| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import copy
- import torch
- import torch.nn as nn
- # --------------- Model components ---------------
- from ...backbone import build_backbone
- from ...neck import build_neck
- from ...head import build_head
- # --------------------- End-to-End RT-FCOS ---------------------
- class FcosPSS(nn.Module):
- def __init__(self,
- cfg,
- conf_thresh :float = 0.05,
- topk_results :int = 1000,
- ):
- super(FcosPSS, self).__init__()
- # ---------------------- Basic Parameters ----------------------
- self.conf_thresh = conf_thresh
- self.num_classes = cfg.num_classes
- self.topk_results = topk_results
- # ---------------------- Network Parameters ----------------------
- ## Backbone
- self.backbone, pyramid_feats = build_backbone(cfg)
- ## Neck
- self.backbone_fpn = build_neck(cfg, pyramid_feats, cfg.head_dim)
- ## Heads
- self.detection_head = build_head(cfg, cfg.head_dim, cfg.head_dim)
- def post_process(self, cls_preds, box_preds, pss_preds):
- """
- Input:
- cls_preds: List(Tensor) [[B, H x W, C], ...]
- box_preds: List(Tensor) [[B, H x W, 4], ...]
- pss_preds: List(Tensor) [[B, H x W, 1], ...]
- """
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for cls_pred_i, box_pred_i, pss_pred_i in zip(cls_preds, box_preds, pss_preds):
- cls_pred_i = cls_pred_i[0]
- box_pred_i = box_pred_i[0]
- pss_pred_i = pss_pred_i[0]
-
- # [H, W, C] -> [HWC,]
- scores_i = (cls_pred_i.sigmoid() * pss_pred_i.sigmoid()).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_results, box_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- topk_idxs = topk_idxs[keep_idxs]
- # final scores
- scores = topk_scores[keep_idxs]
- # final labels
- labels = topk_idxs % self.num_classes
- # final bboxes
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- bboxes = box_pred_i[anchor_idxs]
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores)
- labels = torch.cat(all_labels)
- bboxes = torch.cat(all_bboxes)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- return bboxes, scores, labels
- def inference(self, src):
- # ---------------- Backbone ----------------
- pyramid_feats = self.backbone(src)
- # ---------------- Neck ----------------
- pyramid_feats = self.backbone_fpn(pyramid_feats)
- # ---------------- Heads ----------------
- outputs = self.detection_head(pyramid_feats)
- cls_pred = outputs["pred_cls"]
- box_pred = outputs["pred_box"]
- pss_pred = outputs["pred_pss"]
- # Post-process (no NMS)
- bboxes, scores, labels = self.post_process(cls_pred, box_pred, pss_pred)
- # Normalize bbox
- bboxes[..., 0::2] /= src.shape[-1]
- bboxes[..., 1::2] /= src.shape[-2]
- bboxes = bboxes.clip(0., 1.)
- outputs = {
- 'scores': scores,
- 'labels': labels,
- 'bboxes': bboxes
- }
- return outputs
- def forward(self, src, src_mask=None):
- if not self.training:
- return self.inference(src)
- else:
- # ---------------- Backbone ----------------
- pyramid_feats = self.backbone(src)
- # ---------------- Neck ----------------
- pyramid_feats = self.backbone_fpn(pyramid_feats)
- # ---------------- Heads ----------------
- outputs = self.detection_head(pyramid_feats, src_mask)
- return outputs
|