yolov1_backbone.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. import torch
  2. import torch.nn as nn
  3. import torch.utils.model_zoo as model_zoo
  4. try:
  5. from .yolov1_basic import conv1x1, BasicBlock, Bottleneck
  6. except:
  7. from yolov1_basic import conv1x1, BasicBlock, Bottleneck
  8. __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
  9. 'resnet152']
  10. model_urls = {
  11. 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
  12. 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
  13. 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
  14. 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
  15. 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
  16. }
  17. # --------------------- Yolov1's Backbone -----------------------
  18. class Yolov1Backbone(nn.Module):
  19. def __init__(self, cfg):
  20. super().__init__()
  21. self.backbone, self.feat_dim = build_resnet(cfg.backbone, cfg.use_pretrained)
  22. def forward(self, x):
  23. c5 = self.backbone(x)
  24. return c5
  25. # --------------------- ResNet -----------------------
  26. class ResNet(nn.Module):
  27. def __init__(self, block, layers, zero_init_residual=False):
  28. super(ResNet, self).__init__()
  29. self.inplanes = 64
  30. self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
  31. bias=False)
  32. self.bn1 = nn.BatchNorm2d(64)
  33. self.relu = nn.ReLU(inplace=True)
  34. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  35. self.layer1 = self._make_layer(block, 64, layers[0])
  36. self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
  37. self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
  38. self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
  39. for m in self.modules():
  40. if isinstance(m, nn.Conv2d):
  41. nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  42. elif isinstance(m, nn.BatchNorm2d):
  43. nn.init.constant_(m.weight, 1)
  44. nn.init.constant_(m.bias, 0)
  45. # Zero-initialize the last BN in each residual branch,
  46. # so that the residual branch starts with zeros, and each residual block behaves like an identity.
  47. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
  48. if zero_init_residual:
  49. for m in self.modules():
  50. if isinstance(m, Bottleneck):
  51. nn.init.constant_(m.bn3.weight, 0)
  52. elif isinstance(m, BasicBlock):
  53. nn.init.constant_(m.bn2.weight, 0)
  54. def _make_layer(self, block, planes, blocks, stride=1):
  55. downsample = None
  56. if stride != 1 or self.inplanes != planes * block.expansion:
  57. downsample = nn.Sequential(
  58. conv1x1(self.inplanes, planes * block.expansion, stride),
  59. nn.BatchNorm2d(planes * block.expansion),
  60. )
  61. layers = []
  62. layers.append(block(self.inplanes, planes, stride, downsample))
  63. self.inplanes = planes * block.expansion
  64. for _ in range(1, blocks):
  65. layers.append(block(self.inplanes, planes))
  66. return nn.Sequential(*layers)
  67. def forward(self, x):
  68. """
  69. Input:
  70. x: (Tensor) -> [B, C, H, W]
  71. Output:
  72. c5: (Tensor) -> [B, C, H/32, W/32]
  73. """
  74. c1 = self.conv1(x) # [B, C, H/2, W/2]
  75. c1 = self.bn1(c1) # [B, C, H/2, W/2]
  76. c1 = self.relu(c1) # [B, C, H/2, W/2]
  77. c2 = self.maxpool(c1) # [B, C, H/4, W/4]
  78. c2 = self.layer1(c2) # [B, C, H/4, W/4]
  79. c3 = self.layer2(c2) # [B, C, H/8, W/8]
  80. c4 = self.layer3(c3) # [B, C, H/16, W/16]
  81. c5 = self.layer4(c4) # [B, C, H/32, W/32]
  82. return c5
  83. # --------------------- Functions -----------------------
  84. def build_resnet(model_name="resnet18", pretrained=False):
  85. if model_name == 'resnet18':
  86. model = resnet18(pretrained)
  87. feat_dim = 512
  88. elif model_name == 'resnet34':
  89. model = resnet34(pretrained)
  90. feat_dim = 512
  91. elif model_name == 'resnet50':
  92. model = resnet50(pretrained)
  93. feat_dim = 2048
  94. elif model_name == 'resnet101':
  95. model = resnet34(pretrained)
  96. feat_dim = 2048
  97. else:
  98. raise NotImplementedError("Unknown resnet: {}".format(model_name))
  99. return model, feat_dim
  100. def resnet18(pretrained=False, **kwargs):
  101. """Constructs a ResNet-18 model.
  102. Args:
  103. pretrained (bool): If True, returns a model pre-trained on ImageNet
  104. """
  105. model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
  106. if pretrained:
  107. # strict = False as we don't need fc layer params.
  108. model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
  109. return model
  110. def resnet34(pretrained=False, **kwargs):
  111. """Constructs a ResNet-34 model.
  112. Args:
  113. pretrained (bool): If True, returns a model pre-trained on ImageNet
  114. """
  115. model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
  116. if pretrained:
  117. model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
  118. return model
  119. def resnet50(pretrained=False, **kwargs):
  120. """Constructs a ResNet-50 model.
  121. Args:
  122. pretrained (bool): If True, returns a model pre-trained on ImageNet
  123. """
  124. model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
  125. if pretrained:
  126. model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
  127. return model
  128. def resnet101(pretrained=False, **kwargs):
  129. """Constructs a ResNet-101 model.
  130. Args:
  131. pretrained (bool): If True, returns a model pre-trained on ImageNet
  132. """
  133. model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
  134. if pretrained:
  135. model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
  136. return model
  137. def resnet152(pretrained=False, **kwargs):
  138. """Constructs a ResNet-152 model.
  139. Args:
  140. pretrained (bool): If True, returns a model pre-trained on ImageNet
  141. """
  142. model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
  143. if pretrained:
  144. model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
  145. return model
  146. if __name__=='__main__':
  147. import time
  148. from thop import profile
  149. # YOLOv8-Base config
  150. class Yolov1BaseConfig(object):
  151. def __init__(self) -> None:
  152. # ---------------- Model config ----------------
  153. self.out_stride = 32
  154. self.max_stride = 32
  155. ## Backbone
  156. self.backbone = 'resnet18'
  157. self.use_pretrained = True
  158. cfg = Yolov1BaseConfig()
  159. # Build backbone
  160. model = Yolov1Backbone(cfg)
  161. # Inference
  162. x = torch.randn(1, 3, 640, 640)
  163. t0 = time.time()
  164. output = model(x)
  165. t1 = time.time()
  166. print('Time: ', t1 - t0)
  167. print(output.shape)
  168. print('==============================')
  169. flops, params = profile(model, inputs=(x, ), verbose=False)
  170. print('==============================')
  171. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  172. print('Params : {:.2f} M'.format(params / 1e6))