engine.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. import sys
  2. import math
  3. import torch
  4. from utils.misc import MetricLogger, SmoothedValue
  5. from utils.misc import accuracy
  6. def train_one_epoch(args,
  7. device,
  8. model,
  9. data_loader,
  10. optimizer,
  11. epoch,
  12. lr_scheduler_warmup,
  13. criterion,
  14. ):
  15. model.train(True)
  16. metric_logger = MetricLogger(delimiter=" ")
  17. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  18. header = 'Epoch: [{} / {}]'.format(epoch, args.max_epoch)
  19. print_freq = 20
  20. epoch_size = len(data_loader)
  21. optimizer.zero_grad()
  22. # train one epoch
  23. for iter_i, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
  24. ni = iter_i + epoch * epoch_size
  25. nw = args.wp_epoch * epoch_size
  26. # Warmup
  27. if nw > 0 and ni < nw:
  28. lr_scheduler_warmup(ni, optimizer)
  29. elif ni == nw:
  30. print("Warmup stage is over.")
  31. lr_scheduler_warmup.set_lr(optimizer, args.base_lr)
  32. # To device
  33. images = images.to(device, non_blocking=True)
  34. targets = targets.to(device, non_blocking=True)
  35. # Inference
  36. output = model(images)
  37. # Compute loss
  38. loss = criterion(output, targets)
  39. # Check loss
  40. loss_value = loss.item()
  41. if not math.isfinite(loss_value):
  42. print("Loss is {}, stopping training".format(loss_value))
  43. sys.exit(1)
  44. # Backward
  45. loss.backward()
  46. # Optimize
  47. optimizer.step()
  48. optimizer.zero_grad()
  49. # Logs
  50. lr = optimizer.param_groups[0]["lr"]
  51. metric_logger.update(loss=loss_value)
  52. metric_logger.update(lr=lr)
  53. # gather the stats from all processes
  54. print("Averaged stats: {}".format(metric_logger))
  55. return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
  56. @torch.no_grad()
  57. def evaluate(data_loader, model, device):
  58. criterion = torch.nn.CrossEntropyLoss()
  59. metric_logger = MetricLogger(delimiter=" ")
  60. header = 'Test:'
  61. # Switch to evaluation mode
  62. model.eval()
  63. for batch in metric_logger.log_every(data_loader, 10, header):
  64. images = batch[0]
  65. target = batch[1]
  66. images = images.to(device, non_blocking=True)
  67. target = target.to(device, non_blocking=True)
  68. # Inference
  69. output = model(images)
  70. # Compute loss
  71. loss = criterion(output, target)
  72. # Compute accuracy
  73. acc1, acc5 = accuracy(output, target, topk=(1, 5))
  74. batch_size = images.shape[0]
  75. metric_logger.update(loss=loss.item())
  76. metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
  77. metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
  78. # gather the stats from all processes
  79. print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
  80. .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)
  81. )
  82. return {k: meter.global_avg for k, meter in metric_logger.meters.items()}