yolov5_pred.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class DetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. anchor_sizes :List,
  13. ):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.num_classes = num_classes
  20. # ------------------- Anchor box -------------------
  21. self.anchor_size = torch.as_tensor(anchor_sizes).float().view(-1, 2) # [A, 2]
  22. self.num_anchors = self.anchor_size.shape[0]
  23. # --------- Network Parameters ----------
  24. self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
  25. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1)
  26. self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
  27. self.init_bias()
  28. def init_bias(self):
  29. # Init bias
  30. init_prob = 0.01
  31. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  32. # obj pred
  33. b = self.obj_pred.bias.view(1, -1)
  34. b.data.fill_(bias_value.item())
  35. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. # cls pred
  37. b = self.cls_pred.bias.view(1, -1)
  38. b.data.fill_(bias_value.item())
  39. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. # reg pred
  41. b = self.reg_pred.bias.view(-1, )
  42. b.data.fill_(1.0)
  43. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  44. def generate_anchors(self, fmp_size):
  45. """
  46. fmp_size: (List) [H, W]
  47. """
  48. fmp_h, fmp_w = fmp_size
  49. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  50. # [H, W, 2] -> [HW, 2]
  51. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  52. # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  53. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1).view(-1, 2)
  54. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  55. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  56. anchor_wh = anchor_wh.view(-1, 2)
  57. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  58. return anchors
  59. def forward(self, cls_feat, reg_feat):
  60. # 预测层
  61. obj_pred = self.obj_pred(reg_feat)
  62. cls_pred = self.cls_pred(cls_feat)
  63. reg_pred = self.reg_pred(reg_feat)
  64. # 生成网格坐标
  65. B, _, H, W = cls_pred.size()
  66. fmp_size = [H, W]
  67. anchors = self.generate_anchors(fmp_size)
  68. anchors = anchors.to(cls_pred.device)
  69. # 对 pred 的size做一些view调整,便于后续的处理
  70. # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
  71. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  72. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  73. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  74. # 解算边界框坐标
  75. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride
  76. bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  77. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  78. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  79. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  80. # output dict
  81. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  82. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  83. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  84. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  85. "anchors" : anchors, # (torch.Tensor) [M, 2]
  86. "fmp_size": fmp_size,
  87. "stride" : self.stride, # (Int)
  88. }
  89. return outputs
  90. ## Multi-level pred layer
  91. class Yolov5DetPredLayer(nn.Module):
  92. def __init__(self, cfg):
  93. super().__init__()
  94. # --------- Basic Parameters ----------
  95. self.cfg = cfg
  96. # ----------- Network Parameters -----------
  97. ## pred layers
  98. self.multi_level_preds = nn.ModuleList(
  99. [DetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  100. reg_dim = round(cfg.head_dim * cfg.width),
  101. stride = cfg.out_stride[level],
  102. anchor_sizes = cfg.anchor_size[level],
  103. num_classes = cfg.num_classes,)
  104. for level in range(cfg.num_levels)
  105. ])
  106. def forward(self, cls_feats, reg_feats):
  107. all_anchors = []
  108. all_fmp_sizes = []
  109. all_obj_preds = []
  110. all_cls_preds = []
  111. all_reg_preds = []
  112. all_box_preds = []
  113. for level in range(self.cfg.num_levels):
  114. # -------------- Single-level prediction --------------
  115. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  116. # collect results
  117. all_obj_preds.append(outputs["pred_obj"])
  118. all_cls_preds.append(outputs["pred_cls"])
  119. all_reg_preds.append(outputs["pred_reg"])
  120. all_box_preds.append(outputs["pred_box"])
  121. all_fmp_sizes.append(outputs["fmp_size"])
  122. all_anchors.append(outputs["anchors"])
  123. # output dict
  124. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  125. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  126. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  127. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  128. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  129. "anchors": all_anchors, # List(Tensor) [M, 2]
  130. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  131. }
  132. return outputs