yolov1_pred.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class Yolov1DetPredLayer(nn.Module):
  6. def __init__(self, cfg):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.stride = cfg.out_stride
  10. self.cls_dim = cfg.head_dim
  11. self.reg_dim = cfg.head_dim
  12. self.num_classes = cfg.num_classes
  13. # --------- Network Parameters ----------
  14. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  15. self.cls_pred = nn.Conv2d(self.cls_dim, self.num_classes, kernel_size=1)
  16. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  17. self.init_bias()
  18. def init_bias(self):
  19. # Init bias
  20. init_prob = 0.01
  21. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  22. # obj pred
  23. b = self.obj_pred.bias.view(1, -1)
  24. b.data.fill_(bias_value.item())
  25. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  26. # cls pred
  27. b = self.cls_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # reg pred
  31. b = self.reg_pred.bias.view(-1, )
  32. b.data.fill_(1.0)
  33. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. def generate_anchors(self, fmp_size):
  35. """
  36. fmp_size: (List) [H, W]
  37. """
  38. # 特征图的宽和高
  39. fmp_h, fmp_w = fmp_size
  40. # 生成网格的x坐标和y坐标
  41. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  42. # 将xy两部分的坐标拼起来:[H, W, 2]
  43. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float()
  44. # [H, W, 2] -> [HW, 2]
  45. anchors = anchors.view(-1, 2)
  46. return anchors
  47. def forward(self, cls_feat, reg_feat):
  48. # 预测层
  49. obj_pred = self.obj_pred(cls_feat)
  50. cls_pred = self.cls_pred(cls_feat)
  51. reg_pred = self.reg_pred(reg_feat)
  52. # 生成网格坐标
  53. B, _, H, W = cls_pred.size()
  54. fmp_size = [H, W]
  55. anchors = self.generate_anchors(fmp_size)
  56. anchors = anchors.to(cls_pred.device)
  57. # 对 pred 的size做一些view调整,便于后续的处理
  58. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  59. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  60. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  61. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  62. # 解算边界框坐标
  63. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  64. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  65. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  66. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  67. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  68. # output dict
  69. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  70. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  71. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  72. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  73. "anchors" : anchors, # (torch.Tensor) [M, 2]
  74. "fmp_size": fmp_size,
  75. "stride" : self.stride, # (Int)
  76. }
  77. return outputs
  78. if __name__=='__main__':
  79. import time
  80. from thop import profile
  81. # Model config
  82. # YOLOv8-Base config
  83. class Yolov1BaseConfig(object):
  84. def __init__(self) -> None:
  85. # ---------------- Model config ----------------
  86. self.out_stride = 32
  87. self.max_stride = 32
  88. ## Head
  89. self.head_dim = 512
  90. cfg = Yolov1BaseConfig()
  91. cfg.num_classes = 20
  92. # Build a pred layer
  93. pred = Yolov1DetPredLayer(cfg)
  94. # Inference
  95. cls_feat = torch.randn(1, cfg.head_dim, 20, 20)
  96. reg_feat = torch.randn(1, cfg.head_dim, 20, 20)
  97. t0 = time.time()
  98. output = pred(cls_feat, reg_feat)
  99. t1 = time.time()
  100. print('Time: ', t1 - t0)
  101. print('====== Pred output ======= ')
  102. for k in output:
  103. if isinstance(output[k], torch.Tensor):
  104. print("-{}: ".format(k), output[k].shape)
  105. else:
  106. print("-{}: ".format(k), output[k])
  107. flops, params = profile(pred, inputs=(cls_feat, reg_feat, ), verbose=False)
  108. print('==============================')
  109. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  110. print('Params : {:.2f} M'.format(params / 1e6))