yjh0410 2a3974d075 add dl tutorial vor 1 Jahr
..
data 2a3974d075 add dl tutorial vor 1 Jahr
models 2a3974d075 add dl tutorial vor 1 Jahr
utils 2a3974d075 add dl tutorial vor 1 Jahr
.gitignore 2a3974d075 add dl tutorial vor 1 Jahr
README.md 2a3974d075 add dl tutorial vor 1 Jahr
engine.py 2a3974d075 add dl tutorial vor 1 Jahr
main.py 2a3974d075 add dl tutorial vor 1 Jahr
requirements.txt 2a3974d075 add dl tutorial vor 1 Jahr

README.md

General Image Classification Laboratory

Train

For example, we are going to train ConvNet designed in this repo, so we can use the following command:

cd Vision-Pretraining-Tutorial/image_classification/
python main.py --cuda \
               --dataset cifar \
               --model convnet \
               --batch_size 256 \
               --optimizer adamw \
               --base_lr 1e-3 \
               --min_lr 1e-6

Evaluate

  • Evaluate the top1 & top5 accuracy:

    cd Vision-Pretraining-Tutorial/image_classification/
    python main.py --cuda \
               --dataset cifar \
               --model convnet \
               --batch_size 256 \
               --eval \
               --resume path/to/checkpoint