yolov4.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. # --------------- Model components ---------------
  5. from .yolov4_backbone import Yolov4Backbone
  6. from .yolov4_neck import SPPFBlockCSP
  7. from .yolov4_pafpn import Yolov4PaFPN
  8. from .yolov4_head import DecoupledHead
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. class Yolov4(nn.Module):
  12. def __init__(self, cfg, is_val: bool = False) -> None:
  13. super(Yolov4, self).__init__()
  14. # ---------------------- Basic setting ----------------------
  15. self.cfg = cfg
  16. self.num_classes = cfg.num_classes
  17. self.out_stride = cfg.out_stride
  18. self.num_levels = len(cfg.out_stride)
  19. ## Post-process parameters
  20. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  21. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  22. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  23. self.no_multi_labels = False if is_val else True
  24. # ------------------- Anchor box setting -------------------
  25. self.num_anchors = len(cfg.anchor_size) // self.num_levels
  26. self.anchor_size = torch.as_tensor(
  27. cfg.anchor_size
  28. ).float().view(self.num_levels, self.num_anchors, 2) # [nl, na, 2]
  29. # ------------------- Network Structure -------------------
  30. self.backbone = Yolov4Backbone(use_pretrained=cfg.use_pretrained)
  31. self.neck = SPPFBlockCSP(self.backbone.feat_dims[-1], self.backbone.feat_dims[-1], expand_ratio=0.5)
  32. self.fpn = Yolov4PaFPN(self.backbone.feat_dims[-3:], head_dim=cfg.head_dim)
  33. self.non_shared_heads = nn.ModuleList([DecoupledHead(cfg, in_dim)
  34. for in_dim in self.fpn.fpn_out_dims
  35. ])
  36. ## 预测层
  37. self.obj_preds = nn.ModuleList(
  38. [nn.Conv2d(head.reg_head_dim, 1 * self.num_anchors, kernel_size=1)
  39. for head in self.non_shared_heads
  40. ])
  41. self.cls_preds = nn.ModuleList(
  42. [nn.Conv2d(head.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1)
  43. for head in self.non_shared_heads
  44. ])
  45. self.reg_preds = nn.ModuleList(
  46. [nn.Conv2d(head.reg_head_dim, 4 * self.num_anchors, kernel_size=1)
  47. for head in self.non_shared_heads
  48. ])
  49. def generate_anchors(self, level, fmp_size):
  50. """
  51. fmp_size: (List) [H, W]
  52. """
  53. fmp_h, fmp_w = fmp_size
  54. # [KA, 2]
  55. anchor_size = self.anchor_size[level]
  56. # generate grid cells
  57. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  58. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  59. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  60. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  61. anchor_xy = anchor_xy.view(-1, 2)
  62. anchor_xy += 0.5
  63. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  64. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  65. anchor_wh = anchor_wh.view(-1, 2)
  66. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  67. return anchors
  68. def post_process(self, obj_preds, cls_preds, box_preds):
  69. """
  70. We process predictions at each scale hierarchically
  71. Input:
  72. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  73. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  74. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  75. Output:
  76. bboxes: np.array -> [N, 4]
  77. scores: np.array -> [N,]
  78. labels: np.array -> [N,]
  79. """
  80. all_scores = []
  81. all_labels = []
  82. all_bboxes = []
  83. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  84. obj_pred_i = obj_pred_i[0]
  85. cls_pred_i = cls_pred_i[0]
  86. box_pred_i = box_pred_i[0]
  87. if self.no_multi_labels:
  88. # [M,]
  89. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  90. # Keep top k top scoring indices only.
  91. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  92. # topk candidates
  93. predicted_prob, topk_idxs = scores.sort(descending=True)
  94. topk_scores = predicted_prob[:num_topk]
  95. topk_idxs = topk_idxs[:num_topk]
  96. # filter out the proposals with low confidence score
  97. keep_idxs = topk_scores > self.conf_thresh
  98. scores = topk_scores[keep_idxs]
  99. topk_idxs = topk_idxs[keep_idxs]
  100. labels = labels[topk_idxs]
  101. bboxes = box_pred_i[topk_idxs]
  102. else:
  103. # [M, C] -> [MC,]
  104. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  105. # Keep top k top scoring indices only.
  106. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  107. # torch.sort is actually faster than .topk (at least on GPUs)
  108. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  109. topk_scores = predicted_prob[:num_topk]
  110. topk_idxs = topk_idxs[:num_topk]
  111. # filter out the proposals with low confidence score
  112. keep_idxs = topk_scores > self.conf_thresh
  113. scores = topk_scores[keep_idxs]
  114. topk_idxs = topk_idxs[keep_idxs]
  115. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  116. labels = topk_idxs % self.num_classes
  117. bboxes = box_pred_i[anchor_idxs]
  118. all_scores.append(scores)
  119. all_labels.append(labels)
  120. all_bboxes.append(bboxes)
  121. scores = torch.cat(all_scores, dim=0)
  122. labels = torch.cat(all_labels, dim=0)
  123. bboxes = torch.cat(all_bboxes, dim=0)
  124. # to cpu & numpy
  125. scores = scores.cpu().numpy()
  126. labels = labels.cpu().numpy()
  127. bboxes = bboxes.cpu().numpy()
  128. # nms
  129. scores, labels, bboxes = multiclass_nms(
  130. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  131. return bboxes, scores, labels
  132. def forward(self, x):
  133. bs = x.shape[0]
  134. pyramid_feats = self.backbone(x)
  135. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  136. pyramid_feats = self.fpn(pyramid_feats)
  137. all_fmp_sizes = []
  138. all_obj_preds = []
  139. all_cls_preds = []
  140. all_box_preds = []
  141. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  142. cls_feat, reg_feat = head(feat)
  143. # [B, C, H, W]
  144. obj_pred = self.obj_preds[level](reg_feat)
  145. cls_pred = self.cls_preds[level](cls_feat)
  146. reg_pred = self.reg_preds[level](reg_feat)
  147. fmp_size = cls_pred.shape[-2:]
  148. # generate anchor boxes: [M, 4]
  149. anchors = self.generate_anchors(level, fmp_size)
  150. anchors = anchors.to(x.device)
  151. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  152. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  153. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  154. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  155. # decode bbox
  156. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 3.0 - 1.5 + anchors[..., :2]) * self.out_stride[level]
  157. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  158. pred_x1y1 = ctr_pred - wh_pred * 0.5
  159. pred_x2y2 = ctr_pred + wh_pred * 0.5
  160. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  161. all_obj_preds.append(obj_pred)
  162. all_cls_preds.append(cls_pred)
  163. all_box_preds.append(box_pred)
  164. all_fmp_sizes.append(fmp_size)
  165. if not self.training:
  166. bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
  167. outputs = {
  168. "scores": scores,
  169. "labels": labels,
  170. "bboxes": bboxes
  171. }
  172. else:
  173. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  174. "pred_cls": all_cls_preds, # List [B, M, C]
  175. "pred_box": all_box_preds, # List [B, M, 4]
  176. "fmp_sizes": all_fmp_sizes, # List
  177. "strides": self.out_stride, # List
  178. }
  179. return outputs