yolov8_head.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .yolov8_basic import BasicConv
  5. except:
  6. from yolov8_basic import BasicConv
  7. # -------------------- Detection Head --------------------
  8. ## Single-level Detection Head
  9. class DetHead(nn.Module):
  10. def __init__(self,
  11. in_dim :int = 256,
  12. cls_head_dim :int = 256,
  13. reg_head_dim :int = 256,
  14. num_cls_head :int = 2,
  15. num_reg_head :int = 2,
  16. act_type :str = "silu",
  17. norm_type :str = "BN",
  18. depthwise :bool = False):
  19. super().__init__()
  20. # --------- Basic Parameters ----------
  21. self.in_dim = in_dim
  22. self.num_cls_head = num_cls_head
  23. self.num_reg_head = num_reg_head
  24. self.act_type = act_type
  25. self.norm_type = norm_type
  26. self.depthwise = depthwise
  27. # --------- Network Parameters ----------
  28. ## cls head
  29. cls_feats = []
  30. self.cls_head_dim = cls_head_dim
  31. for i in range(num_cls_head):
  32. if i == 0:
  33. cls_feats.append(
  34. BasicConv(in_dim, self.cls_head_dim,
  35. kernel_size=3, padding=1, stride=1,
  36. act_type=act_type,
  37. norm_type=norm_type,
  38. depthwise=depthwise)
  39. )
  40. else:
  41. cls_feats.append(
  42. BasicConv(self.cls_head_dim, self.cls_head_dim,
  43. kernel_size=3, padding=1, stride=1,
  44. act_type=act_type,
  45. norm_type=norm_type,
  46. depthwise=depthwise)
  47. )
  48. ## reg head
  49. reg_feats = []
  50. self.reg_head_dim = reg_head_dim
  51. for i in range(num_reg_head):
  52. if i == 0:
  53. reg_feats.append(
  54. BasicConv(in_dim, self.reg_head_dim,
  55. kernel_size=3, padding=1, stride=1,
  56. act_type=act_type,
  57. norm_type=norm_type,
  58. depthwise=depthwise)
  59. )
  60. else:
  61. reg_feats.append(
  62. BasicConv(self.reg_head_dim, self.reg_head_dim,
  63. kernel_size=3, padding=1, stride=1,
  64. act_type=act_type,
  65. norm_type=norm_type,
  66. depthwise=depthwise)
  67. )
  68. self.cls_feats = nn.Sequential(*cls_feats)
  69. self.reg_feats = nn.Sequential(*reg_feats)
  70. self.init_weights()
  71. def init_weights(self):
  72. """Initialize the parameters."""
  73. for m in self.modules():
  74. if isinstance(m, torch.nn.Conv2d):
  75. # In order to be consistent with the source code,
  76. # reset the Conv2d initialization parameters
  77. m.reset_parameters()
  78. def forward(self, x):
  79. """
  80. in_feats: (Tensor) [B, C, H, W]
  81. """
  82. cls_feats = self.cls_feats(x)
  83. reg_feats = self.reg_feats(x)
  84. return cls_feats, reg_feats
  85. ## Multi-level Detection Head
  86. class Yolov8DetHead(nn.Module):
  87. def __init__(self, cfg, in_dims):
  88. super().__init__()
  89. ## ----------- Network Parameters -----------
  90. self.multi_level_heads = nn.ModuleList(
  91. [DetHead(in_dim = in_dims[level],
  92. cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
  93. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  94. num_cls_head = cfg.num_cls_head,
  95. num_reg_head = cfg.num_reg_head,
  96. act_type = cfg.head_act,
  97. norm_type = cfg.head_norm,
  98. depthwise = cfg.head_depthwise)
  99. for level in range(cfg.num_levels)
  100. ])
  101. # --------- Basic Parameters ----------
  102. self.in_dims = in_dims
  103. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  104. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  105. def forward(self, feats):
  106. """
  107. feats: List[(Tensor)] [[B, C, H, W], ...]
  108. """
  109. cls_feats = []
  110. reg_feats = []
  111. for feat, head in zip(feats, self.multi_level_heads):
  112. # ---------------- Pred ----------------
  113. cls_feat, reg_feat = head(feat)
  114. cls_feats.append(cls_feat)
  115. reg_feats.append(reg_feat)
  116. return cls_feats, reg_feats
  117. if __name__=='__main__':
  118. import time
  119. from thop import profile
  120. # Model config
  121. # YOLOv8-Base config
  122. class Yolov8BaseConfig(object):
  123. def __init__(self) -> None:
  124. # ---------------- Model config ----------------
  125. self.width = 0.50
  126. self.depth = 0.34
  127. self.ratio = 2.0
  128. self.reg_max = 16
  129. self.out_stride = [8, 16, 32]
  130. self.max_stride = 32
  131. self.num_levels = 3
  132. ## Head
  133. self.head_act = 'lrelu'
  134. self.head_norm = 'BN'
  135. self.head_depthwise = False
  136. self.num_cls_head = 2
  137. self.num_reg_head = 2
  138. cfg = Yolov8BaseConfig()
  139. cfg.num_classes = 20
  140. # Build a head
  141. fpn_dims = [128, 256, 512]
  142. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
  143. torch.randn(1, fpn_dims[1], 40, 40),
  144. torch.randn(1, fpn_dims[2], 20, 20)]
  145. head = Yolov8DetHead(cfg, fpn_dims)
  146. # Inference
  147. t0 = time.time()
  148. cls_feats, reg_feats = head(pyramid_feats)
  149. t1 = time.time()
  150. print('Time: ', t1 - t0)
  151. print("====== Yolov8 Head output ======")
  152. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  153. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  154. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  155. print('==============================')
  156. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  157. print('Params : {:.2f} M'.format(params / 1e6))