgEcybV+cjv7w14x+eWqyxyarL5NIjRqVPa0uxBgAAAAAAAAAAsPiMRKB53J5kZpIBb3F9qSRbJLm1QHvrJAPbuT4zyYQCXQCAXu3q+5/Px8+/vWjj8s/tmI1WWaZoAwAAAAAAAAAA6BxGItAk6rqeWVXVDUl2b+e2PVNmJLJHB9evr+t6ZoEuAECvNG3mnGz6jdGp63KNT+64do5/x0blAgAAAAAAAAAAQKczEoHmclXaH4m8J8lpBbrv6+D66AJNAIBe6QdXPZizr36oaOOuE/fMsgP7FW0AAAAAAAAAAACdz0gEmssfk5zRzvWRVVUNq+t6cmcFq6raJMnwDm77U2f1AAB6q4dfmJ49vn9t0caPDxmZd2w6tGgDAAAAAAAAAAAox0gEmkhd149UVXVzkm3bue2oJEd2YvZzHVy/oa7rxzqxBwDQq8ybV+fgn9+cWx9/uVhj5BrL5uJPb5/WlqpYAwAAAAAAAAAAKM9IBJrPL9P+SOSwqqpOq+v62cUNVVW1WpIPd3Dbrxe3AwDQW/3j3udy+G8nlG0cvVOGrbx00QYAAAAAAAAAANA1jESg+fw2yalJhrzF9YFJzkhyaCe0vp1kQDvXn3/zPAAA/C+vvjEnI74xumjjM7usm6/us0HRBgAAAAAAAAAA0LWMRKDJ1HU9s6qqs5Oc1s5tH6mq6tK6rv+8qJ2qqg5MckgHt51V1/WsRW0AAPRG377ygfzkmkeKNiaetFcGLdG3aAMAAAAAAAAAAOh6RiLQnM5KcniSNdq55/yqqqbUdX3rwj68qqptk/yyg9ueTHL2wj4bAKC3mvzctOx91nVFGz/78BbZe+OVizYAAAAAAAAAAIDGMRKBJlTX9Yyqqr6U5OJ2bls6yeiqqj5U1/XfF/TZVVW9O8lvkizVwa1frOv6jQV9LgBAb9U2r857f3Jj7nrqlWKNbdZePr//5LZpaamKNQAAAAAAAAAAgMYzEoEmVdf1H6uquiDJIe3cNijJX6uq+n2Sb9Z1/cBb3VhV1UZJTkxy0ALkf1fX9Z8W6sAAAL3QZXc/m89ecEfRxpgv7py3DelovwsAAAAAAAAAAPQGRiLQ3A5PMjLJBu3cU2X+kOSQqqruTHJjkseSTM/8t42snWRUkhEL2HwgyacX9cAAAL3BKzNmZ7NTrira+Nzu6+WLe65ftAEAAAAAAAAAAHQvRiLQxOq6nl5V1d5Jrk+yxgL8kc3f/FlUTybZu67r6YvxDACAHu3Uv9+X88Y/Vuz5rS1V7jpxzyw9oG+xBgAAAAAAAAAA0D0ZiUCTq+v6yaqqdk9yZZJ1C6YeTrJPXddPFmwAAHRb9z3zWvb94fVFG7/86JbZbYOVijYAAAAAAAAAAIDuy0gESF3XD1dVtVWS3yfZu0DiyiSH1HX9zwLPBgDo1ua2zct+59yQ+559rVhjx/UG5/zDtk5LS1WsAQAAAAAAAAAAdH9GIkCS5M0Bxz5VVR2a5DtJhnTCY19Ickxd17/phGcBAPQ4f7lrSj5/4V1FG+O+vEvWHrxk0QYAAAAAAAAAANAzGIkA/0dd1+dXVfXHJIcmOTLJhovwmPuS/DjJr+u6ntGZ5wMA6Alemj4rW5w6pmjjS3uun6N2X69oAwAAAAAAAAAA6FmMRIB/Udf160nOTXJuVVXrJ9knycgkGydZNcnSSQYmmZFkWpKnM38YckeSK+q6fqgR5wYA6A5O/uu9+fWNjxd7/oC+LZlwwp5Zsr9/nAMAAAAAAAAAAP4v3yoC2lXX9YNJHmz0OQAAurtJT7+ad50zvmjj/I9tnZ3XX7FoAwAAAAAAAAAA6LmMRAAAABbDnLZ52ffs6/PQC9OLNXbbYEj+49AtU1VVsQYAAAAAAAAAANDzGYkAAAAsoj9OeDpfvnhi0cZ1x+yaNVYYWLQBAAAAAAAAAAD0DkYiAAAAC+nFabOy1Wljija+9vYN8umd1y3aAAAAAAAAAAAAehcjEQAAgIVw3J8n5YJbniz2/GUG9MnNx+2egf384xoAAAAAAAAAALBwfOsIAABgAdz11CvZ/8c3FG387hPbZNTbBhdtAAAAAAAAAAAAvZeRCAAAQDtmz52XvX5wbR5/aUaxxj4br5yffGhkqqoq1gAAAAAAAAAAAHo/IxEAAIC38IfbnsxX/zSpaGP8V3fNassNLNoAAAAAAAAAAACag5EIAADA/+eF12Zm69OvLtr4+js3ysd3WLtoAwAAAAAAAAAAaC5GIgAAAP/LMRdPzMUTni72/MFL9cv4r+6WAX1bizUAAAAAAAAAAIDmZCQCAACQZMITL+e9P7mpaOPCT22bbddZoWgDAAAAAAAAAABoXkYiAABAU5s1ty27fffaTHnljWKNd41YJT88eLNUVVWsAQAAAAAAAAAAYCQCAAA0rf+8+YmccOk9RRs3fm23rLLsEkUbAAAAAAAAAAAAiZEIAADQhJ599Y1s962xRRunvHvjfGS7tYo2AAAAAAAAAAAA/jcjEQAAoGnUdZ0v/OGuXHrXM8UaQwcNyLgv75IBfVuLNQAAAAAAAAAAAP4dIxEAAKAp3PLoSzno5zcXbVz86e2y1VrLF20AAAAAAAAAAAC8FSMRAACgV5s5py07fmdcXpw2q1jjPSNXzfcOHJGqqoo1AAAAAAAAAAAAOmIkAgAA9Fq/vuGxnPy3+4o2bjlu96y0zICiDQAAAAAAAAAAgAVhJAIAAPQ6U155I6POGFu0cfoBw3PINmsUbQAAAAAAAAAAACwMIxEAAKDXqOs6R15wZy6b9GyxxhrLD8xVX9wp/fu0FmsAAAAAAAAAAAAsCiMRAACgV7jxkak55Be3FG1ccsT2GbnGckUbAAAAAAAAAAAAi8pIBAAA6NHemN2Wbb91dV59Y06xxkFbrp5vv2/TYs8HAAAAAAAAAADoDEYiAABAj3Xe9Y/m1MvuL9q49fjdM2TpAUUbAAAAAAAAAAAAncFIBAAA6HGeenlGdvzOuKKN77xv07x/y9WLNgAAAAAAAAAAADqTkQgAANBj1HWdT/5mQsbc/3yxxrorLpkrj94pfVtbijUAAAAAAAAAAABKMBIBAAB6hOsfejEf/o9bizb+euSobLraskUbAAAAAAAAAAAApRiJAAAA3dqM2XOz5aljMmN2W7HGh7ZdI6fuP7zY8wEAAAAAAAAAALqCkQgAANBtnXvNw/nOlZOLNiacsEdWWKp/0QYAAAAAAAAAAEBXMBIBAAC6ncenvp5dvntN0cYPDhqRAzZfrWgDAAAAAAAAAACgKxmJAAAA3UZd1zn0V7flugdfLNbYcOgy+duRo9KntaVYAwAAAAAAAAAAoBGMRAAAgG5h3OQXctivbiva+PtRO2STVQcVbQAAAAAAAAAAADSKkQgAANBQ02fNzeanjM6ctrpY47BRa+Wkd21c7PkAAAAAAAAAAADdgZEIAADQMGePeSg/GPNg0cadX98zyy3Zr2gDAAAAAAAAAACgOzASAQAAutwjL07P7t+7tmjjhx/YPPuNWKVoAwAAAAAAAAAAoDsxEgEAALrMvHl1PnjeLbnp0ZeKNUasNiiXHDEqrS1VsQYAAAAAAAAAAEB3ZCQCAAB0iavuez6f/M3tRRtXHr1jNlh5maINAAAAAAAAAACA7spIBAAAKOq1mXOy6cmjizYO32mdHLvvhkUbAAAAAAAAAAAA3Z2RCAAAUMz3Rk/Oj8Y+XLQx8cS9Mmhg36INAAAAAAAAAACAnsBIBAAA6HQPPT8te/7guqKNn35oZPbZZGjRBgAAAAAAAPD/2LvPKL3qev3D955JpySEhN5bIBJCDRBCCU1FRFFBbCiCIiiCckARAaWJYkEpinIoVoyKKAhSQw8lBELovfcWAiFtZv9fBP6H44HU+c0z5brWmld5sj/fZy2XK641txsAgM7ESAQAAGgzra11dj99XMY/9kqxxsYrL5E/77t5mpuqYg0AAAAAAAAAAIDOyEgEAABoE/++85l85fcTijYu+8ZWWXPpxYo2AAAAAAAAAAAAOisjEQAAYKFMnjozw4++tGjja6PXyH+9f0jRBgAAAAAAAAAAQGdnJAIAACywH1x8T06/+uGijTu+t2MW79OzaAMAAAAAAAAAAKArMBIBAADm273PvpYPnHRt0cZv9tw4OwxdumgDAAAAAAAAAACgKzESAQAA5llLa52PnXZ9Jj45uVhj89WWzB/22TRNTVWxBgAAAAAAAAAAQFdkJAIAAMyTCyY+nQP+dFvRxhUHb53VBy9atAEAAAAAAAAAANBVGYkAAABz9MobM7LBMZcVbRy0/Zo5aPu1ijYAAAAAAAAAAAC6OiMRAADgPR19wd058/pHij2/V3NTJhy5Qxbt7X+aAAAAAAAAAAAALCy/iQUAAPwfdz41OTuffF3Rxllf2CSj116qaAMAAAAAAAAAAKA7MRIBAAD+v1ktrdn55Oty77NTijW2Xmtwzt5rk1RVVawBAAAAAAAAAADQHRmJAAAASZK/3/ZkvvHniUUbV/3XNlll0CJFGwAAAAAAAAAAAN2VkQgAAHRzL70+PRsde3nRxiHvH5Kvjl6jaAMAAAAAAAAAAKC7MxIBAIBu7Mh/3Jnfjnus2PMX6dWcmw/fPov09j89AAAAAAAAAAAASvObWgAA0A3d8eSr2eWU64s2fvvFEdlqrcFFGwAAAAAAAAAAAPwPIxEAAOhGZra05gMnXZOHXnijWGP7dZbOb/bcKFVVFWsAAAAAAAAAAADwfxmJAABAN/GX8U/kkL/eUbRx7aGjs+LAfkUbAAAAAAAAAAAAvDsjEQAA6OKenzItI467omjj8J3WyZe2Wq1oAwAAAAAAAAAAgDkzEgEAgC7ssPPuyJ9ufqLY8wf065lx394ufXs1F2sAAAAAAAAAAAAwb4xEAACgC5rw+Cv52Gk3FG38cZ9NM3KNQUUbAAAAAAAAAAAAzDsjEQAA6EJmzGrN9j+9Oo+/PLVYY6dhy+TUT2+YqqqKNQAAAAAAAAAAAJh/RiIAANBF/Onmx3PYeZOKNq7/9rZZfkDfog0AAAAAAAAAAAAWjJEIAAB0cs+9Ni2bHn9F0cZRHx6avbZYtWgDAAAAAAAAAACAhWMkAgAAndjBYybmbxOeLPb8wYv1zrWHjk6fns3FGgAAAAAAAAAAALQNIxEAAOiExj/6cj7xq3FFG3/+8mbZdLUlizYAAAAAAAAAAABoO0YiAADQiUyb2ZJtTrwqz742rVjjI+svl5M+uX6qqirWAAAAAAAAAAAAoO0ZiQAAQCfxu3GP5oh/3FW0Me6wbbNs/75FGwAAAAAAAAAAAJRhJAIAAB3c06++mZEnXFm0ccxH183nNlu5aAMAAAAAAAAAAICyjEQAAKCDqus6Xz/39lww8elijeUH9M2V/7V1evdoLtYAAAAAAAAAAACgfRiJAABAB3Tjwy9lj1/fWLTxt/02z0YrDyzaAAAAAAAAAAAAoP0YiQAAQAcybWZLtjjhyrz0xoxijU9stEJ+vNvwYs8HAAAAAAAAAACgMYxEAACggzjzukdy9IV3F23c/J3tstTifYo2AAAAAAAAAAAAaAwjEQAAaLAnX5maUT8cW7RxwseGZY8RKxVtAAAAAAAAAAAA0FhGIgAA0CB1Xecrv781l9z1XLHGqoMWySUHbZVePZqKNQAAAAAAAAAAAOgYjEQAAKABrn/wxXzmjJuKNv6+/8hssNISRRsAAAAAAAAAAAB0HEYiAADQjt6c0ZIRx1+eKdNmFWt8asRK+cHHhhV7PgAAAAAAAAAAAB2TkQgAALST069+KD+4+N6ijVsO3z6DF+tdtAEAAAAAAAAAAEDHZCQCAACFPf7S1Gx14tiijR/vNjyf2GiFog0AAAAAAAAAAAA6NiMRAAAopK7r7H3O+Fx57/PFGmstvWj+9fUt07O5qVgDAAAAAAAAAACAzsFIBAAACrj6/hfy+TNvLtq44GujMmyF/kUbAAAAAAAAAAAAdB5GIgAA0IbemD4rGx17WabNbC3W2HPzlXP0R9Yt9nwAAAAAAAAAAAA6JyMRAABoI6eOfTAnXnJf0caEI3bIwEV6FW0AAAAAAAAAAADQORmJAADAQnrkxTcy+sdXFW38fI/185H1ly/aAAAAAAAAAAAAoHMzEgEAgAXU2lrn82fdnGsfeLFY433LLZ5/fHWL9GhuKtYAAAAAAAAAAACgazASAQCABXDFPc9l73PGF21c9PUtM3S5xYs2AAAAAAAAAAAA6DqMRAAAYD5MmTYzw79/aVrrco29R62aI3YeWi4AAAAAAAAAAABAl2QkAgAA8+hnl92fn1/xQNHG7UfukAH9ehVtAAAAAAAAAAAA0DUZiQAAwFw8+Pzr2f6nVxdtnPrpDfOh9ZYt2gAAAAAAAAAAAKBrMxIBAID30Npa51O/uTE3PfJyscb6Kw7I3/YbmeamqlgDAAAAAAAAAACA7sFIBAAA3sUldz2bfX93a9nGQVtlyDKLFW0AAAAAAAAAAADQfRiJAADAO0x+c2aGf//Soo39tlk93/rA2kUbAAAAAAAAAAAAdD9GIgAA8JYTL7k3p459qGhj4lE7pn/fnkUbAAAAAGaueF8AACAASURBVAAAAAAAdE9GIgAAdHv3PzclO/7smqKNX312o3xg3WWKNgAAAAAAAAAAAOjejEQAAOi2Wlrr7ParGzLh8VeLNUasOjDnfmmzNDVVxRoAAAAAAAAAAACQGIkAANBNXTTpmez/hwlFG5d/c6ussdRiRRsAAAAAAAAAAADwNiMRAAC6lVenzsj6R19WtPH1bdfIN3ccUrQBAAAAAAAAAAAA/8lIBACAbuP4i+7Jr695uNjzm6pk4lE7ZrE+PYs1AAAAAAAAAAAA4L0YiQAA0OXd/fRr2ekX1xZtnLHnxtl+6NJFGwAAAAAAAAAAADAnRiIAAHRZs1pa89HTrs+dT71WrDFqjUH57RdHpKmpKtYAAAAAAAAAAACAeWEkAgBAl/SP25/KgefeXrRx5cFbZ7XBixZtAAAAAAAAAAAAwLwyEgEAoEt5+Y0Z2fCYy4o2Dt5hrRyw3ZpFGwAAAAAAAAAAADC/jEQAAOgyvvfPu3L2DY8We37vHk259Ygdsmhv/4wGAAAAAAAAAACg4/HbbQAAdHp3PjU5O598XdHG2Xttkm2GLFW0AQAAAAAAAAAAAAvDSAQAgE5rZktrdv7FdbnvuSnFGqOHDM6ZX9gkVVUVawAAAAAAAAAAAEBbMBIBAKBTOm/Ck/nmmIlFG1cfsk1WXnKRog0AAAAAAAAAAABoK0YiAAB0Ki++Pj0bH3t50ca3PrB29ttm9aINAAAAAAAAAAAAaGtGIgAAdBqH/31S/nDT48Wev1jvHrnp8O3Sr5d/JgMAAAAAAAAAAND5+O03AAA6vIlPvJqPnHp90cbv9940o9YcVLQBAAAAAAAAAAAAJRmJAADQYc2Y1Zr3n3RNHnnxjWKNHYcundM/t1GqqirWAAAAAAAAAAAAgPZgJAIAQIc05pYncujf7ijauPbQ0VlxYL+iDQAAAAAAAAAAAGgvRiIAAHQoz0+ZlhHHXVG08d0PrZN9tlytaAMAAAAAAAAAAADam5EIAAAdxqF/nZgx458s9vwlF+mV67+9bfr0bC7WAAAAAAAAAAAAgEYxEgEAoOFufeyVfPyXNxRt/OlLm2Xz1Zcs2gAAAAAAAAAAAIBGMhIBAKBhps9qybY/vjpPvfpmscbO6y2bkz+1QaqqKtYAAAAAAAAAAACAjsBIBACAhvjDTY/l8L/fWbRxw7e3zXID+hZtAAAAAAAAAAAAQEdhJAIAQLt6dvK0bPaDK4o2vr/L+/L5kasUbQAAAAAAAAAAAEBHYyQCAEC7qOs63/jz7Tn/9qeLNZZZvE+uOmSb9OnZXKwBAAAAAAAAAAAAHZWRCAAAxd38yMvZ/fRxRRtj9t08I1YdWLQBAAAAAAAAAAAAHZmRCAAAxUyb2ZKtfjQ2z0+ZXqzxsQ2Wz092H56qqoo1AAAAAAAAAAAAoDMwEgEAoIizr38k37vg7qKNm76zXZZevE/RBgAAAAAAAAAAAHQWRiIAALSpp199MyNPuLJo47hd181nNl25aAMAAAAAAAAAAAA6GyMRAADaRF3X+dofb8u/Jj1TrLHiwL65/Jtbp3eP5mINAAAAAAAAAAAA6KyMRAAAWGjjHnopn/rNjUUb5+0/MhuutETRBgAAAAAAAAAAAHRmRiIAACywN2e0ZOQJV+SVqTOLNXbfeIX86BPDiz0fAAAAAAAAAAAAugojEQAAFsgZ1z6cY/91T9HGzYdvl6UW61O0AQAAAAAAAAAAAF2FkQgAAPPliZenZssfjS3a+NEn1svuG69YtAEAAAAAAAAAAABdjZEIAADzpK7rfPl3t+ayu58r1lht8CL594FbpVePpmINAAAAAAAAAAAA6KqMRAAAmKtrH3ghn/vvm4s2/vHVLTJ8xQFFGwAAAAAAAAAAANCVGYkAAPCeps6YlU2OvTxvzGgp1vjMpivluF2HFXs+AAAAAAAAAAAAdBdGIgAAvKtfXvVQfvjve4s2xn93+wxatHfRBgAAAAAAAAAAAHQXRiIAAPwvj730RrY+8aqijZ/uPjwf23CFog0AAAAAAAAAAADoboxEAABIktR1nb3OviVX3fdCscbayyyWCw4YlZ7NTcUaAAAAAAAAAAAA0F0ZiQAAkLH3PZ+9zrqlaOPCA0Zl3eX7F20AAAAAAAAAAABAd2YkAgDQjb0+fVY2PPqyzGhpLdbYa4tVctSH31fs+QAAAAAAAAAAAMBsRiIA0B5aW5IX70+evj15/u5k2qvJrOlJy4ykuVfSo3fSZ0Cy1NBkuQ2SQWsmTc2Nvpou7uQrHshPLru/aGPCETtk4CK9ijYAAAAAAAAAAACA2YxEAKCEuk4evS6576LkqQnJs3ckM6fO+9/vuUiyzLBk+Q2TITslq4xKqqrcvXQrD7/werb9ydVFG7/41AbZZfhyRRsAAAAAAAAAAADA/2YkAgBt6c1Xk4nnJuP/e/abQxbUzDeSJ26c/XPjacmgtZKN906G75H0HdB299KttLbW+dyZN+X6B18q1lhvhf45b7+R6dHcVKwBAAAAAAAAAAAAvDsjEQBoCy8/nFx3UjLpL/P3xpB59eL9yb+/lVzx/WTYbsmog5KBq7V9hy7r8rufyz6/HV+0cfGBW2adZRcv2gAAAAAAAAAAAADem5EIACyMllnJuJOTsT9IWqaX782cmkw4Z/bbSkZ/Jxl5QNLUXL5Lp/XatJlZ73uXFm18eavV8p2d1inaAAAAAAAAAAAAAObOSAQAFtQL9yXn75c8dWv7t1umJ5cfldxzQfLR05LBQ9r/Bjq8n156X35x5YNFG7cfuUMG9OtVtAEAAAAAAAAAAADMGyMRAJhfra2z3x5y5XHt8/aQOXlqfPKrLZNtD082PyBpamrsPXQIDz4/Jdv/9JqijdM+s2F2GrZs0QYAAAAAAAAAAAAwf4xEAGB+tMxMzt8/mTSm0Zf8j5bpyWVHJs/eOfutIs09G30RDdLaWmePX9+Ymx99uVhjo5WXyJh9N09zU1WsAQAAAAAAAAAAACwYIxEAmFczpyV/+UJy/8WNvuTdTRqTTJ+S7HZ20rNPo6+hnf37zmfyld9PKNq49BtbZa2lFyvaAAAAAAAAAAAAABackQgAzIuWmR17IPK2+y9O/rpXsvtvvVGkm5g8dWaGH31p0cZXR6+eQ96/dtEGAAAAAAAAAAAAsPCMRABgblpbk/P37/gDkbfdd9Hse3c9PWlqavQ1FPTDf9+bX171UNHGxKN2TP++BkcAAAAAAAAAAADQGRiJAMDcjDs5mTSm0VfMn0ljkmWGJVt8vdGXUMB9z07J+0+6pmjj15/bKDu+b5miDQAAAAAAAAAAAKBtGYkAwJy8cF9y5XGNvmLBXHlsstb7k8FDGn0JbaSltc7Hf3lDbn/i1WKNzVYbmD/us1mamqpiDQAAAAAAAAAAAKAMIxEAeC8ts5Lz90tapjf6kgXTMj05f/9k70uTpuZGX8NCuvCOp/O1P95WtHH5N7fOGkstWrQBAAAAAAAAAAAAlGMkAgDvZdwpyVO3NvqKhfPU+OSGk5NRBzX6EhbQK2/MyAbHXFa0ceB2a+YbO6xVtAEAAAAAAAAAAACUZyQCAO/m5YeTscc3+oq2Mfb4ZOguycDVGn0J8+nYC+/OGdc9Uuz5PZqq3HbkDlmsT89iDQAAAAAAAAAAAKD9GIkAwLu57qSkZXqjr2gbLdNnf59dftHoS5hHdz09OR/6xXVFG2d+YeNsu/bSRRsAAAAAAAAAAABA+zISAYD/9OaryaS/NPqKtjXpL8mOxyR9+jf6EuZgVktrPnzK9bnnmdeKNbZcc1DO2WtEmpqqYg0AAAAAAAAAAACgMYxEAOA/TTw3mTm10Ve0rZlTZ3+vTfdt9CW8h3/c/lQOPPf2oo2x/7VNVh20SNEGAAAAAAAAAAAA0DhGIgDwTnWd3HJGo68o45YzkhFfTipvkOhIXnp9ejY69vKijUPePyRfHb1G0QYAAAAAAAAAAADQeEYiAPBOj16XvPRAo68o48X7k8euT1YZ1ehLeMtR/7gz54x7rNjz+/Vqzi2Hb59FevsnHwAAAAAAAAAAAHQHfmMQAN7pvosafUFZ915kJNIBTHpycj58ynVFG+d8cUS2Xmtw0QYAAAAAAAAAAADQsRiJAMA7PTWh0ReU9XQX/34d3MyW1nzw59fmwedfL9bYfp2l8ps9N05VVcUaAAAAAAAAAAAAQMdkJAIAb2ttSZ69o9FXlPXMHbO/Z1Nzoy/pdv4y/okc8tey//m65pDRWWnJfkUbAAAAAAAAAAAAQMdlJAIAb3vx/mTm1EZfUdbMN5IXH0iWWrvRl3QbL0yZnk2Ou7xo47APrp19t169aAMAAAAAAAAAAADo+IxEAOBtT9/e6AvaxzO3G4m0k8POuyN/uvmJYs/v37dnbjxsu/Tt5c0wAAAAAAAAAAAAgJEIAPyP5+9u9AXto7t8zwa67fFXsutpNxRt/GGfTbPFGoOKNgAAAAAAAAAAAIDOxUgEAN427dVGX9A+3uwm37MBZsxqzQ4/uzqPvTS1WOOD6y6T0z6zYaqqKtYAAAAAAAAAAAAAOicjEQB426zpjb6gfXSX79nO/nTz4znsvElFG9d9a3RWWKJf0QYAAAAAAAAAAADQeRmJAMDbWmY0+oL20WIk0paef21aRhx/RdHGUR8emr22WLVoAwAAAAAAAAAAAOj8jEQA4G3NvRp9Qfto7t3oC7qMg8dMzN8mPFns+YMW7Z3rvjU6fXo2F2sAAAAAAAAAAAAAXYeRCAC8rUc3GU90l+9Z0K2PvZyP/3Jc0cafv7xZNl1tyaINAAAAAAAAAAAAoGsxEgGAt/UZ0OgL2kffbvI9C5g2syWjf3xVnpk8rVhjl+HL5ed7rJ+qqoo1AAAAAAAAAAAAgK7JSAQA3rbU0EZf0D66y/dsY78b92iO+MddRRvjDts2y/bvW7QBAAAAAAAAAAAAdF1GIgDwtuXWb/QF7WPZbvI928gzk9/M5j+4smjjmI+um89ttnLRBgAAAAAAAAAAAND1GYkAwNsGrZX07JfMnNroS8rpuUgyaM1GX9Ep1HWdA8+9Pf+c+HSxxnL9+2TsIdukd4/mYg0AAAAAAAAAAACg+zASAYC3NTUny6yXPHFjoy8pZ9n1Zn9P5ujGh1/KHr8u+5+Dv35l82y8ysCiDQAAAAAAAAAAAKB7MRIBgHdafsOuPRJZbsNGX9ChTZvZklE/vDIvvj6jWOPjG66Qn+w+vNjzAQAAAAAAAAAAgO7LSAQA3mnITsmNpzX6inLW3qnRF3RYZ173SI6+8O6ijZu+s12WXrxP0QYAAAAAAAAAAADQfRmJAMA7rTIqWXLN5KUHGn1J2xu0VrLyFo2+osN58pWpGfXDsUUbJ3xsWPYYsVLRBgAAAAAAAAAAAICRCAC8U1Ulm+yT/Ptbjb6k7W2yz+zvR5Kkruvs/4cJufjOZ4s1VlmyXy79xtbp1aOpWAMAAAAAAAAAAADgbUYiAPCfhu+RXPH9ZObURl/Sdnr2m/29SJLc8OCL+fQZNxVt/H3/kdlgpSWKNgAAAAAAAAAAAADeyUgEAP5T3wHJsN2SCec0+pK2M2y3pE//Rl/RcG/OaMmmx1+e16bNKtb41IgV84OPrVfs+QAAAAAAAAAAAADvxUgEAN7NqIOSiecmLdMbfcnCa+49+/t0c7++5qEcf9G9RRu3HL59Bi/Wu2gDAAAAAAAAAAAA4L0YiQDAuxm4WjL6O8nlRzX6koU3+juzv0839fhLU7PViWOLNk78xHrZbeMVizYAAAAAAAAAAAAA5sZIBADey+ZfS+75Z/LUrY2+ZMEtv3Ey8oBGX9EQdV3nS78dn8vveb5YY82lFs1FB26Zns1NxRoAAAAAAAAAAAAA88pIBADeS3OP5KO/TH61ZdIyvdHXzL/m3slHT0uamht9Sbu75v4XsueZNxdtXPC1URm2Qv+iDQAAAAAAAAAAAID5YSQCAHMyeEiy7eHJZUc2+pL5t+13Z9/fjbwxfVY2PvbyvDmzpVhjz81XztEfWbfY8wEAAAAAAAAAAAAWlJEIAMzN5gckz96ZTBrT6Evm3bDdk82/1ugr2tWpYx/MiZfcV7Rx63e3z5KL9i7aAAAAAAAAAAAAAFhQRiIAMDdNTclHT0umT0nuv7jR18zdkJ1m39vU1OhL2sWjL76RbX58VdHGSZ9cPx/dYPmiDQAAAAAAAAAAAICFZSQC3UhVVaskeaTBZ6xZ1/WDDb4B5l9zz2S3s5O/fKFjD0WG7JR84qzZ93ZxdV3n82fdkmvuf6FYY+iyi+efX9siPZq7x+AGAAAAAAAAAAAA6NyMRABgXvXsk3zyd8n5+yeTxjT6mv9r2O6z3yDSDQYiV977XL549viijX99fVTet1z/og0AAAAAAAAAAACAtmQkAgDzo7lnsuvpyTLrJlcel7RMb/RFSXPvZNvvJpt/LWnq2m+8mDJtZjY4+rLMaq2LNfYetWqO2HlosecDAAAAAAAAAAAAlGIkAgDzq6kp2eLAZK0PJOfvlzx1a+NuWX7j2W8PGTykcTe0k59f/kB+dvn9RRu3HbFDllikV9EGAAAAAAAAAAAAQClGIgCwoAYPSb54aTLulGTs8e37VpHm3sm2h7/19pDm9us2wEMvvJ7tfnJ10cYpn94gO6+3XNEGAAAAAAAAAAAAQGlGIgCwMJp7JKMOSobuklx3UjLpL8nMqeV6Pfslw3ab3Ry4WrlOB9DaWuczZ9yUcQ+/VKwxfMUBOW+/kWluqoo1AAAAAAAAAAAAANqLkQjwTmcluaFw4/nCz4fGGLhasssvkh2PSSaem9xyRvLi/W33/EFrJZvskwzfI+nTv+2e20Fdetez+fLvbi3a+PdBW2btZRYv2gAAAAAAAAAAAABoT0YiwDtdU9f12Y0+Ajq1Pv2TTfdNRnw5eez65N6LkqcnJM9MnL83jPRcJFl2vWS5DZO1d0pW3iKpuv7bLl6bNjPrfe/Soo19t14th31wnaINAAAAAAAAAAAAgEYwEgGAEqoqWWXU7J8kaW1JXnwgeeb25Pm7kzdfTWZNT1qmJ829kx69k74DkqWGJsuunwxaM2lqbux3aGc/vuS+nDL2waKNiUfumP79ehZtAAAAAAAAAAAAADSKkQgAtIem5mSptWf/8L888NyU7PCza4o2fvXZDfOBdZct2gAAAAAAAAAAAABoNCMRAKAhWlrr7H76uNz62CvFGpusskTO/fLmaW6qijUAAAAAAAAAAAAAOgojEQCg3V086Zns94cJRRuXfWOrrLn0YkUbAAAAAAAAAAAAAB2JkQgA0G4mT52Z4UdfWrRxwLZr5OAdhxRtAAAAAAAAAAAAAHRERiIAQLv4wUX35PRrHi72/KpKJh61Yxbv07NYAwAAAAAAAAAAAKAjMxIBAIq655nX8sGfX1u08Zs9N84OQ5cu2gAAAAAAAAAAAADo6IxEAIAiWlrrfPTU6zPpqcnFGlussWR+98VN09RUFWsAAAAAAAAAAAAAdBZGIgBAm/vnxKfz9T/dVrRxxcFbZ/XBixZtAAAAAAAAAAAAAHQmRiIAQJt55Y0Z2eCYy4o2vrH9Wjlw+zWLNgAAAAAAAAAAAAA6IyMRAKBNfP+Cu3LW9Y8We36vHk2ZcMQOWbS3f74AAAAAAAAAAAAAvBu/ZQkALJQ7n5qcnU++rmjjrL02yeghSxVtAAAAAAAAAAAAAHR2RiLAu6qqqm+S1ZOsmGRAkj5Jpid5M8nLSZ5I8mRd1zMadiTQULNaWrPzydfl3menFGtsM2RwzvrCJqmqqlgDAAAAAAAAAAAAoKswEgHeadOqqjZMsk2SdTL3/46YVVXVXUnGJ7k0yaV1Xb9a9kSgIzhvwpP55piJRRtXH7JNVl5ykaINAAAAAAAAAAAAgK7ESAR4p6/M5+d7JBn+1s/eSWZUVfX3JL+s6/rqtj4OaLwXX5+ejY+9vGjj0A8Myf7brFG0AQAAAAAAAAAAANAVGYkAbalXkk8m+WRVVWOTHFrX9fgG3wS0ke+ePym/v/HxYs9ftHeP3Hz4dunXyz9PAAAAAAAAAAAAABaE38IEShmd5Maqqn6c5Mi6rmc0+iBgwdzx5KvZ5ZTrizZ+t/eIbLnm4KINAAAAAAAAAAAAgK7OSAQoqTnJt5KMqqpq17quX2j0QcC8mzGrNR846Zo8/OIbxRo7DF06v/7cRqmqqlgDAAAAAAAAAAAAoLswEgHawxZJxlVVtVVd1083+ph5UVXVV5Ps3w6p1duhAfNtzC1P5NC/3VG0ce2ho7PiwH5FGwAAAAAAAAAAAADdiZEIkCStSSYkuS3JpLd+nkky+a2f1iRLJhmYZNkkI5NsnWSzJH3nsbF6ksurqhpV1/XLbXp9GYOTDG30EdDenp8yLSOOu6Jo4/Cd1smXtlqtaAMAAAAAAAAAAACgOzISge5rWpILklyY5OK6rl+Yy+effuvnziSXJUlVVf2TfCXJgZk9HpmbdZL8rqqqneu6rhf0cKCMb/31jvx5/BPFnr9Ev5654dvbpW+v5mINAAAAAAAAAAAAgO7MSAS6n4eSnJ7kzLquX1qYB9V1PTnJD6uqOinJ95J8K0k1l7+2U5IDkvxiYdpA27n1sVfy8V/eULTxxy9tmpGrDyraAAAAAAAAAAAAAOjujESge3kiyZpt/RaPuq6nJzmsqqprkvw+ycC5/JVjqqoaU9f1s215BzB/ps9qyXY/uTpPvvJmscaHhi2bUz69QapqbvsxAAAAAAAAAAAAABaWkQhdVlVVayS5sdF3tKW6rhfq/4a/ruuWtrrlPZ5/cVVV2yUZm2TAHD66eGa/deQbJe8B3tsfb3o83/n7pKKN67+9bZYf0LdoAwAAAAAAAAAAAID/YSRCV9YjyZKNPqK7qev69qqqPpvkgiRzenXAPlVVfb+u61fb6bT59UKSu9uhs3qS3u3QgSTJs5OnZbMfXFG08f1d3pfPj1ylaAMAAAAAAAAAAACA/8tIBGhzdV3/q6qqs5J8cQ4fWzTJrknOap+r5k9d16cmObV0p6qqu5IMLd2Buq5z8JiJOe+2p4o1ll68d64+ZHT69Gwu1gAAAAAAAAAAAADgvRmJAKUcnuQzmfNbMj6RDjoSga7klkdfzm6/Gle0MWbfzTNi1YFFGwAAAAAAAAAAAADMmZEIUERd189WVfXnJHvO4WNbVlXVXNd1S3vdBd3JtJkt2frEsXnutenFGrtusHx+uvvwVFVVrAEAAAAAAAAAAADAvDESAUoakzmPRBZLsm6Sie1zDnQfvx33aI78x11FGzcetl2W6d+naAMAAAAAAAAAAACAeWckApR0TZKWJM1z+MzaMRKBNvP0q29m5AlXFm0ct+u6+cymKxdtAAAAAAAAAAAAADD/jETosuq6vjdJ1eg7urO6rqdUVfVgkiFz+Ngq7XQOdGl1XeeAP92WC+94plhjhSX65oqDt07vHnPafQEAAAAAAAAAAADQKEYiQGmPZs4jkaXa6Q7ossY99FI+9Zsbizb+tt/IbLTyEkUbAAAAAAAAAAAAACwcIxGgtMlz+fN+7XIFdEHTZrZk5AlX5uU3ZhRr7LbRCjlxt+HFng8AAAAAAAAAAABA2zESAUqb22+v92yXK6CLOePah3Psv+4p2rj5O9tlqcX7FG0AAAAAAAAAAAAA0HaMRIDS+s7lz99slyugi3ji5anZ8kdjizZ++PFh+eQmKxVtAAAAAAAAAAAAAND2jESA0paZy5+/3i5XQCdX13W+8vtbc8ldzxVrrDZokfz7oK3Sq0dTsQYAAAAAAAAAAAAA5RiJAKWtPpc/f6pdroBO7LoHXsxn//umoo3zv7pF1l9xQNEGAAAAAAAAAAAAAGUZiQDFVFW1cub+JpFH2uMW6IymzpiVTY+7IlOmzyrW+PSmK+X4XYcVez4AAAAAAAAAAAAA7cdIBCjpQ/PwmTuKXwGd0K+ufignXHxv0cb4726fQYv2LtoAAAAAAAAAAAAAoP0YiQAl7TmXP3+yrusn2uUS6CQee+mNbH3iVUUbP9lteD6+0QpFGwAAAAAAAAAAAAC0PyMRoIiqqkYn2XQuH7ukPW6BzqCu6+x9zvhcee/zxRpDll4sF359VHo2NxVrAAAAAAAAAAAAANA4RiJAm6uqqleSn8/DR8eUvgU6g6vuez5fOOuWoo0LDxiVdZfvX7QBAAAAAAAAAAAAQGMZiQAl/DTJsLl85qEkV7TDLdBhvT59VjY85rLMmNVarPGFkavke7u8r9jzAQAAAAAAAAAAAOg4jESgG6iqarMk4+u6ntUOrSOSfHUePnpiXdctpe+BjuqUKx/Ijy+9v2hjwhE7ZOAivYo2AAAAAAAAAAAAAOg4jESge/h2kqFVVR2X5E91Xc9o60BVVYsl+U2ST87Dx+9M8t9tfQN0BlNnzMrQIy8p2vj5HuvnI+svX7QBAAAAAAAAAAAAQMfT1OgDgHazZpKzkzxaVdUxVVWt2RYPrWbbJcmtmbeBSEuSfdvjrSbQ0UyeOjOfPeOmYs9fd/nF8+BxHzQQAQAAAAAAAAAAAOimvEkEup9lk3w3yXerqpqY5MIkY5PcXNf1lHl9SFVVqyR5f5IDk6wzH/1D67q+YT4+D11CXdf54jm3ZMLjrxZ5/kVf3zJDl1u8yLMBAAAAAAAAAAAA6ByMRKB7G/7Wz+FJWquqeiTJvUkeT/JskslJpidpTjLwrZ9lkoxMstIC9E6p6/qnbXA3dDrjHn4ptz72Sps/90tbrprDPzS0zZ8LAAAAAAAAAAAAQOdjJAK8rSnJ6m/9lPDTuq4PLvRs6PB+f+Njbf7M24/cIQP69Wrz5wIAAAAAAAAAAADQORmJAKW9mWS/uq7PafQh0EgvTJneZs869dMb5kPrLdtmzwMAAAAAAAAAAACgazASAUq6NLMHIg83+hBotOmzWhf6GRuuNCB/+crINDdV8EoP3gAAIABJREFUbXARAAAAAAAAAAAAAF2NkQh0D+OSbJJkuXbqXZXk2Lqur2inHnR4Q5ZeLHc8OXmB//4lB22VIcss1oYXAQAAAAAAAAAAANDVNDX6AKC8uq5/WNf18kmGJPlKkj8muTfJwr/a4K1EkklJjksypK7r0QYi8L99YqMVFujv7bfN6nn0hA8ZiAAAAAAAAAAAAAAwV94kAt1IXdf3J7k/yelJUlVVvyTrJRmWZJUkK771s2ySxZL0S9I3Sc8kM5JMS/JKkmeSPJHk7iR3JBlX1/Vz7fhVoNMZserAbDNkcK6674V5/jsTj9ox/fv2LHgVAAAAAAAAAAAAAF2JkQh0Y3VdT01y41s/QEFVVeWXn9koe555U2559JU5fvb0z230/9i773hrr6pO4L/1JiSEQEgChBpaaCbUAIoUhyqISMmACKI0kQGGMjOKiIqCo6KoMCNDiYSiIAMKSgmhiSV0kB4RYkiooSckENLX/HHu64Tw3vOce8otz/v9fj73Ez9373ftxR/edZ7n7LV37nnU1TYpMwAAAAAAAAAAAADGQpMIAGySA/bbJ3/56B/L6z7ypbzkxFNz6je/lyTZVcmdbniV/ORRV81Dbnvt7NpVW5wpAAAAAAAAAAAAADuRJhEA2ESXvcw++fkfu04ecttr5zvfvyDnXXhx9tt3Vw49cL+tTg0AAAAAAAAAAACAHU6TCABsgV27KodoDAEAAAAAAAAAAABgiXZtdQIAAAAAAAAAAAAAAAAsTpMIAAAAAAAAAAAAAADACGgSAQAAAAAAAAAAAAAAGAFNIgAAAAAAAAAAAAAAACOgSQQAAAAAAAAAAAAAAGAENIkAAAAAAAAAAAAAAACMgCYRAAAAAAAAAAAAAACAEdAkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYAU0iAAAAAAAAAAAAAAAAI6BJBAAAAAAAAAAAAAAAYAQ0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAppEAAAAAAAAAAAAAAAARkCTCAAAAAAAAAAAAAAAwAhoEgEAAAAAAAAAAAAAABgBTSIAAAAAAAAAAAAAAAAjoEkEAAAAAAAAAAAAAABgBDSJAAAAAAAAAAAAAAAAjIAmEQAAAAAAAAAAAAAAgBHQJAIAAAAAAAAAAAAAADACmkQAAAAAAAAAAAAAAABGQJMIAAAAAAAAAAAAAADACGgSAQAAAAAAAAAAAAAAGAFNIgAAAAAAAAAAAAAAACOgSQQAAAAAAAAAAAAAAGAENIkAAAAAAAAAAAAAAACMgCYRAAAAAAAAAAAAAACAEdAkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYAU0iAAAAAAAAAAAAAAAAI6BJBAAAAAAAAAAAAAAAYAQ0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAppEAAAAAAAAAAAAAAAARkCTCAAAAAAAAAAAAAAAwAhoEgEAAAAAAAAAAAAAABgBTSIAAAAAAAAAAAAAAAAjoEkEAAAAAAAAAAAAAABgBDSJAAAAAAAAAAAAAAAAjIAmEQAAAAAAAAAAAAAAgBHQJAIAAAAAAAAAAAAAADACmkQAAAAAAAAAAAAAAABGQJMIAAAAAAAAAAAAAADACGgSAQAAAAAAAAAAAAAAGAFNIgAAAAAAAAAAAAAAACOgSQQAAAAAAAAAAAAAAGAENIkAAAAAAAAAAAAAAACMgCYRAAAAAAAAAAAAAACAEdAkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYAU0iAAAAAAAAAAAAAAAAI6BJBAAAAAAAAAAAAAAAYAQ0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAppEAAAAAAAAAAAAAAAARkCTCAAAAAAAAAAAAAAAwAhoEgEAAAAAAAAAAAAAABgBTSIAAAAAAAAAAAAAAAAjoEkEAAAAAAAAAAAAAABgBDSJAAAAAAAAAAAAAAAAjIAmEQAAAAAAAAAAAAAAgBGo7t7qHAD2WlV1VpIrXPr3+++/f4444ogtyAgAAAAAAAAAAAAAdp5TTjkl55133p6Gzu7ugzY7n62iSQRgC1XVuUn23+o8AAAAAAAAAAAAAGCkzuvuy251Eptl11YnAAAAAAAAAAAAAAAAwOI0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAvtudQIAe7kzkxy8h9+fn+SLm5zLIo5Isv8efn9eklM2ORcAUJcA2E7UJQC2E3UJgO1EXQJgu1GbANhO1CWYz+FJ9tvD78/c7ES2kiYRgC3U3Vfb6hyWoapOSnLkHoZO6e6jNjsfAPZu6hIA24m6BMB2oi4BsJ2oSwBsN2oTANuJugQsYtdWJwAAAAAAAAAAAAAAAMDiNIkAAAAAAAAAAAAAAACMgCYRAAAAAAAAAAAAAACAEdAkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYAU0iAAAAAAAAAAAAAAAAI6BJBAAAAAAAAAAAAAAAYAQ0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAppEAAAAAAAAAAAAAAAARkCTCAAAAAAAAAAAAAAAwAhoEgEAAAAAAAAAAAAAABgBTSIAAAAAAAAAAAAAAAAjoEkEAAAAAAAAAAAAAABgBDSJAAAAAAAAAAAAAAAAjIAmEQAAAAAAAAAAAAAAgBHQJAIAAAAAAAAAAAAAADACmkQAAAAAAAAAAAAAAABGQJMIAAAAAAAAAAAAAADACGgSAQAAAAAAAAAAAAAAGAFNIgAAAAAAAAAAAAAAACOw71YnAMAovCDJVfbw+29sdiIAEHUJgO1FXQJgO1GXANhO1CUAthu1CYDtRF0C5lbdvdU5AAAAAAAAAAAAAAAAsKBdW50AAAAAAAAAAAAAAAAAi9MkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYAU0iAAAAAAAAAAAAAAAAI6BJBAAAAAAAAAAAAAAAYAQ0iQAAAAAAAAAAAAAAAIyAJhEAAAAAAAAAAAAAAIAR0CQCAAAAAAAAAAAAAAAwAppEAAAAAAAAAAAAAAAARkCTCAAAAAAAAAAAAAAAwAhoEgEAAAAAAAAAAAAAABgBTSIAAAAAAAAAAAAAAAAjoEkEAAAAAAAAAAAAAABgBDSJAAAAAAAAAAAAAAAAjIAmEQAAAAAAAAAAAAAAgBHQJAIAAAAAAAAAAAAAADACmkQAAAAAAAAAAAAAAABGQJMIAAAAAAAAAAAAAADACGgSAQAAAAAAAAAAAAAAGAFNIgAAAAAAAAAAAAAAACOgSQQAAAAAAAAAAAAAAGAENIkAAAAAAAAAAAAAAACMgCYRAAAAAAAAAAAAAACAEdAkAgAAAAAAAAAAAAAAMAKaRAAAAAAAAAAAAAAAAEZAkwgAAAAAAAAAAAAAAMAIaBIBAAAAAAAAAAAAAAAYgX23OgEAGFJV+yY5Isl1k1whyeWTnJvkrCSnJ/lMd5+zZQkCsNepqv2T3CjJtTKpTZdLck6Ss5N8KZPadP7WZQjA3kRdAmA7UZcA2E7UJQC2E3sfAHautb/h101y9SRXSXJAkv2SnJ/k+0m+mcnf8tO6+4ItSnNDPC/BuFV3b3UOAMyhqi6T5CZJbprkqLX/XivJwWs/V0xyUSYfQs9I8pUkpyb5RJIPJXnvdv4QV1U3S3JMknsnuWUmH6rX00lOTvLWJG9M8q5W4AA2VVVVJi9Ebp7kBkmuneTwtf8emuTATF4oXC7JhZm88D4zyVeTfD7Jvyb5SJITu/uMTU5/JlV1uyT3T/JTmdTefaZMvyjJSUnekuQN3f3+1WcIwN5EXQJgO1GXAMZl7V3fLZLcJcmRSW6cyXu+3ZtZK8l3136+keRzaz+fTvKBJP+2ld/TqEsAbCf2PgDsTFV1uUz+dt8tyR0y2ad3mRn+6QVJ/i3Ju5P8fZITtlMDoOcl2HtoEgHYIapqV5JbJblrJh8+75jJhtt5nZPk7UlekeTN3X3hwkkuQVXdM8nTktx5gTCfTfLcJH/e3RctIy8AflBVXTeTFyF3yKQ+3TSTL4gX1Unen+S1Sf6iu7+9hJgLqaoHJ3lqkqMXCPMvSZ7T3a9ZTlYArEJVHZLJpqarzjD9Fd39iNVm9MPUJYDtraq2+kuXe3T3OzdrMXUJYFyq6lZJHpPkgZmcjDuvM5O8L8kJSY7v7s8tIb1B6hLA9lNVl0/yc1udx3q6+yWrim3vA8DOVFU/kuR/JHlwlrMH4ruZ7H/44+7+9BLizcXzEux9NIkAbGNr19TdLcnPZtLBe+iKljo1ybOTHLdVLxaq6ppJ/izJA5YY9uNJHtvdH1hiTIC9WlU9J8lDklxzE5b7fpKXJnlWd399E9b7AVV1kyQvSvKflhj2H5P8l+7+zBJjArAkVfXSJI+ccfqmNomoSwA7w97SJKIuAYxLVd0xk++J7rCiJY7v7vusKLa6BLCNrR06duoWp7Gu7q5lx7T3AWBnqqrDMnkuekQmtycuW2ey/+Fp3f3NFcTfI89LsPfatdUJAPDDquqoqvrzJF/N5BrRR2V1DSJJcr0kL07ywbVTojbV2pcPH8lyX5Ikk6vQT6yqxy05LsDe7C7ZnAaRJDkgyROS/HtVPXaT1kySVNUxST6U5b4oSSanRX24qpZd8wBYUFXdNbM3iGwqdQmA7URdAhiPqjqsql6X5MSsrkEkSa61qsDqEgDbib0PADvT2u1Pn8zke6JVNIhkLe6jk3yyqu62ojV+cEHPS7BX0yQCsD39TJJfSnKlTV736CTv28yNuFV1vyTvSnLYipa4TJIXVNWzVxQfgNW7QpIXVdXrquqAVS9WVU9I8jdZztWxe3L5JK+rqsevKD4AG7RWX47d6jz2RF0CYDtRlwDGo6p+Ksknkhyz1bnMS10CYEFLvQnS3geAnamqHpPk+Kzu7/elXS3JW6vqF1e5iOclQJMIAJe2fyYbcZ+16oWq6h5JXpPJy4xV+7Wq+q1NWAeA1Tkmyd9X1apeYqSqHp7JFeCrOh3kP5ZK8vxVv/gBYGbPTHLEVidxaeoSANuJugQwHmubeN6c5Kpbncu81CUAluAflxXI3geAnamqfiGTQ8T22eSl903y8qp60CqCe14CkqS6l9oUDcASVNXTkvzBBv7JRUlOSvLpJKcm+WaS7yW5bCa3kVw9yR2T3HiDqTytu/9wg/9mJlV13SQfTXLwDNM/meQvM7nu/OQk30lyYJLDk9wuyYOT3C2zfbC9f3e/YeMZA5AkVfXhJLcemHZxki8k+WySU5KcmeSstZ9dSa6Y5KAkN0xyyyTXzcZeTrwjyb26++KN5D6kqm6b5D2Z7QX+e5P81dp/T0tydiY3nlw/ye2TPDSTGjXk/CR37O4PzZEyAEtQVbdK8sFMXshvxCu6+xHLz2hCXQLYmapqq790uUd3v3PZQdUlgPGoqmdk0ig/q3MzeWb6TJLPZ/J3/fxMvt85JMlVMnnHd1SS/daJ8fHuvuW8OV+augSwc6ztCzh1i9NYz8O6+1WLBrH3AWBnqqqjk7w/szf4fSTJWzJ5Fjk5ybczeb44KJNno5skuUOS+yS52Ywxz01ym+4+afbMp/O8BOymSQRgG5qxSeTfkrwpyQlJPtDd58wQ9+pJfjnJEzNpHhnSSe7T3W+ZYe7MqmrfTD6M/ujA1K8leWJ3//UMMW+b5EVJjh6YekaSW3b3F2bJFYAftE6TyOlJ3p3JC+13J/nX7j5vAzEPy+TlwqMy+8uSZ3T37866xgw5HJTkY0muNzD15CSP6+6/nyHmTyZ5QYZPpj81k9p01iy5ArA8VbVPJpudhp4j9mRlTSLqEsDONdAk8qYkb1xxCm/p7q8sM6C6BDAeazeI/J8Zpl6Y5HVJXp7kH2Z511dV+yW5eZJ7J7l/kltdYnhpTSLqEsDOso2bRM5Mco3u/v4iQex9ANiZ1r4f+liSm84w/T1Jnt7d/7yB+PfIZO/f0AGcSfKhJD/WS9jM7XkJuCRNIgDb0JQmkTMzeSH/l939kQXiH5jkeUl+aYbppyc5srvPnHe9Paz/lCTPHZj28ST33siX2lW1f5KXJXnIwNS/7e5jZo0LwP+31iRyq0xO1HhDkjd092eWFLsyqU3PTnLowPTzktyku09b0trPS/LkgWnvTPLA7v7OBuIenOT1Se4yMPW53f3fZ40LwHJU1VOTrHd74ucyOSlpPatsElGXAHaogSaRZ3b372xWLsuiLgGMQ1XdJ5P3ebsGpr4hya9298kLrnedJI/J5PCyryyxSURdAmCqqrpWJrdfTat5L+juJyxhLXsfAHagqnpEJn9nh/xBkt/q7ovmWGO/JH+U4eeXJPm57n7NRtfYw5qel4D/oEkEYBvaQ5PIvyd5TpJXznJjyAbW+cUkL02yz8DUZ3f3ry9pzatk0o18xSnT/j3J7bv7G3PE3yeT063uNzD1J7v7HRuND7C3q6qfSvKR7v7aCtc4Isk/ZHK19jTHdfcsDY9D6x2ZyQv6fadMe1+Su89Th9eaM9+V6adIXZjk5t396Y3GB2A+a/Xmk0kO2MPwezN5Sf6MKSFW0iSiLgHsbGNrElGXAMahqq6Z5BOZfjDL+ZmcJPvSJa+9f5I7dfc7lxBLXQJgUFX9ZpKh2+hvvcjBnGvr2PsAsENV1ceS3GJg2nO6+6lLWOv5SYYaE9/f3T++4Dqel4AfMHRKCABb67NJHpbJSenHLrNBJEm6+y+SPHGGqU9cu45uGX4l01+SnJ/kZ+d5SZIka53bD09y2sDUZ80TH2Bv190nrLJBZG2NU5L8pyRnD0z9uaq6whKW/O1Mf1Hy7SQPnrcOd/f3kvxsJjeCrWffTN+IDMDyvTh7bhC5IMljk2zVySrqEgDbiboEsMOt3d77F5neIHJOkp9adoNIknT3ectoEFmjLgEw1Vrde+TAtI8t2iCyxt4HgB2oqo7KcIPIe5P82pKWfFKSDw3Mud3a4WaL8LwE/ABNIgDb09eSPD7JUd39qnmurJtVd78wky8Hpjkwkw95C1lrNHnswLTndfdHF1ln7Tq8oavzbldVd1pkHQBWp7tPzeQlxjQHJrnbIutU1fWT/OeBab/Z3V9cZJ3u/nyG//c8qKqut8g6AMymqh6V9WvIn3T3pzYzn93UJQC2E3UJYDQeluSuU8YvTvKQ7n7XJuUzF3UJgBndOcn1B+Yct+gi9j4A7Gh3n2HOr3f3Ug4T6+6Lkzxthqlz733wvATsiSYRgG2ou1/W3S/s7gs3aclfz+SUqGnuv4R1Hp7pJ2mcmeT3lrBOuvuNSU4cmPakZawFwMo8P8kZA3N+YsE1npBknynjJyc5dsE1dntBks9NGd8nkyZRAFaoqq6a5I/XGf5ctvbkPXUJgO1EXQLY4arqwCR/MDDtD9e+U9nu1CUAZvHogfHzkrxqCevY+wCwcx09MP7Z7v7nZS641pR/ysC02y6whOcl4IdoEgEg3f2VJK8emHanqlq0bvzCwPix3X3Wgmtc0p8MjP9MVU17cQPAFuruC5K8ZWDaTeaNX1X7JHnIwLTnLutGr7Xmz/89MO2hS6i3AEz3v5Mcss7Y47v7+5uZzG7qEgDbiboEMBpPTnLNKeOfTvI7m5PK/NQlAGax9t3/MQPTXt/dQweUzcLeB4Cd64iB8bevaN23DYzfYJ6gnpeA9fh/QgB2e/PA+EFJrjNv8Kq6YYY7nl8yb/x1vCnJ6VPG98/wVXsAbK33DYxfY4HYd01y9Snj5yZ55QLx9+QVSc6fMn6NTK5CB2AFquo+SX52neHXdPfQC/pVUpcA2E7UJYAdrqr2T/LEgWlP6+5pf3u3C3UJgFk8NMkBA3OOW3QRex8Adrz1DhLb7eMrWnco7pXnjOt5CdgjTSIA7DbLNXnXXyD+zwyM/0t3n7xA/B/S3Rcnee3AtKG8ANhaXxsYP3CB2EM14PjuPnuB+D+ku89McsLANLUJYAWq6gpJXrjO8JlJnrKJ6eyJugTAdqIuAex8P5/kalPGP9rdb9ysZBakLgEwi0cNjJ+W5F1LWMfeB4Cdbf+B8W+uaN1vDIwPNTqux/MSsEeaRABIknT3tzO9wzdJDl5gibsPjB+/QOxF4t5l7do9ALanoau4z1kg9natTfdY0boAe7tnJ7nWOmO/3t1f3cxk9kBdAmA7UZcAdr5HDoz/2aZksRzqEgBTVdXNktxmYNrLuruXsNx2rUv2PgDM5jsD499b0bpDcYf2Rqxnu9Ylz0uwxTSJAHBJQ53Qc3UsV9W+SX5iYNo754k9gxMzuTZvPVfM8FWwAGydwwbG5zrFo6qunuRHBqatqja9Y2D8qKqadsojABtUVbdP8rh1ht+X5MWbmM4PUZcA2E7UJYCdr6oOT3KHKVPOyfBp5NuCugTAjB49MH5xkpcvuoi9DwCj8K2B8SutaN2huEN5/RDPS8A0mkQAuKTLDYxPe+EwzVFJDpwyfkGSD84Ze6ruPjfJRwemeVECsH2td+L7bp+bM+6PDox/sbu/OGfsqbr7tCSnD0xTmwCWpKr2S/LnSWoPwxcmeeySThBchLoEwHaiLgHsfA/Knp+BdntLd6/qdNxlU5cAmGrt/d/DBqa9o7u/sITl7H0A2Pk+PTC+qsaGqw+Mz7P3wfMSsC5NIgAkSarqCpmcLDHNGXOGP3pg/F+7+7w5Y8/iwwPjt1rh2gAs5l4D4yfOGXeoNn1kzrizUpsANs9vJDlynbE/7e5PbmYy61CXANhO1CWAne8eA+Nv2ZQslkNdAmDI/TJ8OvtxS1rL3geAnW9oj8GdVrTu0E1U75kjpuclYF2aRADY7ZaZfqpUkpyyQOxpPjFn3Fl9fGDcB1KAbaiqDk9yxylTLsz8V6OqTQB7gao6MsnT1hk+LckzNy+bqdQlALYTdQlgB6uqfZPcYWDaP2xGLkuiLgEw5NED499K8oYlraUuAex870py7pTxu1bV/stcsKoOSHLXKVMuznzPaeoSsK59tzoBALaNnx4YPyvJvNev3mhg/OQ5485qqLnlhiteH4D5PC/JPlPGX9fdX5kzttoEMHJVtSvJS5Lst86Ux3f3OZuY0jTqEsBepqouk+SIJNdOcmiSyya5IMn3k5yZ5EtJvtjd39+C9NQlgJ3tVkmuMGX8K9192lCQqjowyVFJrp7koEwOGjsnk1vnP5/kC919/sLZDlOXAFhXVV0rwzdo/eUSa5a6BLDDdfe3q+pVWb/J8OAkj0/y3CUu+6RMf047vru/OEdcdQlYlyYRAHZvnvrZgWnv7u6L51ziegPj/z5n3FkNxT+wqq7S3d9YcR4AzKiqnpLkmClTLkzy7AWWuM7A+FbXpqHaCcCwJyT58XXGXtvdJ2xmMgPUJYC9w5FV9UdJ7pLkZkmGTiS8uKo+m+TDmdyieEJ3f33FOSbqEsBOd4uB8Y+tN1BVN0vy0CT3yaRBZNoN9OdX1UeT/FOS1yf5YHf3BnOdhboEwDSPTLJrYM5xS1zP3geAcfjjJL+Q9Q8ae3pVvba7v7zoQlV1nSS/NjDtT+YM73kJWNfQh2QA9g73y/CHsjfOE7iqKsMfSOc9BX5Wp2dyLd80PpQCbANVdZmqemaGT+X4g+5e9wvtgTWuluSAgWmrrk1DL5MuV1WHrTgHgNGqqsOT/N46w99J8pRNTGcqdQlgr/KgJL+a5DYZbhBJJt/h3CTJw5K8PMnpVXV8Vf3M2ju3pVOXAEbhpgPjn7z0L6rqdlX1ziSfSPK0tRhDtWa/JD+W5KlJ3p/k01X1y2u3ZS2FugTANGvPRY8YmPbB7v7UEtez9wFgBLr735I8a8qUKyc5vqqm3f4xqKoOTXJCkkOmTHtFd//THLE9LwFTaRIB2MtV1T6Z/qE3Sc5P8tdzLnFIkssOzPnqnLFn0t0XJfnmwLRrrDIHAKZbaw65XyYnGT5jYPrbkvzuAsvN8jd/pbVpxvhqE8D8Xpj1r+1+enefvpnJDFCXAJjVriT3zuQwlw9X1d1XsIa6BLDzHTkwfsru/6OqLl9VxyV5b5K7LbjujZO8OMmnquonF4y1m7oEwDR3SXL9gTnLvEXE3geAcXl2krdPGb9Fkg9V1dBtjXtUVT+WyQ3BPzJl2qmZ/2Azz0vAVJpEAHhshk+VekV3f3vO+FeaYc7X54y9EUNrzJInAAuqqn2q6uCqunZV/XhVPa6qXpLJCRZ/l+Evsd+e5P7dfcECaQz9zT+ru89bIP6g7v5+ku8OTFObAOZQVT+X5KfXGf5AkhdtYjqzUJcAmMfRSd5RVS+tqoOWGFddAtj5Dh8YPzVJquqGmTwjPSrDt4ZsxI2SvLWq/qiq9l0wlroEwDSPGhg/J8n/XeJ69j4AjMha4939k0y7xePGST649g5upmaRqrptVb0qybsz/XanLye5W3efOWvOl+J5CZhq0ZcyAOxgVXWdTLqip7kgyR8usMyhM8w5a4H4sxpaY5Y8ARhQVTdIcvIKQl+Y5PeS/O7ay5pFDP3N34y6tHudy08ZV5sANmjt2u7/tc7whUl+ubsv3sSUZqEuAbCIRya5XVX9THefMjh7mLoEsPNdfWD8y1V14yT/MMPceVWSX01yo6rdVsdtAAAgAElEQVR68AIbk9QlAPaoqq6Y5JiBaX/d3cusFfY+AIxMd3+/qu6V5E+SPH6daftl8g7ukVX1lSTvyWRPxBmZNEhcIZPbpm6c5A5JrjrD0h9N8qDuPnWB9D0vAVNpEgHYS1XVriQvz+SD6jTPW/AL5kMGxs9ZwmbfWXhRArAzdZI3Jfnt7v7YkmIO1abNfFky7WpVtQlg4/40yWHrjD23uz+xmcnMSF0CYFE/kuT9VXXn7j5pwVjqEsAOVlWXTXLFgWm7Mrmtd1UNIpd0vyR/U1X3n/O7IHUJgPU8NMkBA3OOW/Ka9j4AjFB3n5vkCVV1fCaHLd9syvRrJHnQAsudn+TPkvzGEm758LwETKVJBGDv9cwkdx6Y88Ukv7vgOpcdGD9nwfiz+t7A+FCeAGyuzyT52ySvXMImp0tTmwBGqKrunuTh6wx/PsnvbF42G6IuAewdPpXkX5J8cu3ni0m+s/ZzfiZfll4pk2bH2yX5iUxOHjxoxvhXTvKOqrrDgicQqksAO9vBM8x5YZJrTRk/O8lbk7wxk/r11STfzqRWXS3JTZPcN8m9MnwQWZLcJ8kfJ/lvM8y9NHUJgPU8emD85O4+cclrqksAI9bdb6mqE5I8IMmjktw9yf5LCn9Wkr9K8vvd/cUlxVSXgKk0iQDsharq3kmePjCtkzy6u89ecLn9BsYvXDD+rIbWGcoTgM1zYZJTknwpwy8U5qE2AYxMVV0uyYunTHlCd2/Wy/CNUpcAxumiTDbYvjnJ8TN8+fu1tZ9/TfKPSZ69dhr8I5L8SpIjZljz6kleV1W3XzsBcR7qEsDONnSiepLcaZ3fX5jkBZnc6HvmHsa/uvbzsSSvrKqDkzwryeMyvO/gKVX1tu5+6wz5XZK6BMAPqaqbJ7n1wLRl3yKSqEsAo9fdneT1VfXpJD+fyXu5RRpFLkjyR0n+5wLv69ajLgFT7drqBADYXFV1ZJJXZ7gGPL+737GEJX0gBWCj9k1y7yTPT3JKVb2+qm63xPhqE8D4PCvJ9dcZ+5vuPn4zk9kgdQlgXE7P5Gbe63T3fbr7RfOeDtjd53b3i5LcKJPT1y+Y4Z/dKsnvz7PeGnUJYGeb94TWbyW5Q3c/eZ0GkR/S3Wd295OS3DGTm0aGHLvWALkR6hIAezJ0i8iFSf5iBeuqSwAjVlX7VtXDq+qkTA5y+Y0sfpPIZdbinFpVL6iqGyya5yWoS8BUmkQA9iJVdZUkb0py0MDUD2XSCb0MQ7XmoiWtM2RonX02JQsANmpXJte5vq+q/qqqDllSzGnUJoAdpKpuneQp6wyfleTJm5jOPNQlgHG5dnc/o7u/vKyA3X1xdz8vk024n5/hnzyxqm4253LqEsDOdpk5/s3Xk9y5uz84z4Ld/YEkd16LM83hSf7rBsOrSwD8gKraL5OT3ad5S3efvoLl1SWAkaqq+yQ5OcnLkxy5giWulsktjP+2tu/h2kuIqS4BUw1d+wrASFTVgUnenPVP193tW0ke1N3nL2npoW7hzapFQ+vMchIjAMO+nuQxU8YPSHLw2s/hSX40yXVmjP2QJD9RVQ/q7vctkKPaBDASVbVvkpdk/RfMT+/ur2xiSvNQlwBGpLtXdkJfd3+wqn4iyYlJpn2RvG8mt2w9YI5l1CWAnW2eTUAP7+5PLbJod3+yqh6e5ISBqf+tqp63gXqpLgFwafdPcqWBOcetaG11CWBkquqAJH+SSQPHZtgnk30P966q/9Ld/3eBWOoSMJUmEYC9wNppGq/LZCPuNN9Pcr/unuVEwlkNNZtsVi0aOj1rWU0xAHu17j4rk826M1u76eoBSR6b5OiB6ddM8raq+qnufs98WapNACPyK0luuc7YB5O8cBNzmZe6BMDMuvsLVfWAJO9JctkpU+9bVTfs7pM3uIS6BLCzbfTv47Hd/dZlLNzdb62qlyT5pSnTrpHkvkleP2NYdQmAS3v0wPhXk7xlRWurSwAjstYg8uYkd51h+kVJ3pnknzN5L/flTA5iPjuTAzIPTXLdJHfK5KbFOw7Eu2KSV1fVzbv76XOkn6hLwICh64YA2OGqaleSVya558DUCzK5QWTeDbfT4k6z35LXW48PpADbVHd/o7uP7e5bZ/IC5pSBf3KFJG+tqnmveVWbAEagqm6Q5BnrDF+Y5LHdffEmpjQvdQmADenujyT5/YFpu5I8bI7w6hLAzraRv48XJPntJa//jAyfZvufNxBPXQLgP1TV4UnuPjDtFSu84VFdAhiJtQOX35jhBpELkvxZkht09726+/e7+5+6+9+7+4zuvrC7v9ndn+3ut3f3b3X3nZLcPMmrkvRA/F+vqmfO+T9DXQKm0iQCMGJVVUmOTfKggakXZ3Kd+PErSOO7A+OXX8Gae3LQwPhQngBsgu7+h0xemLx0YOrlk7yyqoZeOOzJ0N/8K8wRcx5qE8Bijk1ywDpj/6u7P7aZySxAXQJgHs9J8rWBOQ+cI666BLCzfW8Dc/+uu7+6zMW7+/Qkfzcw7V5rB5zNQl0C4JIemeG9bkPfLy3C3geA8XhmhhsPP5/kTt39pO4+bSPBu/uT3f2wJPdLcsbA9GdU1Uaa6XfzvARMpUkEYNyem+HrVpPkcd396hXl8O2B8ctU1WVXtPYlDX3wHcoTgE3S3eck+aUMv8i/VZJfm2OJob/5m/WyRG0CmFNVPTrJXdYZ/nyWfxruKqlLAGxYd5+b5MUD046sqsM2GFpdAtjZzsjwSbW7vXxFObxsYPzQJDeeMZa6BECS/zgg8xED007s7s+uMA17HwBGoKpun+SpA9NOTnKb7v7AImt195uS3C7JtwamvtB7PGDZNIkAjFRV/c8kT55h6v/o7mNXmMrQh9wkOXiF68+6xix5ArBJuruTPCbJPw5MfXJVrXeK/HqG/uZvRl1KkisOjKtNAHtQVVfN5PT09fzX7t7I6blbTV0CYF6vnWHOj28wproEsIN190VJvjPL1CTvXVEa78two8qtZ4ylLgGw212TXG9gznErzsHeB4BxeHam750+I8lPd/c3l7HYWgPjA5KcP2XaVZI8Y4OhPS8BU2kSARihqvq1JL8xw9Tf7u4/XXE6s3xgvtqKc0iSqw+M+0AKsM1098VJnpjkoinTrpzkFzcYeqg27V9VK31hUlVXSrLfwDS1CWDPnp/kkHXGXtfdb97MZJZAXQJgLt19UpKvD0y7yQbDqksAO98s38t8prvPXMXi3X1GJqfuTnPEjOHUJQB2e9TA+NlJ/nrFOdj7ALDDVdVtktxpYNpvd/fQM82GdPeJSV40MO0RG3y+8bwETKVJBGBkqupJmXQ8D3lOdz9r1fl09zkZ/rB31VXmUFWXS3L5gWmfX2UOAMynuz+V5DUD0+67wbBfmGHOSmvTjPFnyRNgr1JV903ywHWGz0rypE1MZ1nUJQAW8dGB8etuMJ66BLDzzfI38l9XnMNQ/MNnjKMuAZC1Da7HDEx79drehJWx9wFgFB49MP7FJMeuaO3fS/K9KeMHJvmFDcTzvARMpUkEYESq6jFJnjfD1P/T3U9ddT6XcNrA+HVWvP4s8U9bcQ4AzO/vBsbvWFUzP9t093cz/BJ/q2vT17t72gsigL3VtJsQf7O7v7JpmSyJugTAgk4bGD9sI8HUJYBROHWGOSu5ReQSzhgYP3SWIOoSAGsemuSyA3NeuhmJxN4HgJ3uLgPjr+nu81axcHd/PcnbBqbddQPxPC8BU+271QkAsBxV9QuZXEtXA1OPS/LE1Wf0A05Ncusp4zdc8fpD8b+26lNFAFjIW5NcnPWb3A9KcuMkn95AzFOTXGnK+A2TvH0D8TZqqDbN8mU+wN7oyuv8/qwk51XVLy1xraMHxm84w3r/NOOV5OoSAPP6zsD45eaIqS4B7Gyfm2HOqptEhuJvpD6pSwAMnfp+Und/YFMysfcBYMeqqsMy2VcwzSqfLXbHn3Y71h2rqrq7Z4zneQlYlyYRgBGoqgcleVmGb4h6dZJf3sAHyWU5KckDp4wPfQBf1I0Gxk9a8foALKC7z66qb2b6CbiHZWNNIicluc2UcbUJYGc5KMmLN3nN26/9TPPIJLM0iahLAMzr/IHxy8wRU10C2Nk+NcOc7684h6H4G9mnoC4B7MWq6hYZPszluM3IZY29DwA71/VmmPPBFecwFP/KmTR9fHPGeJ6XgHUNbSYGYJurqvsmeVWSfQam/l2SX+zui1ef1Q/5yMD4rVa8/tBLo4+ueH0AFve1gfFpp2PsidoEwHaiLgEwrwMGxufZBKwuAexs/zLDnCuuOIeh+BupT+oSwN5t6BaR85P85WYkskZdAti5hvYUnN/dQ7f2LurrM8zZyN4HdQlYlyYRgB2squ6Z5LUZPhHwhCQP7u4LV5/VHg19IL3W2pV+qzLtutfEB1KAneCsgfGhjVGXNlSbbllVQw2Yc6mqfZPcYmCa2gSwd1GXAJjX1QbGvztHTHUJYAfr7i9n+MCVg1ecxiED4xupT+oSwF6qqvZP8tCBaW/s7llPW18Gex8Adq6h55RvbUIOs9SsQzcQz/MSsC5NIgA7VFXdOcnfJtl/YOq7khzT3eevPKl1dPeXknx+YNqdV7F2VV0jw1fbvXsVawOwVAcOjH9vg/E+nOTcKeOXz/CL9nn9aJLLTRk/N7Od+AjAeKhLAMzrBgPjX54jproEsPMNfe+xys2rs8TfSH1SlwD2XvfP8Gnqx21GIrvZ+wCwo100MD60B28ZZlmjNxDP8xKwLk0iADtQVf14kjdl+NT0dye5b3dP+zC4Wd45MH6PFa1794Hxk7t76CUOAFvv8IHxMzYSbK02vmdg2lbVphO3Se0GYJOoSwDMY+1U3VsOTDt1o3HVJYBReNvA+G1WtXBVVZKjB6bN/L2MugSwV3vUwPiXkrx9MxK5FHsfAHamoYMnD1nVrRuXcJUZ5pwzazDPS8A0mkQAdpiqOjrJCZl0+k7zoSQ/3d0bPVl9Vd4xMH7fFX3QfuDA+Fa8NAJgA6rqmhk+Kepzc4Qeqk3HzBFzFmoTAHuiLgGwUXfL8OmDn5gztroEsLMNNYkcWlVDJ5HP60ZJDh2Y8/ENxlSXAPYyVXV4hjefvqy7L96MfC7F3geAnemrA+OV5JorzmHocMwk+doGY3peAvZIkwjADlJVN83kA9QVB6Z+PMk9u/us1Wc1s+MzvdP5sAy/5NmQqjo0yT0Hpv31MtcEYCV+cmD87ExOi9qovxkYP7r+H3v3HS9bWd4L/PfQLAiKhaIUURFiuWDBhkqRKEaNJmo0NxawJEqMGjW2GHuu5Zob9SoxGgN4LRA1atQrlij2FrElSiwBATtF5YiFA8/9Y22uiGfP7DIz++zZ3+/ns//hfed9ntln7VnMzPqtt2r/Fay7qIVz+c3HTHvrJGsCzJPuvkZ31yx+kjxnTDsnLmGdE5bx9JyXAFiuh4wZvzjDjWRWwnkJYB3r7rOSfGrMtHGfua3UuHUvSfK5Za7pvASw8RyT0de1dZLjZ9TLFbn2AWB9WsqNJw+fcg93GTP+s+5ebkjE+yVgi4REANaJhTs6fSDj76T+lSS/3d0XTL+rpevuTUn+Zcy0P5tw2Ucl2WHE+DlJPjLhmgBM3tFjxj/W3b3cRbv7mxn/Zfmkz02PHTP+8e4+Y8I1AVgHnJcAWI6q2i/j79b3ke7++UrWd14CmAuvGzP+qCnVHbfux7v7p8tZ0HkJYGOpqsoQEhnlg2v1OuzaB4D1qbvPS/LtMdOOmnIbdx8zvuxdgb1fAhYjJAKwDlTV9ZP8a5Ldxkz9epIju/uH0+5phf5xzPjvVNVBkyhUVVfL+P/BPXElFxUDMDtVdXiSO4+Z9t5VlBh3bjqmqvZYxfr/X1XtmeTBY6adMIlaAKxbzksALNXLk2w7Zs4/rbKG8xLA+nZSklFhjJtW1RGTLFhVd0lykzHT3rbC5Z2XADaOI5Jcf8yc186gj1Fc+wCwPn1izPh9F67Tm7iFax9uNWbauP4W4/0S8BuERAC2clV13QwBkT3HTD0zyV26+7tTb2qFuvv9GZ14riQvnVC5pyXZfcT4L5K8YkK1AJiCqtopyWvGTNuc5E2rKPN/kvxgxPhVk7xwFetf3ouSXHnE+PcX+gFg43JeAmCsqnpSxt/V8CdJTl5lKeclgHVsYcf5V4+Z9sqqGvX6u2QL67xyzLSfZ+Wv585LABvHw8eMX5CVhw4nwrUPAOvWuJ2gtk/y3EkXraptkrxgCVPftcIS3i8Bv0FIBGArVlXXSfKBJDcYM/WcJEd099nT72rVXjRm/NCq+vPVFKiq2yd58phpJ3T391ZTB2AjqarDqurqM6x31Qwf8N9wzNSTunvUhx0jdffPk7xszLSHVNXvrbRGklTV/ZP89zHTXtrdv1hNHQDWN+clgPWpqm5ZVVeZUa2HZvzna0lyXHf/eDW1nJcA5sJLMlw4upgDMrkLhV6YZP8xc/5Pd5+3ksWdlwA2hqq6RpJxr+VvWDgvrDXXPgCsP+9IsmnMnAdX1SMmXPdvktx2zJzvJvnwShb3fgnYEiERgK3Uwocf70vyW2Omfi9DQOSM6Xc1EW9K8tkxc15UVfdayeJVtV+StybZbsS0C5M8eyXrA2xgRyc5o6qesbDDx9RU1Y2TfCjJXcZMvTiTeT1/aZKzxsw5sapus5LFq+p2Gb+961kZ/6ENABuD8xLA+vOQJN+sqsdW1Y7TKFBVO1TVS5OckPHf7Xw/SwuSLIXzEsA61t3fSfLiMdMeV1XPWk2dqnp2kseNmXZRkuespk6clwA2gj/K6LuTJ+Nfq2fFtQ8A60x3X5jktUuYelxV3W8SNavqL5M8fglTX9bdl6yilPdLwK8REgHYClXV1ZL83yQHjZl6bpIju/vr0+9qMrq7kzwmSY+Ytn2SNy83lV1Vh2RIVO8xZupz3EkDYEV2SfK8JGdW1cuq6pCqqkktXlVXq6rnJflykqV8MPHc7v7maut290VJnjhm2k5J3ldV91zO2lV17yTvTXK1MVOf0N0/W87aAMwn5yWAdWuPDF+Anl1Vf1tVB05q4ao6LMnHMv7i28s8trt/NInazksAc+F/JBn3Gdqzq+q45d4cpqp2rqq/S7KUkMnzu/vby1n/ipyXADaEh40ZP627Pz+TTsZw7QPAuvWiJD8ZM+ey1++XrXQH4aq6dlW9I8nzlzD9O0mOW0mdy3i/BFxRDf+/CsDWpKremWQp/zP2yiRfmHI7l/fd7n73JBaqqr9O8vQlTD0lyTO7e9E7cFTVPkmekuSRGX0XjWT4IOUuq0xeA2w4VXVCkoduYejbSd6S5P1JPtXd5y1z3Z2S3DHDnaF+L8lVl/jQDyX57Um+nlfVGzJ+a9TOcGeo53X36SPWukmSZyZ5wBJKv6G7H7TkRgGYiYU74Y660OnE7j56ivWdlwDWiYUdPrYU4Phakncl+WCST3b3+ctYc/ckRyb5sywtRH+Z/93dj13G/KX247wEsI4t3Cn2o0l2GDP1exnuRv5P3X3BiPWumeT+GXYG2W0JLXw0yWHdfemSGh7DeQlgPi2E7cdd//Cn3b2qi2gnzbUPAOtPVR2b4bq7pfhhklckee1Sgu9VdUCSY5M8PEu//uF+3f3WJc4dV9/7JSCJkAjAVqmqzkyyz1r3sQUf7u7DJrFQVW2b5F+THLrEh5ye4UuEr2dIc++YZK8kt01yuyRLuZP9D5LcYmF7dQCWYURI5IrOSfKfSc7M8KXyeUl+kWRzhrtS7JRk5yR7JzkwyQ2ztNfwy/tykjt194+X+biRFnby+mySA5b4kM8n+USSM5JsyvDc9k1ySIbnthSnJzm4uzctr1sApm0rCIk4LwGsEyNCIpfXSc7O8Fp7Zob3SxdkeL+UDDs3XivJrhk+79pvBa28Pcn9u3vzCh47kvMSwPpXVY9K8ndLnL45wy5WX86vzlm7JNk9yc0z3PRl3IWrlzkjye27+/vLangE5yWA+VRVL88QlF/Mz5PsMamdEyfFtQ8A61NVnZSlhR8u75tJPp7hZprnZ3h/cfUk10xy/SR3yvhdoK7oZd39+GU+ZlHeLwGXERIB2ApthJBIklTVNTLcCf6gSa05wo+SHN7ds9x5BWBuLCMkMm0fT3KvUXcyXI2q2jvDB/N7T2P9KzgrQ9jlrBnUAmCZ1jokstCD8xLAOrDEkMi0nZzkwd198bQKOC8BrH9V9VdJnjvDkudkuMP51ya9sPMSwHypqisl+U6Gi2wXs9Xeody1DwDrT1VdJcNNV+66hm2clOEzvYne9MX7JSBJtlnrBgDYuBbu8HHXJP825VI/SHI3H5IArGud5OUZvlSeSkAkSRY+uLhLhjuATNM3khzhgxIARnFeAmAJLknytO5+4DQDIonzEsA86O7nJXlKkktnUO4/khwyjYBI4rwEMId+L6MDIkny2lk0shKufQBYf7r7Z0nuneSNa9TCK5I8aBq7Anu/BCRCIgCsse7+YYat9l43pRKfTXLr7v7MlNYHYPq+mCEc8rju/sW0i3X3N5IcnOS9UypxSpLbdPe0P5ABYA44LwEwwmWfe71wVgWdlwDWv+5+cZK7Jzl3imX+McPr+VQvFHJeApgrDxsz/l9JTp1BHyvm2geA9ae7f97df5TkUUl+PKOyP0jywO7+s+6+ZFpFvF8ChEQAWHML/8P90CT3zPDhziRcmOSJSe7Q3WdPaE2AjexlSV6S4Q6As/KZJP89yS27+0MzrJvuvqC7j0pydIYPaSbhB0ke2t13n+ZuKADMH+clgK3e5zO5z7SW4rQk90ty27W4e6zzEsD6193vS7J/kldm2JVqUk5Lcmh3P7y7L5rguotyXgJY/6pq7wx3Ox/lH7u7Z9HParj2AWB96u6/T3JAhvdIP59SmZ8keVGS/bv75CnV+DXeL8HGVuvg/58BNpyqOjPJPmvdxxZ8uLsPm2aBqto+yQOSPDZDmnm5vpXkVUle3d3nT7I3AAYLH9YfleQOSW6b4QvlmsDSlyb5cpJ/SfKW7v7SBNZctaraMclDkzwmyW+tYImvZPgw6YRZfTkOwOpV1bOTPGvElBO7++jZdPMrzksAW6+F90qHJ7lzkltneJ3efkLLfyPJu5K8vrs/N6E1V815CWD9q6rrJzk2w+v5ritY4qIk70nyqu7+wOQ6Wz7nJYD1qaqeleTZI6ZcmmSf7j5nNh1NhmsfANanqto1w80sH5jh9Xs1N+PfnOQTSd6Y5KTuntVuJb/B+yXYeIREANhqVdVeGbY8PzjJTTIEZ3ZOctUkv8hwx4zvJvlqki8keW93f3FtugXYuKrq6klulSEssu/Cz/WTXDPJjkmuluQqGe5K+IsMXxz/MMn3k5yZ5PQk/57kk939o9l2vzxVdeMMAZlbJrlpkusl2SnDuemiDOemczJ8QHJakvd099fXplsAVqOqDkty2IgpX+jut8+mmy1zXgLYulXVDkluluS/ZXiftNfCz/UyfMZ1lQyv2VdK8ssMdyn8cYbPu87J8F7pS0k+1d1nzbr/5XJeAljfqmqbDJ/xHZnk5hnuortHhtfyq2Q4V23KcJ46I8M56pNJTt0aLxByXgJga+LaB4D1qap2yXBDmFtkeF+xd4b3SdfI8Jne9vnV53oXZHgtPzPJf2TYffij3X3hzBsfw/sl2BiERAAAAAAAAAAAAAAAAObAarZBAgAAAAAAAAAAAAAAYCshJAIAAAAAAAAAAAAAADAHhEQAAAAAAAAAAAAAAADmgJAIAAAAAAAAAAAAAADAHBASAQAAAAAAAAAAAAAAmANCIgAAAAAAAAAAAAAAAHNASAQAAAAAAAAAAAAAAGAOCIkAAAAAAAAAAAAAAADMASERAAAAAAAAAAAAAACAOSAkAgAAAAAAAAAAAAAAMAeERAAAAAAAAAAAAAAAAOaAkAgAAAAAAAAAAAAAAMAcEBIBAAAAAAAAAAAAAACYA0IiAAAAAAAAAAAAAAAAc0BIBAAAAAAAAAAAAAAAYA4IiQAAAAAAAAAAAAAAAMwBIREAAAAAAAAAAAAAAIA5ICQCAAAAAAAAAAAAAAAwB4REAAAAAAAAAAAAAAAA5oCQCAAAAAAAAAAAAAAAwBwQEgEAAAAAAAAAAAAAAJgDQiIAAAAAAAAAAAAAAABzQEgEAAAAAAAAAAAAAABgDgiJAAAAAAAAAAAAAAAAzAEhEQAAAAAAAAAAAAAAgDkgJAIAAAAAAAAAAAAAADAHhEQAAAAAAAAAAAAAAADmgJAIAAAAAAAAAAAAAADAHBASAQAAAAAAAAAAAAAAmANCIgAAAAAAAAAAAAAAAHNASAQAAAAAAAAAAAAAAGAOCIkAAAAAAAAAAAAAAADMASERAAAAAAAAAAAAAACAOSAkAgAAAAAAAAAAAAAAMAeERAAAAAAAAAAAAAAAAOaAkAgAAAAAAAAAAAAAAMAcEBIBAAAAAAAAAAAAAACYA0IiAAAAAAAAAAAAAAAAc0BIBAAAAAAAAAAAAAAAYA4IiQAAAAAAAAAAAAAAAMwBIREAAAAAAAAAAAAAAIA5ICQCAAAAAAAAAAAAAAAwB4REAAAAAAAAAAAAAAAA5oCQCAAAAAAAAAAAAAAAwBwQEgEAAAAAAAAAAAAAAJgDQiIAAAAAAAAAAAAAAABzQEgEAAAAAAAAAAAAAABgDgiJAAAAAAAAAAAAAAAAzAEhEQAAAAAAgAmqqmdUVY/42W6te4RpqKrDxhz7h611jxvdmH+fZ691fwAAAADA6gmJAAAAAAAAAAAAAAAAzAEhEQAAAAAAAAAAAAAAgDlgO3MAAAAAAJgjVfWAJDutdR8LXtfdv1zrJgAAAAAAADYKIREAAAAAAJgvL0qyz1o3seAtSYREAAAAAAAAZmSbtW4AAAAAAAAAgPWtqs6sql7k54S17g8AAAAANgohEQAAAAAAAAAAAAAAgDkgJAIAAAAAAAAAAAAAADAHhID1gKUAAByySURBVEQAAAAAAAAAAAAAAADmgJAIAAAAAAAAAAAAAADAHNhurRsAAAAAAABm6pjuPmGtmwBg9rq71roHAAAAAGC67CQCAAAAAAAAAAAAAAAwB4REAAAAAAAAAAAAAAAA5oCQCAAAAAAAAAAAAAAAwBwQEgEAAAAAAAAAAAAAAJgDQiIAAAAAAAAAAAAAAABzQEgEAAAAAAAAAAAAAABgDmy31g0AAAAAAACMU1XXSHLrJAdc7mePJDsl2TnJ1ZJcnORnSS5Ick6S/0ry+SSfSvJv3X3p7DtfvqraLsmdk9w1yc0zPNddMjzXzUk2JTk7ydczPLf3dvdX1qbbpamqnZIcnuF57Z9kvyTXzPDvtn2SC5N8J8k3k/zepP6tqmrbJLdIckiSWya5QZK9MxwzOy5M+2mS85OckeQ/k3w8yand/Z1J9DBNVbVfknsluVWSmyXZPcNz2y7D8/pBhuf1uSSnJvlgd29ek2aXqKoOTHKPDP9uN0lynSRXT1IZntN3M/xtfybJh5J8rLt7bbr9TVV1pQyvVYckOTDDMbdXhmN9xySXJLkoybkZnsdX8qtj7ry16BkAAAAAmC+1FX1mCgAAAAAArFJVnZlknxFTjunuE2bTzcpV1ZWTHJEhWHB4hgvGV7ND+rlJ3p7k77r7tNV3uLiqekaS542Ysv2WLtSvqt2SPDbJozIEKJbjC0lenOTkaYRhquofkjx8keFvd/eeizzuzhme0+9mCIMsxRZ/P8tRVbfK0O/9MoQMlquTfCTJa5O8aRrBiqq6foYAx2K2+Le6ECL6gyRPyvB3sRznJXl1kv/V3ecu87FjVdVhGYIbizm8u0/dwuOunOSYJE9IcqNllv12kpcnOa67Ny3zsRNTVYcnOTrJfTIEdZZrc5L3Jfn7JO+cVvClqkat+5zufvYS1jg6yfGT6mmJ9u3uM2dcEwAAAADWpdV8mQIAAAAAADAxVbV9Vf1OVb0uww4I785wIfytsvrvNK6d5BFJPldVp1TVzVe53sRU1bZV9ecZdtF4epYfEEmSg5K8Mcknquq3JtnfSlTVjarqlCQfTnLfLD0gstq6t62q9yf5tySPzsoCIsmwa8WhSV6X5GtVdd8JtbgqVXW7DIGgN2T5AZEkuVaSp2V4Tg+ZZG8rVVX3SPK1JMdl+QGRJLlekhcl+WpV3X2SvS1FVR1VVZ9J8sEkD8nKAiLJsPvL7yR5R5IvLgRuAAAAAACWTUgEAAAAAADYWnwxQzDkwUl2mmKdu2UIizytqtb0u5KqunaGi8v/V5IdJ7DkbZN8qqqOmsBaK1JV90/ypQy/51nV3KmqXpXkk0mOnPDy+yZ5S1W9raquPuG1l6yq/jLJx5PcdALL7ZLkxKp6xVr9DVTVdlX1yiTvSrLXBJbcM8m7q+qpE1hrrKrararekuQ9SQ6e8PI3T/KhqnpVVV1pwmsDAAAAAHNOSAQAAAAAANharPQO/CuxfZL/keSNVTWTXS6uqKr2TfKpJHee8NI7J3l7VR0x4XXHWtgR5eQkV5lhzd9K8pkkf5JhB5BpuU+Sz1TVSna7WLGq2qaqjk/y/Ez+u70/TfKKCa85VlVdJUMg7NhJL53kBVX15Amv++tFqu6Q5LQMu+RM058k+XBVrXRHHAAAAABgAxISAQAAAAAANrIHJHlDVU0zXPAbqmr3JO9PcsMplbhSkjdX1Z5TWv83VNWDkvxNphvUuGLN22fYPeSAGZW8cZJTZxwUOS7J0VNc/9FV9cdTXP/XVNV2Sd6c5K5TLPPCqprKTjZVdZ8kH0py3WmsvwW3TfJBQREAAAAAYKm2W+sGAAAAAAAAluGcJF9MclaSH1/uZ/skV0+yS5KbJLlVkmsvcc37J/lShp0aZmGHJO/M6IDIVzOEH36w8LM5yW5J9s5wcf1uS6hzzSSvSXL31TS7FFV18ySvzeIBkc0Zdl44LcmZSS5cmLtzkv2S3CbJTZdZ83ZJ3ptkpyU+5JdJPpvh+DkvyflJLkmya4bf5yEZjp1xrpfklKo6uLsvWE7Py1VVf5FhN4nFnJ8hsHB2huPkR0muleH53DHJQUss9bdV9Z7uPnsV7S7Vy5LcY8T4d5OcmuQ7GZ7TpiTXSbJ7ksOT7L+EGpXk+Kq6cXdvWlW3l190CIj8U4bXm6X4aYbdgr6a4Zg7L8m2GY65PZIcmmTfJaxzsyTvqKrDuvuXy+0bAAAAANhYhEQAAAAAAICt2VeTvD1DGOBLy7kov6pumuThSR6c8YGRZ1bVO7r7yyvudOlelOTWW/jvFyyMndzdZy724IVdTw5N8j8XWefyjqqqo7r7lBX2uhTbJTkxQ/jlir6Voc83jvu3W9id40lJelzBqtorw3ExLiDSSd6TIZjwke7++Zh1907ysCRPTHK1EVNvmOT1GR12WK3bZTh+r6iTnJTkFUk+3d2XLLbAwk4yz0jyyCTbjKh11SQvSPKgFXe7NPdNcuwW/vvmJH+fIWj0he5e9Bioqv0zBLruN6bWHkmemuH5r1pVHZTkDRkfENmcYaeUVyb5THdfPGbd/TP8Th6VLf8NXeb2SV6aLf/+Zu3jGY6pK3phhpDSlnwiyfGrqHnuKh4LAAAAABtKjfiMFQAAAAAAWGeq6swk+4yYckx3nzCbbpanqs7JsEvD9zNcYH1yd39tAuvunOHi5Udl8Z0ukuRfu/vICdR7RpLnLfNhr0zyV8sMwWyzUOfpY6Z+qLuPWGY/V6z1D9lyYGExneTFSZ7V3b9YTe0t9LJdhgvODx4z9dNJHtHd/76CGrsmOS5DqGGUFf89VdX1k5yxzIedluSPu/tzy6x1SJJ3Z9htZzGXJLlBd5+1zJ4uX+ewDDubLMcHkhzb3V9fZq3fT/KmjA5W/CjJnt3902X2dMVaO2fYbWjUa2sy/I4fMyrkNaLGvklOSHLnMVOP6O7l/o4vX2fUl8PP6e5nr2LtM7P47+jE7j56pWsDAAAAAEs36o5BAAAAAAAAs3R6kj9Osk93P28SAZEk6e6fdPexSX4/yai7+t+lqu4wiZrLcGmSP+3uxywnIJIk3X1pd/9lhp06Rjm8qm684g6Xb3OSB3b3UycdEFnw5IwPiPxNkjutJCCSJN39gyT3z/jf7UuqatxuJpNySpJDlxsQSZLu/niSuyUZtZPKtkkescLeVuqEJHdfbkAkSbr7n5P8QUbvPHONJA9YWWu/5iUZHRDZnOQvktxrJQGRJOnuM5L8dobdSkY5biEgBgAAAACwRT5ABAAAAAAAtgrdfWR3v2ZKwYJ099uT/NGYaX8yjdojPLK7j1vlGn+ZIWAzyv1XWWM5HtXd/zSNhatqryTPHDPt+d39pO4eFQgaqwdPTvLqEdOuleSxq6mzRO/PEEDYtNIFuvvTSV40Ztosj5Pju/uY7t680gW6+x1JXjdm2qqeU1XdJskjx0x7VHe/pLtHBVbG6u5fJnlwhkDQYg5I8oerqQMAAAAAzLft1roBAAAAAABgpu5cVdP8fuCT3f0fU1x/Vbr7zVV1chbfXeC+VfXo7r5oBu28qbv/cbWLdPfFVfWkJO8aMe1uSf56tbWW4F3d/doprv/MJFcaMf767v6rCdd8XJLbJDlosfGqevFqQykj/DDJQ1YTpricF2YIQu2+yPgBVbV3d581gVqjnJ7kMRNa6ylJHpjFj4vDqmqHhQDGSoz7u3n+JI/57u6qenCSzyfZc5FpT8r4HUcAAAAAgA1KSAQAAAAAADaWYxZ+puXPk2y1IZEFf5Fhd4Et7bi+Y5I7JnnflHs4N8mjJ7jeKUm+l8Uv/j94lRfKL8WmJMdOa/Gq2iPJ0SOmnJvJBQ/+v+7+eVU9IckHF5lynST3SvLPk6694DHd/b1JLLTwXE5K8vgR0+6Y5I2TqDfCQycVxOru71fVe5LcZ5EpV05y6ySfWO7aVXXrJEeOmPLVJM9Z7rrjdPe5VfXMJIuFyA6qqlt292mTrg0AAAAArH9b+vIDAAAAAABgbnX32Uk+NWLKETNo41Xd/eNJLdbdlyR584gpV06y/6TqLeL4hd/ttByT0TdAe+Ykf6eX190fSvKZEVP+YBp1k3wzyVsmvOabxowfOOF6V3Rqd4/6Xa7EtJ7TH48Zf+KEdnjZktcnOWfE+LSOOQAAAABgnRMSAQAAAAAANqL3jBi7xZRr/zLJcVNYd1TwJUkOmELNyzt+yus/ZMTY+Un+Ycr1XzNi7Miqmsb3bi/v7ksnvOZpGY7BxUz7OPnbKaw58WO/qnZI8oARU77c3aNeR1aluy9OcuKIKXedVm0AAAAAYH0TEgEAAAAAADaib40Yu9mUa3+yu787hXW/NGZ8zynUvMyXu/vz01q8qm6Y0Tuh/PPCRfXTdOqIsWsluekUar5t0gsu7Hzx1RFTpnmc/DyjA1or0t1nJfnRiCkreU53TrLziPGTV7Dmcp06Yuygqrr6DHoAAAAAANYZIREAAAAAAGAj+t6Isesu7CIwLR+f0rr/OWZ81ynVTZKPTHHtJLn7mPG3Trl+uvsbSUaFeya9A81Z3X32hNe8zKhjZZrHyWemGOb52oixlTyno8aMT/2YS/KJJJcsMlZJDpxBDwAAAADAOrPdWjcAAAAAAACwXFW1XZK9M1z8fZ0kOybZIcn2GS6eHudGY8Z3T3LWanoc4ZPTWLS7L66qnyW5yiJTprnrwOemuHaS3GaN61/mrCR7LDI26R1opnKcLPjxiLFpHifr6TmNOuY2ZXwoa9W6+6KqOjfJbotMuVmmH9ACAAAAANYZIREAAAAAANhYjunuE9a6ieWqqv0y7CZxuyS3SnKDTPd7jmtleiGRaa2bJBdm8ZDIlaZY97Qprp2M3qXjh939wynXv8x5I8b2nHCtaR8ni5nmcbIunlNVjdul46vd3ctZcxXOy+IhkUkfcwAAAADAHBASAQAAAAAAtkpVdY0kRyd5RJKbzrj8YkGLSbhgimtvyrC7ypbsMMW6U7v4f+GC/RuPmLKpqh4xrfpXcO0RY9ebcK1pHyeLmeZxsl6e03WT7DxqwgyPuVEBl0kfcwAAAADAHBASAQAAAAAAtipVtX2SJyR5apJrrFEb09xN4fwprj1qd4OaYt2fTHHt3TL6Iv99k7xmivWXamSoYAXW6jiZpvVy7O81ZvzghZ+1NuljDgAAAACYA0IiAAAAAADAVqOq9ktycpJbrHEr205x7V9Mce218NPuvmSK6193imtP0qR3n5m34yRZP89pox5zAAAAAMAcEBIBAAAAAAC2ClV1cJL/m+Taa90LyzLNXUSSZKcprz8p09x9htlyzAEAAAAA69Y2a90AAAAAAADAwg4iAiLr06VTXn+97JZQa90AE+OYAwAAAADWLTuJAAAAAAAAa6qqtk9yUpYeEPlpkk8nOS3JN5KcmeT7Sc5LsinJRUku6e7NI2reMclHV941M7T9WjfAhuOYAwAAAADWLSERAAAAAABgrR2b5JZj5nSSf0ny90n+tbt/ucqa7sC/fvxirRtgw3HMAQAAAADrlpAIAAAAAACwZqpqhyRPGzPtvCR/2N3vn2Dpq09wLabrojHjL+vux8+kEzaKccfcn3f3S2fSCQAAAADAMgmJAAAAAAAAa+keSXYbMf7jJLft7m9OuO4uE16P6TlvzPi+M+mCjcQxBwAAAACsW9usdQMAAAAAAMCGdu8x44+dQkAkSa45hTWZjrPGjN9gJl2wkTjmAAAAAIB1S0gEAAAAAABYS3caMfbdJK+fUl0Xea8T3f3TJD8cMeUGVbXtrPphQ/hWkh4xvt+sGgEAAAAAWC4hEQAAAAAAYE1U1ZWT7Dtiylu7+9IplT9kSusyHZ8fMXbVJHeYVSPMv+7elOTrI6bsX1V7zaofAAAAAIDlEBIBAAAAAADWyl5JasT4V6ZRtKqumuTAaazN1Hx6zPg9Z9IFG4ljDgAAAABYl4REAAAAAACAtbLzmPHvTanu3ZNsN6W1mY4PjBn/3Zl0wUYy7pi790y6WF8uGTG2/cy6AAAAAIANTkgEAAAAAABYKzuMGR91wfFqPG5K6zI9H0vywxHjB1SVoAiT9M4km0eM37Wq7Ej06345YuwqM+sCAAAAADY4IREAAAAAAGCt/GzM+K6TLlhVByW506TXZbq6+9IkJ42Z9tyqqln0w/zr7guSvGfElEryvBm1s15cOGJs3M5RAAAAAMCECIkAAAAAAABrZdTOEEly8CSLVdW2SV45yTWZqVck6RHjByZ5xIx6YWP432PG71VVd51JJ+vDqNf0G8ysCwAAAADY4IREAAAAAACAtfKdjN5N5J5Vtf0E6z01yR0muB4z1N1fS/K2MdNeUVX+jZmI7n5/ks+NmXZSVe03i37WgbNHjO1dVTvOrBMAAAAA2MCERAAAAAAAgDXR3Z3RF2BfN8mjJ1Grqo5M8qxJrMWaekqSi0eM75DkbVW1/4z6SVUdWlXXnFU9Zu6JY8Z3SfLOqtp9Fs0kSVX9blVtjd/znj5ibNskR82qEQAAAADYyLbGDw8BAAAAAICN431jxp9fVbdcTYGqukeSdySZ5K4krIHu/kaSF4yZtmuSz1bVH0yrj6raZuFC/VOTnJpESGROdfeHk7xuzLT9k3y+qg6bVh9VtUNV/VFVfT7D69nW+D3vp8eMP7mqtp1JJwAAAACwgW2NHx4CAAAAAAAbxxuT9IjxnZKcUlV3We7CVXXlqnpBkn9JctUrDF+y3PXYajw3ySfHzNkpyclVdXxV3WhShavqRlX17CTfzHCh/qGTWput2mMy/JuPsnuSD1TV31TVdSdVuKoOrKr/meSsJK9PctCk1p6Cf0vyoxHjt0nyjqq64Yz6AQAAAIANabu1bgAAAAAAANi4uvubVfWOJPcZMe06Sd5fVccn+dvu/vdRa1bVtZM8KMkTk+y5yLQXJvnLFbTMGuvuS6rqfkk+kWSfMdOPTvKQqnpbkhOSfKy7R13E/muqapckt0tyWJLfSXKzFbTMOtfdF1bVvZN8LMk1RkzdNskTkjymqt6QIQT3ye7+6VJrVdVuSW6f5IgMx9y6CVR098ULf2vHjJh2jyT3qKrPJflCkv9KsinJRWOWP6m7N02mUwAAAACYb0IiAAAAAADAWntKhouhdxgxp5I8LMnDquo/MwQEzkhyQZLNSXZOsm+SWya5VYaLtRdzXJJTIiSybnX3d6rqqCQfTrLrmOnbJLnvws+lVfXlJJ9Pcl6S8zMcQ0ly5SS7ZNgRYp8kByTZK8OxxwbX3f9RVffK8Nqx45jpO2QIShyTZPNCIOLfMxxvlx1z22Y45q6V4ZjbN8Mxt8dUnsDsvDRDOGvc382tFn6W6gMZwiQAAAAAwBhCIgAAAAAAwJrq7q9V1ZMzXFy8FPsv/KzE+5I8PsltV/h4thLdfXpV3SHJe7P03Ra2SXLgwg8sS3d/rKoOT/LuDDscLcV2GV5vNsRrTnd/qar+Ickj17oXAAAAANiotlnrBgAAAAAAALr7ZUleNeUyH01y3+6+eMp1mJHu/maS22W4aB+mrrs/myHw8am17mUr9vj4/QAAAADAmhESAQAAAAAAthbHJnlmkkunsPaJSY7s7k1TWJs11N3ndvc9k/xJknNnXP7SDLvTnD/juqyh7j4jyZ2SPCPJT2dc/pdJ/jnJJTOuu2TdfVGSuyR53Vr3AgAAAAAbkZAIAAAAAACwVejB85LcPcl3J7TsOUl+v7uP7u5fTmhNtkLd/eok+yV5QaYf2vhqkqcm2bu779bdQiIbTHdv7u6/znDM/V2mHxb5bJLHJNmju+/b3T3leqvS3Rd190OT3D7JW5L8fI1bAgAAAIANY7u1bgAAAAAAAODyuvt9VXWDJA9L8hdJrr+CZb6Y5JVJXt/dP9vC+IVJPjfi8T9ZQU3WWHf/KMnTq+p5Sf4wyf2THJFkh1UufUGSU5N8IMkHuvtrq1yPOdHd301ybFU9PcmDk9wvySFJtl3l0t9P8sEMx9z7u/vsVa63Jrr7U0nuX1U7Jjk0ye2S3CTJvkl2TbJLkivF99YAAAAAMDG1ld9kBgAAAAAA2MCqapskByU5PMMFxnsnudbCz3YZ7t7/kyRnJjk9Q/Djvd39rbXol61PVe2U5LZJDk5y8yT7JNkzyc5JrprhYv5NGYJDFyb5UZL/ynA8nZ5h15CvdvelM2+edamqrpkhDHGbDIGIfZJcL8nVMhxzleGY+0mGY+6CJN/Ir465r3T312ffOQAAAAAwD4REAAAAAAAAAAAAAAAA5sA2a90AAAAAAAAAAAAAAAAAqyckAgAAAAAAAAAAAAAAMAeERAAAAAAAAAAAAAAAAOaAkAgAAAAAAAAAAAAAAMAcEBIBAAAAAAAAAAAAAACYA0IiAAAAAAAAAAAAAAAAc0BIBAAAAAAAAAAAAAAAYA4IiQAAAAAAAAAAAAAAAMwBIREAAAAAAAAAAAAAAIA5ICQCAAAAAAAAAAAAAAAwB4REAAAAAAAAAAAAAAAA5oCQCAAAAAAAAAAAAAAAwBwQEgEAAAAAAAAAAAAAAJgDQiIAAAAAAAAAAAAAAABzQEgEAAAAAAAAAAAAAABgDgiJAAAAAAAAAAAAAAAAzAEhEQAAAAAAAAAAAAAAgDkgJAIAAAAAAAAAAAAAADAHhEQAAAAAAAAAAAAAAADmgJAIAAAAAAAAAAAAAADAHBASAQAAAAAAAAAAAAAAmANCIgAAAAAAAAAAAAAAAHNASAQAAAAAAAAAAAAAAGAOCIkAAAAAAAAAAAAAAADMASERAAAAAAAAAAAAAACAOSAkAgAAAAAAAAAAAAAAMAeERAAAAAAAAAAAAAAAAOaAkAgAAAAAAAAAAAAAAMAcEBIBAAAAAAAAAAAAAACYA0IiAAAAAAAAAAAAAAAAc0BIBAAAAAAAAAAAAAAAYA4IiQAAAAAAAAAAAAAAAMwBIREAAAAAAAAAAAAAAIA5ICQCAAAAAAAAAAAAAAAwB4REAAAAAAAAAAAAAAAA5oCQCAAAAAAAAAAAAAAAwBwQEgEAAAAAAAAAAAAAAJgDQiIAAAAAAAAAAAAAAABzQEgEAAAAAAAAAAAAAABgDgiJAAAAAAAAAAAAAAAAzAEhEQAAAAAAAAAAAAAAgDkgJAIAAAAAAAAAAAAAADAHhEQAAAAAAAAAAAAAAADmgJAIAAAAAAAAAAAAAADAHBASAQAAAAAAAAAAAAAAmANCIgAAAAAAAAAAAAAAAHNASAQAAAAAAAAAAAAAAGAOCIkAAAAAAAAAAAAAAADMASERAAAAAAAAAAAAAAD4f+3bgQwAAADAIH/re3zlEQxIIgAAAAAAAAAAAAAAAAOSCAAAAAAAAAAAAAAAwIAkAgAAAAAAAAAAAAAAMCCJAAAAAAAAAAAAAAAADEgiAAAAAAAAAAAAAAAAA5IIAAAAAAAAAAAAAADAgCQCAAAAAAAAAAAAAAAwIIkAAAAAAAAAAAAAAAAMSCIAAAAAAAAAAAAAAAADkggAAAAAAAAAAAAAAMCAJAIAAAAAAAAAAAAAADAgiQAAAAAAAAAAAAAAAAxIIgAAAAAAAAAAAAAAAAOSCAAAAAAAAAAAAAAAwIAkAgAAAAAAAAAAAAAAMCCJAAAAAAAAAAAAAAAADEgiAAAAAAAAAAAAAAAAA5IIAAAAAAAAAAAAAADAgCQCAAAAAAAAAAAAAAAwIIkAAAAAAAAAAAAAAAAMSCIAAAAAAAAAAAAAAAADkggAAAAAAAAAAAAAAMCAJAIAAAAAAAAAAAAAADAgiQAAAAAAAAAAAAAAAAxIIgAAAAAAAAAAAAAAAAOSCAAAAAAAAAAAAAAAwEDy3fq5RDIXzgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "\n", "t_p = model(t_un, *params) # <1>\n", "\n", "fig = plt.figure(dpi=600)\n", "plt.xlabel(\"Fahrenheit\")\n", "plt.ylabel(\"Celsius\")\n", "plt.plot(t_u.numpy(), t_p.detach().numpy()) # <2>\n", "plt.plot(t_u.numpy(), t_c.numpy(), 'o')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }