|
|
vor 1 Jahr | |
|---|---|---|
| .. | ||
| data | vor 1 Jahr | |
| models | vor 1 Jahr | |
| utils | vor 1 Jahr | |
| .gitignore | vor 1 Jahr | |
| README.md | vor 1 Jahr | |
| engine.py | vor 1 Jahr | |
| main.py | vor 1 Jahr | |
| requirements.txt | vor 1 Jahr | |
For example, we are going to train ConvNet designed in this repo, so we can use the following command:
cd Vision-Pretraining-Tutorial/image_classification/
python main.py --cuda \
--dataset cifar \
--model convnet \
--batch_size 256 \
--optimizer adamw \
--base_lr 1e-3 \
--min_lr 1e-6
Evaluate the top1 & top5 accuracy:
cd Vision-Pretraining-Tutorial/image_classification/
python main.py --cuda \
--dataset cifar \
--model convnet \
--batch_size 256 \
--eval \
--resume path/to/checkpoint