lr_scheduler.py 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. import torch
  2. # Basic Warmup Scheduler
  3. class LinearWarmUpLrScheduler(object):
  4. def __init__(self, base_lr=0.01, wp_iter=500, warmup_factor=0.00066667):
  5. self.base_lr = base_lr
  6. self.wp_iter = wp_iter
  7. self.warmup_factor = warmup_factor
  8. def set_lr(self, optimizer, cur_lr):
  9. for param_group in optimizer.param_groups:
  10. param_group['lr'] = cur_lr
  11. def __call__(self, iter, optimizer):
  12. # warmup
  13. assert iter < self.wp_iter
  14. alpha = iter / self.wp_iter
  15. warmup_factor = self.warmup_factor * (1 - alpha) + alpha
  16. tmp_lr = self.base_lr * warmup_factor
  17. self.set_lr(optimizer, tmp_lr)
  18. def build_lr_scheduler(args, optimizer):
  19. if args.lr_scheduler == "step":
  20. lr_step = [args.max_epoch // 3, args.max_epoch // 3 * 2]
  21. scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_step, gamma=0.1)
  22. elif args.lr_scheduler == "cosine":
  23. scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epoch - args.wp_epoch - 1, eta_min=args.min_lr)
  24. else:
  25. raise NotImplementedError("Unknown lr scheduler: {}".format(args.lr_scheduler))
  26. print("=================== LR Scheduler information ===================")
  27. print("LR Scheduler: ", args.lr_scheduler)
  28. return scheduler