yolov8_pred.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # -------------------- Detection Pred Layer --------------------
  6. ## Single-level pred layer
  7. class DetPredLayer(nn.Module):
  8. def __init__(self,
  9. cls_dim :int = 256,
  10. reg_dim :int = 256,
  11. stride :int = 32,
  12. reg_max :int = 16,
  13. num_classes :int = 80,
  14. num_coords :int = 4):
  15. super().__init__()
  16. # --------- Basic Parameters ----------
  17. self.stride = stride
  18. self.cls_dim = cls_dim
  19. self.reg_dim = reg_dim
  20. self.reg_max = reg_max
  21. self.num_classes = num_classes
  22. self.num_coords = num_coords
  23. # --------- Network Parameters ----------
  24. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  25. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  26. self.init_bias()
  27. def init_bias(self):
  28. # cls pred bias
  29. b = self.cls_pred.bias.view(1, -1)
  30. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  31. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. # reg pred bias
  33. b = self.reg_pred.bias.view(-1, )
  34. b.data.fill_(1.0)
  35. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. def generate_anchors(self, fmp_size):
  37. """
  38. fmp_size: (List) [H, W]
  39. """
  40. # generate grid cells
  41. fmp_h, fmp_w = fmp_size
  42. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  43. # [H, W, 2] -> [HW, 2]
  44. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  45. anchors += 0.5 # add center offset
  46. anchors *= self.stride
  47. return anchors
  48. def forward(self, cls_feat, reg_feat):
  49. # pred
  50. cls_pred = self.cls_pred(cls_feat)
  51. reg_pred = self.reg_pred(reg_feat)
  52. # generate anchor boxes: [M, 4]
  53. B, _, H, W = cls_pred.size()
  54. fmp_size = [H, W]
  55. anchors = self.generate_anchors(fmp_size)
  56. anchors = anchors.to(cls_pred.device)
  57. # stride tensor: [M, 1]
  58. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  59. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  60. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  61. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  62. # output dict
  63. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  64. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  65. "anchors": anchors, # List(Tensor) [M, 2]
  66. "strides": self.stride, # List(Int) = [8, 16, 32]
  67. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  68. }
  69. return outputs
  70. ## Multi-level pred layer
  71. class Yolov8DetPredLayer(nn.Module):
  72. def __init__(self,
  73. cfg,
  74. cls_dim,
  75. reg_dim,
  76. ):
  77. super().__init__()
  78. # --------- Basic Parameters ----------
  79. self.cfg = cfg
  80. self.cls_dim = cls_dim
  81. self.reg_dim = reg_dim
  82. # ----------- Network Parameters -----------
  83. ## pred layers
  84. self.multi_level_preds = nn.ModuleList(
  85. [DetPredLayer(cls_dim = cls_dim,
  86. reg_dim = reg_dim,
  87. stride = cfg.out_stride[level],
  88. reg_max = cfg.reg_max,
  89. num_classes = cfg.num_classes,
  90. num_coords = 4 * cfg.reg_max)
  91. for level in range(cfg.num_levels)
  92. ])
  93. ## proj conv
  94. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  95. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  96. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  97. def forward(self, cls_feats, reg_feats):
  98. all_anchors = []
  99. all_strides = []
  100. all_cls_preds = []
  101. all_reg_preds = []
  102. all_box_preds = []
  103. for level in range(self.cfg.num_levels):
  104. # -------------- Single-level prediction --------------
  105. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  106. # -------------- Decode bbox --------------
  107. B, M = outputs["pred_reg"].shape[:2]
  108. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  109. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  110. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  111. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  112. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  113. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  114. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  115. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  116. ## tlbr -> xyxy
  117. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  118. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  119. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  120. # collect results
  121. all_cls_preds.append(outputs["pred_cls"])
  122. all_reg_preds.append(outputs["pred_reg"])
  123. all_box_preds.append(box_pred)
  124. all_anchors.append(outputs["anchors"])
  125. all_strides.append(outputs["stride_tensor"])
  126. # output dict
  127. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  128. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  129. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  130. "anchors": all_anchors, # List(Tensor) [M, 2]
  131. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  132. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  133. }
  134. return outputs
  135. # -------------------- Segmentation Pred Layer --------------------
  136. ## Single-level pred layer (not complete yet)
  137. class SegPredLayer(nn.Module):
  138. def __init__(self,
  139. cls_dim :int = 256,
  140. reg_dim :int = 256,
  141. seg_dim :int = 256,
  142. stride :int = 32,
  143. reg_max :int = 16,
  144. num_classes :int = 80,
  145. num_coords :int = 4):
  146. super().__init__()
  147. # --------- Basic Parameters ----------
  148. self.stride = stride
  149. self.cls_dim = cls_dim
  150. self.reg_dim = reg_dim
  151. self.seg_dim = seg_dim
  152. self.reg_max = reg_max
  153. self.num_classes = num_classes
  154. self.num_coords = num_coords
  155. # --------- Network Parameters ----------
  156. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  157. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  158. self.seg_pred = nn.Conv2d(seg_dim, 1, kernel_size=1)
  159. self.init_bias()
  160. def init_bias(self):
  161. # cls pred bias
  162. b = self.cls_pred.bias.view(1, -1)
  163. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  164. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  165. # reg pred bias
  166. b = self.reg_pred.bias.view(-1, )
  167. b.data.fill_(1.0)
  168. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  169. # seg pred bias
  170. b = self.seg_pred.bias.view(-1, )
  171. b.data.fill_(1.0)
  172. self.seg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  173. def generate_anchors(self, fmp_size):
  174. """
  175. fmp_size: (List) [H, W]
  176. """
  177. # generate grid cells
  178. fmp_h, fmp_w = fmp_size
  179. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  180. # [H, W, 2] -> [HW, 2]
  181. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  182. anchors += 0.5 # add center offset
  183. anchors *= self.stride
  184. return anchors
  185. def forward(self, cls_feat, reg_feat, seg_feat):
  186. # pred
  187. cls_pred = self.cls_pred(cls_feat)
  188. reg_pred = self.reg_pred(reg_feat)
  189. seg_pred = self.seg_pred(seg_feat)
  190. # generate anchor boxes: [M, 4]
  191. B, _, H, W = cls_pred.size()
  192. fmp_size = [H, W]
  193. anchors = self.generate_anchors(fmp_size)
  194. anchors = anchors.to(cls_pred.device)
  195. # stride tensor: [M, 1]
  196. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  197. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  198. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  199. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  200. # output dict
  201. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  202. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  203. "anchors": anchors, # List(Tensor) [M, 2]
  204. "strides": self.stride, # List(Int) = [8, 16, 32]
  205. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  206. }
  207. return outputs
  208. ## Multi-level pred layer
  209. class YoloSegPredLayer(nn.Module):
  210. def __init__(self,
  211. cfg,
  212. cls_dim,
  213. reg_dim,
  214. seg_dim,
  215. ):
  216. super().__init__()
  217. # --------- Basic Parameters ----------
  218. self.cfg = cfg
  219. self.cls_dim = cls_dim
  220. self.reg_dim = reg_dim
  221. self.seg_dim = seg_dim
  222. # ----------- Network Parameters -----------
  223. ## pred layers
  224. self.multi_level_preds = nn.ModuleList(
  225. [SegPredLayer(cls_dim = cls_dim,
  226. reg_dim = reg_dim,
  227. seg_dim = seg_dim,
  228. stride = cfg.out_stride[level],
  229. reg_max = cfg.reg_max,
  230. num_classes = cfg.num_classes,
  231. num_coords = 4 * cfg.reg_max)
  232. for level in range(cfg.num_levels)
  233. ])
  234. ## proj conv
  235. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  236. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  237. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  238. def forward(self, cls_feats, reg_feats, seg_feats):
  239. all_anchors = []
  240. all_strides = []
  241. all_cls_preds = []
  242. all_reg_preds = []
  243. all_seg_preds = []
  244. all_box_preds = []
  245. for level in range(self.cfg.num_levels):
  246. # -------------- Single-level prediction --------------
  247. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level], seg_feats[level])
  248. # -------------- Decode bbox --------------
  249. B, M = outputs["pred_reg"].shape[:2]
  250. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  251. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  252. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  253. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  254. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  255. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  256. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  257. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  258. ## tlbr -> xyxy
  259. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  260. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  261. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  262. # collect results
  263. all_cls_preds.append(outputs["pred_cls"])
  264. all_reg_preds.append(outputs["pred_reg"])
  265. all_box_preds.append(box_pred)
  266. all_anchors.append(outputs["anchors"])
  267. all_strides.append(outputs["stride_tensor"])
  268. # output dict
  269. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  270. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  271. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  272. "anchors": all_anchors, # List(Tensor) [M, 2]
  273. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  274. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  275. }
  276. return outputs