criterion.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.misc import sigmoid_focal_loss
  5. from utils.box_ops import get_ious
  6. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  7. from .matcher import AlignedOTAMatcher
  8. class SetCriterion(nn.Module):
  9. def __init__(self, cfg):
  10. super().__init__()
  11. # ------------- Basic parameters -------------
  12. self.cfg = cfg
  13. self.num_classes = cfg.num_classes
  14. # ------------- Focal loss -------------
  15. self.alpha = cfg.focal_loss_alpha
  16. self.gamma = cfg.focal_loss_gamma
  17. # ------------- Loss weight -------------
  18. self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
  19. 'loss_reg': cfg.loss_reg_weight,
  20. 'loss_pss': cfg.loss_pss_weight}
  21. # ------------- Matcher & Loss weight -------------
  22. self.matcher_cfg = cfg.matcher_hpy
  23. self.matcher = AlignedOTAMatcher(cfg.num_classes,
  24. cfg.matcher_hpy['soft_center_radius'],
  25. cfg.matcher_hpy['topk_candidates'],
  26. )
  27. def loss_labels(self, pred_cls, target, beta=2.0, num_boxes=1.0):
  28. # Quality FocalLoss
  29. """
  30. pred_cls: (torch.Tensor): [N, C]。
  31. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  32. """
  33. label, score = target
  34. pred_sigmoid = pred_cls.sigmoid()
  35. scale_factor = pred_sigmoid
  36. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  37. ce_loss = F.binary_cross_entropy_with_logits(
  38. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  39. bg_class_ind = pred_cls.shape[-1]
  40. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  41. if pos.shape[0] > 0:
  42. pos_label = label[pos].long()
  43. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  44. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  45. pred_cls[pos, pos_label], score[pos],
  46. reduction='none') * scale_factor.abs().pow(beta)
  47. return ce_loss.sum() / num_boxes
  48. def loss_bboxes(self, pred_box, gt_box, num_boxes=1.0, box_weight=None):
  49. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  50. loss_box = 1.0 - ious
  51. if box_weight is not None:
  52. loss_box = loss_box.squeeze(-1) * box_weight
  53. return loss_box.sum() / num_boxes
  54. def loss_pss(self, pred_pss, target, num_boxes=1.0):
  55. loss_pss = sigmoid_focal_loss(pred_pss, target, alpha=0.25, gamma=2.0)
  56. return loss_pss.sum() / num_boxes
  57. def forward(self, outputs, targets):
  58. """
  59. outputs['pred_cls']: (Tensor) [B, M, C]
  60. outputs['pred_reg']: (Tensor) [B, M, 4]
  61. outputs['pred_box']: (Tensor) [B, M, 4]
  62. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  63. targets: (List) [dict{'boxes': [...],
  64. 'labels': [...],
  65. 'orig_size': ...}, ...]
  66. """
  67. # -------------------- Pre-process --------------------
  68. bs = outputs['pred_cls'][0].shape[0]
  69. device = outputs['pred_cls'][0].device
  70. fpn_strides = outputs['strides']
  71. anchors = outputs['anchors']
  72. # Reshape: List([B, M, C]) -> [B, M, C]
  73. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  74. pss_preds = torch.cat(outputs['pred_pss'], dim=1)
  75. box_preds = torch.cat(outputs['pred_box'], dim=1)
  76. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  77. # -------------------- Label Assignment --------------------
  78. cls_targets = []
  79. pss_targets = []
  80. box_targets = []
  81. assign_metrics = []
  82. for batch_idx in range(bs):
  83. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  84. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  85. # refine target
  86. tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
  87. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  88. keep = (min_tgt_size >= 8)
  89. tgt_bboxes = tgt_bboxes[keep]
  90. tgt_labels = tgt_labels[keep]
  91. # label assignment
  92. assigned_result = self.matcher(fpn_strides=fpn_strides,
  93. anchors=anchors,
  94. pred_cls=cls_preds[batch_idx].detach(),
  95. pred_box=box_preds[batch_idx].detach(),
  96. gt_labels=tgt_labels,
  97. gt_bboxes=tgt_bboxes
  98. )
  99. cls_targets.append(assigned_result['assigned_labels'])
  100. pss_targets.append(assigned_result['assigned_pss'])
  101. box_targets.append(assigned_result['assigned_bboxes'])
  102. assign_metrics.append(assigned_result['assign_metrics'])
  103. # List[B, M, C] -> Tensor[BM, C]
  104. cls_targets = torch.cat(cls_targets, dim=0) # [BM, C]
  105. pss_targets = torch.cat(pss_targets, dim=0) # [BM,]
  106. box_targets = torch.cat(box_targets, dim=0) # [BM, 4]
  107. assign_metrics = torch.cat(assign_metrics, dim=0) # [BM,]
  108. valid_idxs = (cls_targets >= 0) & masks
  109. foreground_idxs = (cls_targets >= 0) & (cls_targets != self.num_classes)
  110. num_fgs = assign_metrics.sum()
  111. if is_dist_avail_and_initialized():
  112. torch.distributed.all_reduce(num_fgs)
  113. num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
  114. num_targets = pss_targets[valid_idxs].sum()
  115. if is_dist_avail_and_initialized():
  116. torch.distributed.all_reduce(num_targets)
  117. num_targets = torch.clamp(num_targets / get_world_size(), min=1).item()
  118. # -------------------- Pos-Sample selector loss --------------------
  119. pss_preds = pss_preds.view(-1)[valid_idxs]
  120. loss_pss = self.loss_pss(pss_preds, pss_targets[valid_idxs], num_targets)
  121. # -------------------- Classification loss --------------------
  122. cls_preds = cls_preds.view(-1, self.num_classes)[valid_idxs]
  123. pss_preds = pss_preds.unsqueeze(-1)
  124. qfl_targets = (cls_targets[valid_idxs], assign_metrics[valid_idxs])
  125. loss_cls = self.loss_labels(cls_preds, qfl_targets, 2.0, num_fgs)
  126. # -------------------- Regression loss --------------------
  127. box_preds_pos = box_preds.view(-1, 4)[foreground_idxs]
  128. box_targets_pos = box_targets[foreground_idxs]
  129. box_weight = assign_metrics[foreground_idxs]
  130. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, num_fgs, box_weight)
  131. total_loss = loss_cls * self.weight_dict["loss_cls"] + \
  132. loss_box * self.weight_dict["loss_reg"] + \
  133. loss_pss * self.weight_dict["loss_pss"]
  134. loss_dict = dict(
  135. loss_cls = loss_cls,
  136. loss_reg = loss_box,
  137. loss_pss = loss_pss,
  138. losses = total_loss,
  139. )
  140. return loss_dict
  141. if __name__ == "__main__":
  142. pass