yolov7_af_neck.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. import torch
  2. import torch.nn as nn
  3. from .yolov7_af_basic import BasicConv
  4. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv7-AF by Glenn Jocher
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov7-AF
  8. """
  9. def __init__(self, cfg, in_dim, out_dim, expansion=0.5):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * expansion)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.cv1 = BasicConv(in_dim, inter_dim,
  16. kernel_size=1, padding=0, stride=1,
  17. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  18. self.cv2 = BasicConv(inter_dim * 4, out_dim,
  19. kernel_size=1, padding=0, stride=1,
  20. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  21. self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
  22. stride=1,
  23. padding=cfg.spp_pooling_size // 2)
  24. # Initialize all layers
  25. self.init_weights()
  26. def init_weights(self):
  27. """Initialize the parameters."""
  28. for m in self.modules():
  29. if isinstance(m, torch.nn.Conv2d):
  30. # In order to be consistent with the source code,
  31. # reset the Conv2d initialization parameters
  32. m.reset_parameters()
  33. def forward(self, x):
  34. x = self.cv1(x)
  35. y1 = self.m(x)
  36. y2 = self.m(y1)
  37. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  38. # SPPF block with CSP module
  39. class SPPFBlockCSP(nn.Module):
  40. """
  41. CSP Spatial Pyramid Pooling Block
  42. """
  43. def __init__(self, cfg, in_dim, out_dim):
  44. super(SPPFBlockCSP, self).__init__()
  45. inter_dim = int(in_dim * cfg.neck_expand_ratio)
  46. self.out_dim = out_dim
  47. self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  48. self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  49. self.module = nn.Sequential(
  50. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  51. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  52. SPPF(cfg, inter_dim, inter_dim, expansion=1.0),
  53. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  54. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  55. )
  56. self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  57. # Initialize all layers
  58. self.init_weights()
  59. def init_weights(self):
  60. """Initialize the parameters."""
  61. for m in self.modules():
  62. if isinstance(m, torch.nn.Conv2d):
  63. # In order to be consistent with the source code,
  64. # reset the Conv2d initialization parameters
  65. m.reset_parameters()
  66. def forward(self, x):
  67. x1 = self.cv1(x)
  68. x2 = self.module(self.cv2(x))
  69. y = self.cv3(torch.cat([x1, x2], dim=1))
  70. return y
  71. if __name__=='__main__':
  72. import time
  73. from thop import profile
  74. # Model config
  75. # YOLOv7-AF-Base config
  76. class Yolov7AFBaseConfig(object):
  77. def __init__(self) -> None:
  78. # ---------------- Model config ----------------
  79. self.out_stride = 32
  80. self.max_stride = 32
  81. ## Neck
  82. self.neck_act = 'lrelu'
  83. self.neck_norm = 'BN'
  84. self.neck_depthwise = False
  85. self.neck_expand_ratio = 0.5
  86. self.spp_pooling_size = 5
  87. cfg = Yolov7AFBaseConfig()
  88. # Build a head
  89. in_dim = 512
  90. out_dim = 512
  91. neck = SPPF(cfg, in_dim, out_dim)
  92. # Inference
  93. x = torch.randn(1, in_dim, 20, 20)
  94. t0 = time.time()
  95. output = neck(x)
  96. t1 = time.time()
  97. print('Time: ', t1 - t0)
  98. print('Neck output: ', output.shape)
  99. flops, params = profile(neck, inputs=(x, ), verbose=False)
  100. print('==============================')
  101. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  102. print('Params : {:.2f} M'.format(params / 1e6))