optimizer.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. import torch
  2. def build_yolo_optimizer(cfg, model, resume=None):
  3. print('==============================')
  4. print('Optimizer: {}'.format(cfg.optimizer))
  5. print('--base lr: {}'.format(cfg.base_lr))
  6. print('--min lr: {}'.format(cfg.min_lr))
  7. print('--momentum: {}'.format(cfg.momentum))
  8. print('--weight_decay: {}'.format(cfg.weight_decay))
  9. print('--grad accumulate: {}'.format(cfg.grad_accumulate))
  10. # ------------- Divide model's parameters -------------
  11. param_dicts = [], [], []
  12. norm_names = ["norm"] + ["norm{}".format(i) for i in range(10000)]
  13. for n, p in model.named_parameters():
  14. if p.requires_grad:
  15. if "bias" == n.split(".")[-1]:
  16. param_dicts[0].append(p) # no weight decay for all layers' bias
  17. else:
  18. if n.split(".")[-2] in norm_names:
  19. param_dicts[1].append(p) # no weight decay for all NormLayers' weight
  20. else:
  21. param_dicts[2].append(p) # weight decay for all Non-NormLayers' weight
  22. # Build optimizer
  23. if cfg.optimizer == 'sgd':
  24. optimizer = torch.optim.SGD(param_dicts[0], lr=cfg.base_lr, momentum=cfg.momentum, weight_decay=0.0)
  25. elif cfg.optimizer =='adamw':
  26. optimizer = torch.optim.AdamW(param_dicts[0], lr=cfg.base_lr, weight_decay=0.0)
  27. else:
  28. raise NotImplementedError("Unknown optimizer: {}".format(cfg.optimizer))
  29. # Add param groups
  30. optimizer.add_param_group({"params": param_dicts[1], "weight_decay": 0.0})
  31. optimizer.add_param_group({"params": param_dicts[2], "weight_decay": cfg.weight_decay})
  32. start_epoch = 0
  33. if resume and resume != 'None':
  34. checkpoint = torch.load(resume)
  35. # checkpoint state dict
  36. try:
  37. checkpoint_state_dict = checkpoint.pop("optimizer")
  38. print('--Load optimizer from the checkpoint: ', resume)
  39. optimizer.load_state_dict(checkpoint_state_dict)
  40. start_epoch = checkpoint.pop("epoch") + 1
  41. del checkpoint, checkpoint_state_dict
  42. except:
  43. print("No optimzier in the given checkpoint.")
  44. return optimizer, start_epoch
  45. def build_rtdetr_optimizer(cfg, model, resume=None):
  46. print('==============================')
  47. print('Optimizer: {}'.format(cfg.optimizer))
  48. print('--base lr: {}'.format(cfg.base_lr))
  49. print('--weight_decay: {}'.format(cfg.weight_decay))
  50. print('--grad accumulate: {}'.format(cfg.grad_accumulate))
  51. # ------------- Divide model's parameters -------------
  52. param_dicts = [], [], [], [], [], []
  53. norm_names = ["norm"] + ["norm{}".format(i) for i in range(10000)]
  54. for n, p in model.named_parameters():
  55. # Non-Backbone's learnable parameters
  56. if "backbone" not in n and p.requires_grad:
  57. if "bias" == n.split(".")[-1]:
  58. param_dicts[0].append(p) # no weight decay for all layers' bias
  59. else:
  60. if n.split(".")[-2] in norm_names:
  61. param_dicts[1].append(p) # no weight decay for all NormLayers' weight
  62. else:
  63. param_dicts[2].append(p) # weight decay for all Non-NormLayers' weight
  64. # Backbone's learnable parameters
  65. elif "backbone" in n and p.requires_grad:
  66. if "bias" == n.split(".")[-1]:
  67. param_dicts[3].append(p) # no weight decay for all layers' bias
  68. else:
  69. if n.split(".")[-2] in norm_names:
  70. param_dicts[4].append(p) # no weight decay for all NormLayers' weight
  71. else:
  72. param_dicts[5].append(p) # weight decay for all Non-NormLayers' weight
  73. # Non-Backbone's learnable parameters
  74. optimizer = torch.optim.AdamW(param_dicts[0], lr=cfg.base_lr, weight_decay=0.0)
  75. optimizer.add_param_group({"params": param_dicts[1], "weight_decay": 0.0})
  76. optimizer.add_param_group({"params": param_dicts[2], "weight_decay": cfg.weight_decay})
  77. # Backbone's learnable parameters
  78. backbone_lr = cfg.base_lr * cfg.backbone_lr_ratio
  79. optimizer.add_param_group({"params": param_dicts[3], "lr": backbone_lr, "weight_decay": 0.0})
  80. optimizer.add_param_group({"params": param_dicts[4], "lr": backbone_lr, "weight_decay": 0.0})
  81. optimizer.add_param_group({"params": param_dicts[5], "lr": backbone_lr, "weight_decay": cfg.weight_decay})
  82. start_epoch = 0
  83. if resume and resume != 'None':
  84. print('--Load optimizer from the checkpoint: ', resume)
  85. checkpoint = torch.load(resume)
  86. # checkpoint state dict
  87. checkpoint_state_dict = checkpoint.pop("optimizer")
  88. optimizer.load_state_dict(checkpoint_state_dict)
  89. start_epoch = checkpoint.pop("epoch") + 1
  90. return optimizer, start_epoch