| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- import torch
- import torch.nn as nn
- from utils.misc import multiclass_nms
- # --------------- Model components ---------------
- from .yolov4_backbone import Yolov4Backbone
- from .yolov4_neck import SPPFBlockCSP
- from .yolov4_pafpn import Yolov4PaFPN
- from .yolov4_head import DecoupledHead
- # --------------- External components ---------------
- from utils.misc import multiclass_nms
- class Yolov4(nn.Module):
- def __init__(self, cfg, is_val: bool = False) -> None:
- super(Yolov4, self).__init__()
- # ---------------------- Basic setting ----------------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- self.out_stride = cfg.out_stride
- self.num_levels = len(cfg.out_stride)
- ## Post-process parameters
- self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
- self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
- self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
- self.no_multi_labels = False if is_val else True
- # ------------------- Anchor box setting -------------------
- self.num_anchors = len(cfg.anchor_size) // self.num_levels
- self.anchor_size = torch.as_tensor(
- cfg.anchor_size
- ).float().view(self.num_levels, self.num_anchors, 2) # [nl, na, 2]
-
- # ------------------- Network Structure -------------------
- self.backbone = Yolov4Backbone(use_pretrained=cfg.use_pretrained)
- self.neck = SPPFBlockCSP(self.backbone.feat_dims[-1], self.backbone.feat_dims[-1], expand_ratio=0.5)
- self.fpn = Yolov4PaFPN(self.backbone.feat_dims[-3:], head_dim=cfg.head_dim)
- self.non_shared_heads = nn.ModuleList([DecoupledHead(cfg, in_dim)
- for in_dim in self.fpn.fpn_out_dims
- ])
- ## 预测层
- self.obj_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_head_dim, 1 * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.cls_preds = nn.ModuleList(
- [nn.Conv2d(head.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
- self.reg_preds = nn.ModuleList(
- [nn.Conv2d(head.reg_head_dim, 4 * self.num_anchors, kernel_size=1)
- for head in self.non_shared_heads
- ])
-
- def generate_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- fmp_h, fmp_w = fmp_size
- # [KA, 2]
- anchor_size = self.anchor_size[level]
- # generate grid cells
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, KA, 2] -> [M, 2]
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2)
- anchor_xy += 0.5
- # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
- anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
- def post_process(self, obj_preds, cls_preds, box_preds):
- """
- We process predictions at each scale hierarchically
- Input:
- obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
- cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
- box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
- Output:
- bboxes: np.array -> [N, 4]
- scores: np.array -> [N,]
- labels: np.array -> [N,]
- """
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
- obj_pred_i = obj_pred_i[0]
- cls_pred_i = cls_pred_i[0]
- box_pred_i = box_pred_i[0]
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- labels = labels[topk_idxs]
- bboxes = box_pred_i[topk_idxs]
- else:
- # [M, C] -> [MC,]
- scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- bboxes = box_pred_i[anchor_idxs]
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores, dim=0)
- labels = torch.cat(all_labels, dim=0)
- bboxes = torch.cat(all_bboxes, dim=0)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes)
-
- return bboxes, scores, labels
-
- def forward(self, x):
- bs = x.shape[0]
- pyramid_feats = self.backbone(x)
- pyramid_feats[-1] = self.neck(pyramid_feats[-1])
- pyramid_feats = self.fpn(pyramid_feats)
- all_fmp_sizes = []
- all_obj_preds = []
- all_cls_preds = []
- all_box_preds = []
- for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
- cls_feat, reg_feat = head(feat)
- # [B, C, H, W]
- obj_pred = self.obj_preds[level](reg_feat)
- cls_pred = self.cls_preds[level](cls_feat)
- reg_pred = self.reg_preds[level](reg_feat)
- fmp_size = cls_pred.shape[-2:]
- # generate anchor boxes: [M, 4]
- anchors = self.generate_anchors(level, fmp_size)
- anchors = anchors.to(x.device)
-
- # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
- # decode bbox
- ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 3.0 - 1.5 + anchors[..., :2]) * self.out_stride[level]
- wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- pred_x1y1 = ctr_pred - wh_pred * 0.5
- pred_x2y2 = ctr_pred + wh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- all_obj_preds.append(obj_pred)
- all_cls_preds.append(cls_pred)
- all_box_preds.append(box_pred)
- all_fmp_sizes.append(fmp_size)
- if not self.training:
- bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
- else:
- outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
- "pred_cls": all_cls_preds, # List [B, M, C]
- "pred_box": all_box_preds, # List [B, M, 4]
- "fmp_sizes": all_fmp_sizes, # List
- "strides": self.out_stride, # List
- }
- return outputs
|