fcos_head.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. import torch
  2. import torch.nn as nn
  3. from ..basic.conv import BasicConv
  4. class Scale(nn.Module):
  5. """
  6. Multiply the output regression range by a learnable constant value
  7. """
  8. def __init__(self, init_value=1.0):
  9. """
  10. init_value : initial value for the scalar
  11. """
  12. super().__init__()
  13. self.scale = nn.Parameter(
  14. torch.tensor(init_value, dtype=torch.float32),
  15. requires_grad=True
  16. )
  17. def forward(self, x):
  18. """
  19. input -> scale * input
  20. """
  21. return x * self.scale
  22. class FcosHead(nn.Module):
  23. def __init__(self, cfg, in_dim, out_dim,):
  24. super().__init__()
  25. self.fmp_size = None
  26. # ------------------ Basic parameters -------------------
  27. self.cfg = cfg
  28. self.in_dim = in_dim
  29. self.stride = cfg.out_stride
  30. self.num_classes = cfg.num_classes
  31. self.num_cls_head = cfg.num_cls_head
  32. self.num_reg_head = cfg.num_reg_head
  33. self.act_type = cfg.head_act
  34. self.norm_type = cfg.head_norm
  35. # ------------------ Network parameters -------------------
  36. ## cls head
  37. cls_heads = []
  38. self.cls_head_dim = out_dim
  39. for i in range(self.num_cls_head):
  40. if i == 0:
  41. cls_heads.append(
  42. BasicConv(in_dim, self.cls_head_dim,
  43. kernel_size=3, padding=1, stride=1,
  44. act_type=self.act_type, norm_type=self.norm_type)
  45. )
  46. else:
  47. cls_heads.append(
  48. BasicConv(self.cls_head_dim, self.cls_head_dim,
  49. kernel_size=3, padding=1, stride=1,
  50. act_type=self.act_type, norm_type=self.norm_type)
  51. )
  52. ## reg head
  53. reg_heads = []
  54. self.reg_head_dim = out_dim
  55. for i in range(self.num_reg_head):
  56. if i == 0:
  57. reg_heads.append(
  58. BasicConv(in_dim, self.reg_head_dim,
  59. kernel_size=3, padding=1, stride=1,
  60. act_type=self.act_type, norm_type=self.norm_type)
  61. )
  62. else:
  63. reg_heads.append(
  64. BasicConv(self.reg_head_dim, self.reg_head_dim,
  65. kernel_size=3, padding=1, stride=1,
  66. act_type=self.act_type, norm_type=self.norm_type)
  67. )
  68. self.cls_heads = nn.Sequential(*cls_heads)
  69. self.reg_heads = nn.Sequential(*reg_heads)
  70. ## pred layers
  71. self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
  72. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
  73. self.ctn_pred = nn.Conv2d(self.reg_head_dim, 1, kernel_size=3, padding=1)
  74. ## scale layers
  75. self.scales = nn.ModuleList(
  76. Scale() for _ in range(len(self.stride))
  77. )
  78. # init bias
  79. self._init_layers()
  80. def _init_layers(self):
  81. for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred, self.ctn_pred]:
  82. for layer in module.modules():
  83. if isinstance(layer, nn.Conv2d):
  84. torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
  85. if layer.bias is not None:
  86. torch.nn.init.constant_(layer.bias, 0)
  87. if isinstance(layer, nn.GroupNorm):
  88. torch.nn.init.constant_(layer.weight, 1)
  89. if layer.bias is not None:
  90. torch.nn.init.constant_(layer.bias, 0)
  91. # init the bias of cls pred
  92. init_prob = 0.01
  93. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  94. torch.nn.init.constant_(self.cls_pred.bias, bias_value)
  95. def get_anchors(self, level, fmp_size):
  96. """
  97. fmp_size: (List) [H, W]
  98. """
  99. # generate grid cells
  100. fmp_h, fmp_w = fmp_size
  101. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  102. # [H, W, 2] -> [HW, 2]
  103. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  104. anchors *= self.stride[level]
  105. return anchors
  106. def decode_boxes(self, pred_deltas, anchors):
  107. """
  108. pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (l, t, r, b)
  109. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  110. """
  111. # x1 = x_anchor - l, x2 = x_anchor + r
  112. # y1 = y_anchor - t, y2 = y_anchor + b
  113. pred_x1y1 = anchors - pred_deltas[..., :2]
  114. pred_x2y2 = anchors + pred_deltas[..., 2:]
  115. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  116. return pred_box
  117. def forward(self, pyramid_feats, mask=None):
  118. all_masks = []
  119. all_anchors = []
  120. all_cls_preds = []
  121. all_reg_preds = []
  122. all_box_preds = []
  123. all_ctn_preds = []
  124. for level, feat in enumerate(pyramid_feats):
  125. # ------------------- Decoupled head -------------------
  126. cls_feat = self.cls_heads(feat)
  127. reg_feat = self.reg_heads(feat)
  128. # ------------------- Generate anchor box -------------------
  129. B, _, H, W = cls_feat.size()
  130. fmp_size = [H, W]
  131. anchors = self.get_anchors(level, fmp_size) # [M, 4]
  132. anchors = anchors.to(cls_feat.device)
  133. # ------------------- Predict -------------------
  134. cls_pred = self.cls_pred(cls_feat)
  135. reg_pred = self.reg_pred(reg_feat)
  136. ctn_pred = self.ctn_pred(reg_feat)
  137. # ------------------- Process preds -------------------
  138. ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  139. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  140. ctn_pred = ctn_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  141. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  142. reg_pred = nn.functional.relu(self.scales[level](reg_pred)) * self.stride[level]
  143. ## Decode bbox
  144. box_pred = self.decode_boxes(reg_pred, anchors)
  145. ## Adjust mask
  146. if mask is not None:
  147. # [B, H, W]
  148. mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
  149. # [B, H, W] -> [B, M]
  150. mask_i = mask_i.flatten(1)
  151. all_masks.append(mask_i)
  152. all_anchors.append(anchors)
  153. all_cls_preds.append(cls_pred)
  154. all_reg_preds.append(reg_pred)
  155. all_box_preds.append(box_pred)
  156. all_ctn_preds.append(ctn_pred)
  157. outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
  158. "pred_reg": all_reg_preds, # List [B, M, 4]
  159. "pred_box": all_box_preds, # List [B, M, 4]
  160. "pred_ctn": all_ctn_preds, # List [B, M, 1]
  161. "anchors": all_anchors, # List [B, M, 2]
  162. "strides": self.stride,
  163. "mask": all_masks} # List [B, M,]
  164. return outputs
  165. class FcosRTHead(nn.Module):
  166. def __init__(self, cfg, in_dim, out_dim,):
  167. super().__init__()
  168. self.fmp_size = None
  169. # ------------------ Basic parameters -------------------
  170. self.cfg = cfg
  171. self.in_dim = in_dim
  172. self.stride = cfg.out_stride
  173. self.num_classes = cfg.num_classes
  174. self.num_cls_head = cfg.num_cls_head
  175. self.num_reg_head = cfg.num_reg_head
  176. self.act_type = cfg.head_act
  177. self.norm_type = cfg.head_norm
  178. # ------------------ Network parameters -------------------
  179. ## cls head
  180. cls_heads = []
  181. self.cls_head_dim = out_dim
  182. for i in range(self.num_cls_head):
  183. if i == 0:
  184. cls_heads.append(
  185. BasicConv(in_dim, self.cls_head_dim,
  186. kernel_size=3, padding=1, stride=1,
  187. act_type=self.act_type, norm_type=self.norm_type)
  188. )
  189. else:
  190. cls_heads.append(
  191. BasicConv(self.cls_head_dim, self.cls_head_dim,
  192. kernel_size=3, padding=1, stride=1,
  193. act_type=self.act_type, norm_type=self.norm_type)
  194. )
  195. ## reg head
  196. reg_heads = []
  197. self.reg_head_dim = out_dim
  198. for i in range(self.num_reg_head):
  199. if i == 0:
  200. reg_heads.append(
  201. BasicConv(in_dim, self.reg_head_dim,
  202. kernel_size=3, padding=1, stride=1,
  203. act_type=self.act_type, norm_type=self.norm_type)
  204. )
  205. else:
  206. reg_heads.append(
  207. BasicConv(self.reg_head_dim, self.reg_head_dim,
  208. kernel_size=3, padding=1, stride=1,
  209. act_type=self.act_type, norm_type=self.norm_type)
  210. )
  211. self.cls_heads = nn.Sequential(*cls_heads)
  212. self.reg_heads = nn.Sequential(*reg_heads)
  213. ## pred layers
  214. self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
  215. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
  216. # init bias
  217. self._init_layers()
  218. def _init_layers(self):
  219. for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred]:
  220. for layer in module.modules():
  221. if isinstance(layer, nn.Conv2d):
  222. torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
  223. if layer.bias is not None:
  224. torch.nn.init.constant_(layer.bias, 0)
  225. if isinstance(layer, nn.GroupNorm):
  226. torch.nn.init.constant_(layer.weight, 1)
  227. if layer.bias is not None:
  228. torch.nn.init.constant_(layer.bias, 0)
  229. # init the bias of cls pred
  230. init_prob = 0.01
  231. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  232. torch.nn.init.constant_(self.cls_pred.bias, bias_value)
  233. def get_anchors(self, level, fmp_size):
  234. """
  235. fmp_size: (List) [H, W]
  236. """
  237. # generate grid cells
  238. fmp_h, fmp_w = fmp_size
  239. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  240. # [H, W, 2] -> [HW, 2]
  241. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  242. anchors *= self.stride[level]
  243. return anchors
  244. def decode_boxes(self, pred_deltas, anchors, stride):
  245. """
  246. pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (dx, dy, dw, dh)
  247. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  248. """
  249. pred_cxcy = anchors + pred_deltas[..., :2] * stride
  250. pred_bwbh = pred_deltas[..., 2:].exp() * stride
  251. pred_x1y1 = pred_cxcy - 0.5 * pred_bwbh
  252. pred_x2y2 = pred_cxcy + 0.5 * pred_bwbh
  253. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  254. return pred_box
  255. def forward(self, pyramid_feats, mask=None):
  256. all_masks = []
  257. all_anchors = []
  258. all_cls_preds = []
  259. all_reg_preds = []
  260. all_box_preds = []
  261. for level, feat in enumerate(pyramid_feats):
  262. # ------------------- Decoupled head -------------------
  263. cls_feat = self.cls_heads(feat)
  264. reg_feat = self.reg_heads(feat)
  265. # ------------------- Generate anchor box -------------------
  266. B, _, H, W = cls_feat.size()
  267. fmp_size = [H, W]
  268. anchors = self.get_anchors(level, fmp_size) # [M, 4]
  269. anchors = anchors.to(cls_feat.device)
  270. # ------------------- Predict -------------------
  271. cls_pred = self.cls_pred(cls_feat)
  272. reg_pred = self.reg_pred(reg_feat)
  273. # ------------------- Process preds -------------------
  274. ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  275. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  276. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  277. box_pred = self.decode_boxes(reg_pred, anchors, self.stride[level])
  278. ## Adjust mask
  279. if mask is not None:
  280. # [B, H, W]
  281. mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
  282. # [B, H, W] -> [B, M]
  283. mask_i = mask_i.flatten(1)
  284. all_masks.append(mask_i)
  285. all_anchors.append(anchors)
  286. all_cls_preds.append(cls_pred)
  287. all_reg_preds.append(reg_pred)
  288. all_box_preds.append(box_pred)
  289. outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
  290. "pred_reg": all_reg_preds, # List [B, M, 4]
  291. "pred_box": all_box_preds, # List [B, M, 4]
  292. "anchors": all_anchors, # List [B, M, 2]
  293. "strides": self.stride,
  294. "mask": all_masks} # List [B, M,]
  295. return outputs
  296. class FcosPSSHead(nn.Module):
  297. def __init__(self, cfg, in_dim, out_dim,):
  298. super().__init__()
  299. self.fmp_size = None
  300. # ------------------ Basic parameters -------------------
  301. self.cfg = cfg
  302. self.in_dim = in_dim
  303. self.stride = cfg.out_stride
  304. self.num_classes = cfg.num_classes
  305. self.num_cls_head = cfg.num_cls_head
  306. self.num_reg_head = cfg.num_reg_head
  307. self.act_type = cfg.head_act
  308. self.norm_type = cfg.head_norm
  309. # ------------------ Model parameters -------------------
  310. ## cls head
  311. cls_heads = []
  312. self.cls_head_dim = out_dim
  313. for i in range(self.num_cls_head):
  314. if i == 0:
  315. cls_heads.append(
  316. BasicConv(in_dim, self.cls_head_dim,
  317. kernel_size=3, padding=1, stride=1,
  318. act_type=self.act_type, norm_type=self.norm_type)
  319. )
  320. else:
  321. cls_heads.append(
  322. BasicConv(self.cls_head_dim, self.cls_head_dim,
  323. kernel_size=3, padding=1, stride=1,
  324. act_type=self.act_type, norm_type=self.norm_type)
  325. )
  326. ## reg head
  327. reg_heads = []
  328. self.reg_head_dim = out_dim
  329. for i in range(self.num_reg_head):
  330. if i == 0:
  331. reg_heads.append(
  332. BasicConv(in_dim, self.reg_head_dim,
  333. kernel_size=3, padding=1, stride=1,
  334. act_type=self.act_type, norm_type=self.norm_type)
  335. )
  336. else:
  337. reg_heads.append(
  338. BasicConv(self.reg_head_dim, self.reg_head_dim,
  339. kernel_size=3, padding=1, stride=1,
  340. act_type=self.act_type, norm_type=self.norm_type)
  341. )
  342. self.cls_heads = nn.Sequential(*cls_heads)
  343. self.reg_heads = nn.Sequential(*reg_heads)
  344. ## Pred layers
  345. self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
  346. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
  347. self.pss_pred = nn.Sequential(
  348. BasicConv(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1,
  349. act_type=self.act_type, norm_type=self.norm_type),
  350. BasicConv(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1,
  351. act_type=self.act_type, norm_type=self.norm_type),
  352. nn.Conv2d(self.cls_head_dim, 1, kernel_size=3, padding=1)
  353. )
  354. # init bias
  355. self._init_layers()
  356. def _init_layers(self):
  357. for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred, self.pss_pred]:
  358. for layer in module.modules():
  359. if isinstance(layer, nn.Conv2d):
  360. torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
  361. if layer.bias is not None:
  362. torch.nn.init.constant_(layer.bias, 0)
  363. if isinstance(layer, nn.GroupNorm):
  364. torch.nn.init.constant_(layer.weight, 1)
  365. if layer.bias is not None:
  366. torch.nn.init.constant_(layer.bias, 0)
  367. # init the bias of cls pred
  368. init_prob = 0.01
  369. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  370. torch.nn.init.constant_(self.cls_pred.bias, bias_value)
  371. torch.nn.init.constant_(self.pss_pred[-1].bias, bias_value)
  372. def get_anchors(self, level, fmp_size):
  373. """
  374. fmp_size: (List) [H, W]
  375. """
  376. # generate grid cells
  377. fmp_h, fmp_w = fmp_size
  378. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  379. # [H, W, 2] -> [HW, 2]
  380. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  381. anchors *= self.stride[level]
  382. return anchors
  383. def decode_boxes(self, pred_deltas, anchors, stride):
  384. """
  385. pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (dx, dy, dw, dh)
  386. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  387. """
  388. pred_cxcy = anchors + pred_deltas[..., :2] * stride
  389. pred_bwbh = pred_deltas[..., 2:].exp() * stride
  390. pred_x1y1 = pred_cxcy - 0.5 * pred_bwbh
  391. pred_x2y2 = pred_cxcy + 0.5 * pred_bwbh
  392. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  393. return pred_box
  394. def forward(self, pyramid_feats, mask=None):
  395. all_masks = []
  396. all_anchors = []
  397. all_cls_preds = []
  398. all_pss_preds = []
  399. all_reg_preds = []
  400. all_box_preds = []
  401. for level, feat in enumerate(pyramid_feats):
  402. # ------------------- Decoupled head -------------------
  403. cls_feat = self.cls_heads(feat)
  404. reg_feat = self.reg_heads(feat)
  405. # ------------------- Generate anchor box -------------------
  406. B, _, H, W = cls_feat.size()
  407. fmp_size = [H, W]
  408. anchors = self.get_anchors(level, fmp_size) # [M, 4]
  409. anchors = anchors.to(cls_feat.device)
  410. # ------------------- Predict -------------------
  411. cls_pred = self.cls_pred(cls_feat)
  412. reg_pred = self.reg_pred(reg_feat)
  413. pss_pred = self.pss_pred(reg_feat.detach())
  414. # ------------------- Process preds -------------------
  415. ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  416. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  417. pss_pred = pss_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  418. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  419. box_pred = self.decode_boxes(reg_pred, anchors, self.stride[level])
  420. ## Adjust mask
  421. if mask is not None:
  422. # [B, H, W]
  423. mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
  424. # [B, H, W] -> [B, M]
  425. mask_i = mask_i.flatten(1)
  426. all_masks.append(mask_i)
  427. all_anchors.append(anchors)
  428. all_cls_preds.append(cls_pred)
  429. all_pss_preds.append(pss_pred)
  430. all_reg_preds.append(reg_pred)
  431. all_box_preds.append(box_pred)
  432. outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
  433. "pred_pss": all_pss_preds, # List [B, M, 1]
  434. "pred_reg": all_reg_preds, # List [B, M, 4]
  435. "pred_box": all_box_preds, # List [B, M, 4]
  436. "anchors": all_anchors, # List [B, M, 2]
  437. "mask": all_masks, # List [B, M,]
  438. "strides": self.stride,
  439. }
  440. return outputs