yolov7_af_neck.py 3.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. import torch
  2. import torch.nn as nn
  3. from .yolov7_af_basic import BasicConv
  4. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv7-AF by Glenn Jocher
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov7-AF
  8. """
  9. def __init__(self, cfg, in_dim, out_dim, expansion=0.5):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * expansion)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.cv1 = BasicConv(in_dim, inter_dim,
  16. kernel_size=1, padding=0, stride=1,
  17. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  18. self.cv2 = BasicConv(inter_dim * 4, out_dim,
  19. kernel_size=1, padding=0, stride=1,
  20. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  21. self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
  22. stride=1,
  23. padding=cfg.spp_pooling_size // 2)
  24. def forward(self, x):
  25. x = self.cv1(x)
  26. y1 = self.m(x)
  27. y2 = self.m(y1)
  28. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  29. # SPPF block with CSP module
  30. class SPPFBlockCSP(nn.Module):
  31. """
  32. CSP Spatial Pyramid Pooling Block
  33. """
  34. def __init__(self, cfg, in_dim, out_dim):
  35. super(SPPFBlockCSP, self).__init__()
  36. inter_dim = int(in_dim * cfg.neck_expand_ratio)
  37. self.out_dim = out_dim
  38. self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  39. self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  40. self.module = nn.Sequential(
  41. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  42. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  43. SPPF(cfg, inter_dim, inter_dim, expansion=1.0),
  44. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  45. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  46. )
  47. self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  48. def forward(self, x):
  49. x1 = self.cv1(x)
  50. x2 = self.module(self.cv2(x))
  51. y = self.cv3(torch.cat([x1, x2], dim=1))
  52. return y
  53. if __name__=='__main__':
  54. import time
  55. from thop import profile
  56. # Model config
  57. # YOLOv7-AF-Base config
  58. class Yolov7AFBaseConfig(object):
  59. def __init__(self) -> None:
  60. # ---------------- Model config ----------------
  61. self.out_stride = 32
  62. self.max_stride = 32
  63. ## Neck
  64. self.neck_act = 'lrelu'
  65. self.neck_norm = 'BN'
  66. self.neck_depthwise = False
  67. self.neck_expand_ratio = 0.5
  68. self.spp_pooling_size = 5
  69. cfg = Yolov7AFBaseConfig()
  70. # Build a head
  71. in_dim = 512
  72. out_dim = 512
  73. neck = SPPF(cfg, in_dim, out_dim)
  74. # Inference
  75. x = torch.randn(1, in_dim, 20, 20)
  76. t0 = time.time()
  77. output = neck(x)
  78. t1 = time.time()
  79. print('Time: ', t1 - t0)
  80. print('Neck output: ', output.shape)
  81. flops, params = profile(neck, inputs=(x, ), verbose=False)
  82. print('==============================')
  83. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  84. print('Params : {:.2f} M'.format(params / 1e6))