train.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. from __future__ import division
  2. import os
  3. import random
  4. import numpy as np
  5. import argparse
  6. from copy import deepcopy
  7. # ----------------- Torch Components -----------------
  8. import torch
  9. import torch.distributed as dist
  10. from torch.nn.parallel import DistributedDataParallel as DDP
  11. # ----------------- Extra Components -----------------
  12. from utils import distributed_utils
  13. from utils.misc import compute_flops, build_dataloader, CollateFunc, ModelEMA
  14. # ----------------- Config Components -----------------
  15. from config import build_config
  16. # ----------------- Data Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # ----------------- Evaluator Components -----------------
  19. from evaluator.build import build_evluator
  20. # ----------------- Model Components -----------------
  21. from models import build_model
  22. # ----------------- Train Components -----------------
  23. from engine import build_trainer
  24. def parse_args():
  25. parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
  26. # Random seed
  27. parser.add_argument('--seed', default=42, type=int)
  28. # GPU
  29. parser.add_argument('--cuda', action='store_true', default=False,
  30. help='use cuda.')
  31. # Image size
  32. parser.add_argument('--eval_first', action='store_true', default=False,
  33. help='evaluate model before training.')
  34. # Outputs
  35. parser.add_argument('--tfboard', action='store_true', default=False,
  36. help='use tensorboard')
  37. parser.add_argument('--save_folder', default='weights/', type=str,
  38. help='path to save weight')
  39. parser.add_argument('--vis_tgt', action="store_true", default=False,
  40. help="visualize training data.")
  41. parser.add_argument('--vis_aux_loss', action="store_true", default=False,
  42. help="visualize aux loss.")
  43. # Mixing precision
  44. parser.add_argument('--fp16', dest="fp16", action="store_true", default=False,
  45. help="Adopting mix precision training.")
  46. # Batchsize
  47. parser.add_argument('-bs', '--batch_size', default=16, type=int,
  48. help='batch size on all the GPUs.')
  49. # Model
  50. parser.add_argument('-m', '--model', default='yolo_n', type=str,
  51. help='build yolo')
  52. parser.add_argument('-p', '--pretrained', default=None, type=str,
  53. help='load pretrained weight')
  54. parser.add_argument('-r', '--resume', default=None, type=str,
  55. help='keep training')
  56. # Dataset
  57. parser.add_argument('--root', default='D:/python_work/dataset/VOCdevkit/',
  58. help='data root')
  59. parser.add_argument('-d', '--dataset', default='coco',
  60. help='coco, voc')
  61. parser.add_argument('--num_workers', default=4, type=int,
  62. help='Number of workers used in dataloading')
  63. # DDP train
  64. parser.add_argument('-dist', '--distributed', action='store_true', default=False,
  65. help='distributed training')
  66. parser.add_argument('--dist_url', default='env://',
  67. help='url used to set up distributed training')
  68. parser.add_argument('--world_size', default=1, type=int,
  69. help='number of distributed processes')
  70. parser.add_argument('--sybn', action='store_true', default=False,
  71. help='use sybn.')
  72. parser.add_argument('--find_unused_parameters', action='store_true', default=False,
  73. help='set find_unused_parameters as True.')
  74. # Debug mode
  75. parser.add_argument('--debug', action='store_true', default=False,
  76. help='debug mode.')
  77. return parser.parse_args()
  78. def fix_random_seed(args):
  79. seed = args.seed + distributed_utils.get_rank()
  80. torch.manual_seed(seed)
  81. np.random.seed(seed)
  82. random.seed(seed)
  83. def train():
  84. args = parse_args()
  85. print("Setting Arguments.. : ", args)
  86. print("----------------------------------------------------------")
  87. # ---------------------------- Build DDP ----------------------------
  88. local_rank = local_process_rank = -1
  89. if args.distributed:
  90. distributed_utils.init_distributed_mode(args)
  91. print("git:\n {}\n".format(distributed_utils.get_sha()))
  92. try:
  93. # Multiple Mechine & Multiple GPUs (world size > 8)
  94. local_rank = torch.distributed.get_rank()
  95. local_process_rank = int(os.getenv('LOCAL_PROCESS_RANK', '0'))
  96. except:
  97. # Single Mechine & Multiple GPUs (world size <= 8)
  98. local_rank = local_process_rank = torch.distributed.get_rank()
  99. world_size = distributed_utils.get_world_size()
  100. print("LOCAL RANK: ", local_rank)
  101. print("LOCAL_PROCESS_RANL: ", local_process_rank)
  102. print('WORLD SIZE: {}'.format(world_size))
  103. # ---------------------------- Build CUDA ----------------------------
  104. if args.cuda and torch.cuda.is_available():
  105. print('use cuda')
  106. device = torch.device("cuda")
  107. else:
  108. device = torch.device("cpu")
  109. # ---------------------------- Fix random seed ----------------------------
  110. fix_random_seed(args)
  111. # ---------------------------- Build config ----------------------------
  112. cfg = build_config(args)
  113. # ---------------------------- Build Transform ----------------------------
  114. train_transform = build_transform(cfg, is_train=True)
  115. val_transform = build_transform(cfg, is_train=False)
  116. # ---------------------------- Build Dataset & Dataloader ----------------------------
  117. dataset = build_dataset(args, cfg, train_transform, is_train=True)
  118. train_loader = build_dataloader(args, dataset, args.batch_size // world_size, CollateFunc())
  119. # ---------------------------- Build Evaluator ----------------------------
  120. evaluator = build_evluator(args, cfg, val_transform, device)
  121. # ---------------------------- Build model ----------------------------
  122. ## Build model
  123. model, criterion = build_model(args, cfg, is_val=True)
  124. model = model.to(device).train()
  125. model_without_ddp = model
  126. # ---------------------------- Build Model-EMA ----------------------------
  127. if cfg.use_ema and distributed_utils.get_rank() in [-1, 0]:
  128. print('Build ModelEMA for {} ...'.format(args.model))
  129. model_ema = ModelEMA(model, cfg.ema_decay, cfg.ema_tau, args.resume)
  130. else:
  131. model_ema = None
  132. ## Calcute Params & GFLOPs
  133. if distributed_utils.is_main_process:
  134. model_copy = deepcopy(model_without_ddp)
  135. model_copy.trainable = False
  136. model_copy.eval()
  137. compute_flops(model=model_copy,
  138. img_size=cfg.test_img_size,
  139. device=device)
  140. del model_copy
  141. if args.distributed:
  142. dist.barrier()
  143. ## Build DDP model
  144. if args.distributed:
  145. model = DDP(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
  146. if args.sybn:
  147. print('use SyncBatchNorm ...')
  148. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
  149. model_without_ddp = model.module
  150. if args.distributed:
  151. dist.barrier()
  152. # ---------------------------- Build Trainer ----------------------------
  153. trainer = build_trainer(args, cfg, device, model, model_ema, criterion, train_transform, val_transform, dataset, train_loader, evaluator)
  154. ## Eval before training
  155. if args.eval_first and distributed_utils.is_main_process():
  156. # to check whether the evaluator can work
  157. model_eval = model_without_ddp
  158. trainer.eval(model_eval)
  159. return
  160. garbage = torch.randn(640, 1024, 75, 75).to(device) # 15 G
  161. # ---------------------------- Train pipeline ----------------------------
  162. trainer.train(model)
  163. # Empty cache after train loop
  164. del trainer
  165. del garbage
  166. if args.cuda:
  167. torch.cuda.empty_cache()
  168. if __name__ == '__main__':
  169. train()