| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- from typing import List
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- try:
- from .yolov7_af_basic import BasicConv, ELANLayerFPN, MDown
- except:
- from yolov7_af_basic import BasicConv, ELANLayerFPN, MDown
- # Yolov7 af PaFPN
- class Yolov7PaFPN(nn.Module):
- def __init__(self, cfg, in_dims: List = [512, 1024, 512]):
- super(Yolov7PaFPN, self).__init__()
- # ----------------------------- Basic parameters -----------------------------
- self.in_dims = in_dims
- self.out_dims = [round(256*cfg.width), round(512*cfg.width), round(1024*cfg.width)]
- c3, c4, c5 = in_dims
- # ----------------------------- Yolov7's Top-down FPN -----------------------------
- ## P5 -> P4
- self.reduce_layer_1 = BasicConv(c5, round(256*cfg.width),
- kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.reduce_layer_2 = BasicConv(c4, round(256*cfg.width),
- kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.top_down_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.width) + round(256*cfg.width),
- out_dim = round(256*cfg.width),
- expansions = cfg.fpn_expansions,
- branch_width = cfg.fpn_block_bw,
- branch_depth = cfg.fpn_block_dw,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P3
- self.reduce_layer_3 = BasicConv(round(256*cfg.width), round(128*cfg.width),
- kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.reduce_layer_4 = BasicConv(c3, round(128*cfg.width),
- kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.top_down_layer_2 = ELANLayerFPN(in_dim = round(128*cfg.width) + round(128*cfg.width),
- out_dim = round(128*cfg.width),
- expansions = cfg.fpn_expansions,
- branch_width = cfg.fpn_block_bw,
- branch_depth = cfg.fpn_block_dw,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- # ----------------------------- Yolov7's Bottom-up PAN -----------------------------
- ## P3 -> P4
- self.downsample_layer_1 = MDown(round(128*cfg.width), round(256*cfg.width),
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.bottom_up_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.width) + round(256*cfg.width),
- out_dim = round(256*cfg.width),
- expansions = cfg.fpn_expansions,
- branch_width = cfg.fpn_block_bw,
- branch_depth = cfg.fpn_block_dw,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P5
- self.downsample_layer_2 = MDown(round(256*cfg.width), round(512*cfg.width),
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- self.bottom_up_layer_2 = ELANLayerFPN(in_dim = round(512*cfg.width) + c5,
- out_dim = round(512*cfg.width),
- expansions = cfg.fpn_expansions,
- branch_width = cfg.fpn_block_bw,
- branch_depth = cfg.fpn_block_dw,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- # ----------------------------- Head conv layers -----------------------------
- ## Head convs
- self.head_conv_1 = BasicConv(round(128*cfg.width), round(256*cfg.width),
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.head_conv_2 = BasicConv(round(256*cfg.width), round(512*cfg.width),
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.head_conv_3 = BasicConv(round(512*cfg.width), round(1024*cfg.width),
- kernel_size=3, padding=1, stride=1,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- def forward(self, features):
- c3, c4, c5 = features
- # ------------------ Top down FPN ------------------
- ## P5 -> P4
- p5 = self.reduce_layer_1(c5)
- p5_up = F.interpolate(p5, scale_factor=2.0)
- p4 = self.reduce_layer_2(c4)
- p4 = self.top_down_layer_1(torch.cat([p5_up, p4], dim=1))
- ## P4 -> P3
- p4_in = self.reduce_layer_3(p4)
- p4_up = F.interpolate(p4_in, scale_factor=2.0)
- p3 = self.reduce_layer_4(c3)
- p3 = self.top_down_layer_2(torch.cat([p4_up, p3], dim=1))
- # ------------------ Bottom up PAN ------------------
- ## P3 -> P4
- p3_ds = self.downsample_layer_1(p3)
- p4 = torch.cat([p3_ds, p4], dim=1)
- p4 = self.bottom_up_layer_1(p4)
- ## P4 -> P5
- p4_ds = self.downsample_layer_2(p4)
- p5 = torch.cat([p4_ds, c5], dim=1)
- p5 = self.bottom_up_layer_2(p5)
- out_feats = [self.head_conv_1(p3), self.head_conv_2(p4), self.head_conv_3(p5)]
-
- return out_feats
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv7-Base config
- class Yolov7BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 0.50
- self.depth = 0.34
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- ## FPN
- self.fpn_act = 'silu'
- self.fpn_norm = 'BN'
- self.fpn_depthwise = False
- ## Head
- self.head_dim = 256
- cfg = Yolov7BaseConfig()
- # Build a head
- in_dims = [128, 256, 512]
- fpn = Yolov7PaFPN(cfg, in_dims)
- # Inference
- x = [torch.randn(1, in_dims[0], 80, 80),
- torch.randn(1, in_dims[1], 40, 40),
- torch.randn(1, in_dims[2], 20, 20)]
- t0 = time.time()
- output = fpn(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print('====== FPN output ====== ')
- for level, feat in enumerate(output):
- print("- Level-{} : ".format(level), feat.shape)
- flops, params = profile(fpn, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|