engine_finetune.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. import sys
  2. import math
  3. import torch
  4. from utils.misc import MetricLogger, SmoothedValue, accuracy
  5. def train_one_epoch(args,
  6. device,
  7. model,
  8. data_loader,
  9. optimizer,
  10. epoch,
  11. lr_scheduler_warmup,
  12. criterion,
  13. ):
  14. model.train(True)
  15. metric_logger = MetricLogger(delimiter=" ")
  16. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  17. header = 'Epoch: [{}]'.format(epoch)
  18. print_freq = 20
  19. epoch_size = len(data_loader)
  20. optimizer.zero_grad()
  21. # train one epoch
  22. for iter_i, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
  23. ni = iter_i + epoch * epoch_size
  24. nw = args.wp_epoch * epoch_size
  25. # Warmup
  26. if nw > 0 and ni < nw:
  27. lr_scheduler_warmup(ni, optimizer)
  28. elif ni == nw:
  29. print("Warmup stage is over.")
  30. lr_scheduler_warmup.set_lr(optimizer, args.base_lr)
  31. # To device
  32. images = images.to(device, non_blocking=True)
  33. targets = targets.to(device, non_blocking=True)
  34. # Inference
  35. output = model(images)
  36. # Compute loss
  37. loss = criterion(output, targets)
  38. # Check loss
  39. loss_value = loss.item()
  40. if not math.isfinite(loss_value):
  41. print("Loss is {}, stopping training".format(loss_value))
  42. sys.exit(1)
  43. # Backward
  44. loss.backward()
  45. # Optimize
  46. optimizer.step()
  47. optimizer.zero_grad()
  48. # Logs
  49. lr = optimizer.param_groups[0]["lr"]
  50. metric_logger.update(loss=loss_value)
  51. metric_logger.update(lr=lr)
  52. # gather the stats from all processes
  53. print("Averaged stats: {}".format(metric_logger))
  54. return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
  55. @torch.no_grad()
  56. def evaluate(data_loader, model, device):
  57. criterion = torch.nn.CrossEntropyLoss()
  58. metric_logger = MetricLogger(delimiter=" ")
  59. header = 'Test:'
  60. # switch to evaluation mode
  61. model.eval()
  62. for batch in metric_logger.log_every(data_loader, 10, header):
  63. images = batch[0]
  64. target = batch[1]
  65. images = images.to(device, non_blocking=True)
  66. target = target.to(device, non_blocking=True)
  67. # Inference
  68. output = model(images)
  69. # Compute loss
  70. loss = criterion(output, target)
  71. # Compute accuracy
  72. acc1, acc5 = accuracy(output, target, topk=(1, 5))
  73. batch_size = images.shape[0]
  74. metric_logger.update(loss=loss.item())
  75. metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
  76. metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
  77. # gather the stats from all processes
  78. print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
  79. .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss),
  80. )
  81. return {k: meter.global_avg for k, meter in metric_logger.meters.items()}