| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- import torch
- import torch.nn as nn
- from typing import List
- # --------------------- Basic modules ---------------------
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- dilation=1, # dilation
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- depthwise :bool = False
- ):
- super(BasicConv, self).__init__()
- self.depthwise = depthwise
- use_bias = False if norm_type is not None else True
- if not depthwise:
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=use_bias)
- self.norm = get_norm(norm_type, out_dim)
- else:
- self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias)
- self.norm1 = get_norm(norm_type, in_dim)
- self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
- self.norm2 = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- if not self.depthwise:
- return self.act(self.norm(self.conv(x)))
- else:
- # Depthwise conv
- x = self.act(self.norm1(self.conv1(x)))
- # Pointwise conv
- x = self.act(self.norm2(self.conv2(x)))
- return x
- # ---------------------------- Basic Modules ----------------------------
- class MDown(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise :bool = False,
- ) -> None:
- super().__init__()
- inter_dim = out_dim // 2
- self.downsample_1 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- )
- self.downsample_2 = nn.Sequential(
- BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type),
- BasicConv(inter_dim, inter_dim,
- kernel_size=3, padding=1, stride=2,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- x1 = self.downsample_1(x)
- x2 = self.downsample_2(x)
- return torch.cat([x1, x2], dim=1)
- class ELANLayer(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expansion :float = 0.5,
- num_blocks :int = 1,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise :bool = False,
- ) -> None:
- super(ELANLayer, self).__init__()
- self.inter_dim = round(in_dim * expansion)
- self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.conv_layer_2 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.conv_layer_3 = BasicConv(self.inter_dim * 4, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.elan_layer_1 = nn.Sequential(*[BasicConv(self.inter_dim, self.inter_dim,
- kernel_size=3, padding=1,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(num_blocks)])
- self.elan_layer_2 = nn.Sequential(*[BasicConv(self.inter_dim, self.inter_dim,
- kernel_size=3, padding=1,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(num_blocks)])
- def forward(self, x):
- # Input proj
- x1 = self.conv_layer_1(x)
- x2 = self.conv_layer_2(x)
- x3 = self.elan_layer_1(x2)
- x4 = self.elan_layer_2(x3)
-
- out = self.conv_layer_3(torch.cat([x1, x2, x3, x4], dim=1))
- return out
- ## PaFPN's ELAN-Block proposed by YOLOv7
- class ELANLayerFPN(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expansions :List = [0.5, 0.5],
- branch_width :int = 4,
- branch_depth :int = 1,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise=False):
- super(ELANLayerFPN, self).__init__()
- # Basic parameters
- inter_dim = round(in_dim * expansions[0])
- inter_dim2 = round(inter_dim * expansions[1])
- # Network structure
- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.ModuleList()
- for idx in range(round(branch_width)):
- if idx == 0:
- cvs = [BasicConv(inter_dim, inter_dim2,
- kernel_size=3, padding=1,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- else:
- cvs = [BasicConv(inter_dim2, inter_dim2,
- kernel_size=3, padding=1,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- # deeper
- if round(branch_depth) > 1:
- for _ in range(1, round(branch_depth)):
- cvs.append(BasicConv(inter_dim2, inter_dim2, kernel_size=3, padding=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
- self.cv3.append(nn.Sequential(*cvs))
- else:
- self.cv3.append(cvs[0])
- self.output_proj = BasicConv(inter_dim*2+inter_dim2*len(self.cv3), out_dim,
- kernel_size=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- inter_outs = [x1, x2]
- for m in self.cv3:
- y1 = inter_outs[-1]
- y2 = m(y1)
- inter_outs.append(y2)
- out = self.output_proj(torch.cat(inter_outs, dim=1))
- return out
|