yolov7_pred.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. class DetPredLayer(nn.Module):
  5. def __init__(self,
  6. cls_dim :int,
  7. reg_dim :int,
  8. stride :int,
  9. num_classes :int,
  10. ):
  11. super().__init__()
  12. # --------- Basic Parameters ----------
  13. self.stride = stride
  14. self.cls_dim = cls_dim
  15. self.reg_dim = reg_dim
  16. self.num_classes = num_classes
  17. # --------- Network Parameters ----------
  18. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  19. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  20. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  21. self.init_bias()
  22. def init_bias(self):
  23. # Init bias
  24. init_prob = 0.01
  25. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  26. # obj pred
  27. b = self.obj_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # cls pred
  31. b = self.cls_pred.bias.view(1, -1)
  32. b.data.fill_(bias_value.item())
  33. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. # reg pred
  35. b = self.reg_pred.bias.view(-1, )
  36. b.data.fill_(1.0)
  37. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  38. w = self.reg_pred.weight
  39. w.data.fill_(0.)
  40. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  41. def generate_anchors(self, fmp_size):
  42. """
  43. fmp_size: (List) [H, W]
  44. """
  45. fmp_h, fmp_w = fmp_size
  46. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  47. # [H, W, 2] -> [HW, 2]
  48. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  49. anchors = anchors + 0.5
  50. anchors = anchors * self.stride
  51. return anchors
  52. def forward(self, cls_feat, reg_feat):
  53. # 预测层
  54. obj_pred = self.obj_pred(reg_feat)
  55. cls_pred = self.cls_pred(cls_feat)
  56. reg_pred = self.reg_pred(reg_feat)
  57. # 生成网格坐标
  58. B, _, H, W = cls_pred.size()
  59. fmp_size = [H, W]
  60. anchors = self.generate_anchors(fmp_size)
  61. anchors = anchors.to(cls_pred.device)
  62. # 对 pred 的size做一些view调整,便于后续的处理
  63. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  64. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  65. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  66. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  67. # 解算边界框坐标
  68. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  69. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  70. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  71. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  72. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  73. # output dict
  74. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  75. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  76. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  77. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  78. "anchors" : anchors, # (torch.Tensor) [M, 2]
  79. "fmp_size": fmp_size,
  80. "stride" : self.stride, # (Int)
  81. }
  82. return outputs
  83. class Yolov7DetPredLayer(nn.Module):
  84. def __init__(self, cfg):
  85. super().__init__()
  86. # --------- Basic Parameters ----------
  87. self.cfg = cfg
  88. self.num_levels = len(cfg.out_stride)
  89. # ----------- Network Parameters -----------
  90. ## pred layers
  91. self.multi_level_preds = nn.ModuleList(
  92. [DetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  93. reg_dim = round(cfg.head_dim * cfg.width),
  94. stride = cfg.out_stride[level],
  95. num_classes = cfg.num_classes,)
  96. for level in range(self.num_levels)
  97. ])
  98. def forward(self, cls_feats, reg_feats):
  99. all_anchors = []
  100. all_fmp_sizes = []
  101. all_obj_preds = []
  102. all_cls_preds = []
  103. all_reg_preds = []
  104. all_box_preds = []
  105. for level in range(self.num_levels):
  106. # -------------- Single-level prediction --------------
  107. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  108. # collect results
  109. all_obj_preds.append(outputs["pred_obj"])
  110. all_cls_preds.append(outputs["pred_cls"])
  111. all_reg_preds.append(outputs["pred_reg"])
  112. all_box_preds.append(outputs["pred_box"])
  113. all_fmp_sizes.append(outputs["fmp_size"])
  114. all_anchors.append(outputs["anchors"])
  115. # output dict
  116. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  117. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  118. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  119. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  120. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  121. "anchors": all_anchors, # List(Tensor) [M, 2]
  122. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  123. }
  124. return outputs
  125. if __name__=='__main__':
  126. import time
  127. from thop import profile
  128. # Model config
  129. # YOLOv7AF-Base config
  130. class Yolov7AFBaseConfig(object):
  131. def __init__(self) -> None:
  132. # ---------------- Model config ----------------
  133. self.width = 1.0
  134. self.depth = 1.0
  135. self.out_stride = [8, 16, 32]
  136. self.max_stride = 32
  137. ## Head
  138. self.head_dim = 256
  139. cfg = Yolov7AFBaseConfig()
  140. cfg.num_classes = 20
  141. # Build a pred layer
  142. pred = Yolov7DetPredLayer(cfg)
  143. # Inference
  144. cls_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  145. torch.randn(1, cfg.head_dim, 40, 40),
  146. torch.randn(1, cfg.head_dim, 20, 20),]
  147. reg_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  148. torch.randn(1, cfg.head_dim, 40, 40),
  149. torch.randn(1, cfg.head_dim, 20, 20),]
  150. t0 = time.time()
  151. output = pred(cls_feats, reg_feats)
  152. t1 = time.time()
  153. print('Time: ', t1 - t0)
  154. print('====== Pred output ======= ')
  155. pred_obj = output["pred_obj"]
  156. pred_cls = output["pred_cls"]
  157. pred_reg = output["pred_reg"]
  158. pred_box = output["pred_box"]
  159. anchors = output["anchors"]
  160. for level in range(len(cfg.out_stride)):
  161. print("- Level-{} : objectness -> {}".format(level, pred_obj[level].shape))
  162. print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
  163. print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
  164. print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
  165. print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
  166. flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
  167. print('==============================')
  168. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  169. print('Params : {:.2f} M'.format(params / 1e6))