yolov1.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov1_backbone import Yolov1Backbone
  6. from .yolov1_neck import SPPF
  7. from .yolov1_head import Yolov1DetHead
  8. from .yolov1_pred import Yolov1DetPredLayer
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # YOLOv1
  12. class Yolov1(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. is_val = False,
  16. ) -> None:
  17. super(Yolov1, self).__init__()
  18. # ---------------------- Basic setting ----------------------
  19. self.cfg = cfg
  20. self.num_classes = cfg.num_classes
  21. ## Post-process parameters
  22. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  23. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  24. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  25. self.no_multi_labels = False if is_val else True
  26. # ---------------------- Network Parameters ----------------------
  27. self.backbone = Yolov1Backbone(cfg)
  28. self.neck = SPPF(cfg, self.backbone.feat_dim, cfg.head_dim)
  29. self.head = Yolov1DetHead(cfg, self.neck.out_dim)
  30. self.pred = Yolov1DetPredLayer(cfg, self.num_classes)
  31. def post_process(self, obj_preds, cls_preds, box_preds):
  32. """
  33. We process predictions at each scale hierarchically
  34. Input:
  35. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  36. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  37. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  38. Output:
  39. bboxes: np.array -> [N, 4]
  40. scores: np.array -> [N,]
  41. labels: np.array -> [N,]
  42. """
  43. all_scores = []
  44. all_labels = []
  45. all_bboxes = []
  46. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  47. obj_pred_i = obj_pred_i[0]
  48. cls_pred_i = cls_pred_i[0]
  49. box_pred_i = box_pred_i[0]
  50. if self.no_multi_labels:
  51. # [M,]
  52. scores, labels = torch.max(
  53. torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  54. # Keep top k top scoring indices only.
  55. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  56. # topk candidates
  57. predicted_prob, topk_idxs = scores.sort(descending=True)
  58. topk_scores = predicted_prob[:num_topk]
  59. topk_idxs = topk_idxs[:num_topk]
  60. # filter out the proposals with low confidence score
  61. keep_idxs = topk_scores > self.conf_thresh
  62. scores = topk_scores[keep_idxs]
  63. topk_idxs = topk_idxs[keep_idxs]
  64. labels = labels[topk_idxs]
  65. bboxes = box_pred_i[topk_idxs]
  66. else:
  67. # [M, C] -> [MC,]
  68. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  69. # Keep top k top scoring indices only.
  70. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  71. # torch.sort is actually faster than .topk (at least on GPUs)
  72. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  73. topk_scores = predicted_prob[:num_topk]
  74. topk_idxs = topk_idxs[:num_topk]
  75. # filter out the proposals with low confidence score
  76. keep_idxs = topk_scores > self.conf_thresh
  77. scores = topk_scores[keep_idxs]
  78. topk_idxs = topk_idxs[keep_idxs]
  79. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  80. labels = topk_idxs % self.num_classes
  81. bboxes = box_pred_i[anchor_idxs]
  82. all_scores.append(scores)
  83. all_labels.append(labels)
  84. all_bboxes.append(bboxes)
  85. scores = torch.cat(all_scores, dim=0)
  86. labels = torch.cat(all_labels, dim=0)
  87. bboxes = torch.cat(all_bboxes, dim=0)
  88. # to cpu & numpy
  89. scores = scores.cpu().numpy()
  90. labels = labels.cpu().numpy()
  91. bboxes = bboxes.cpu().numpy()
  92. # nms
  93. scores, labels, bboxes = multiclass_nms(
  94. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  95. return bboxes, scores, labels
  96. def forward(self, x):
  97. # ---------------- Backbone ----------------
  98. x = self.backbone(x)
  99. # ---------------- Neck ----------------
  100. x = self.neck(x)
  101. # ---------------- Heads ----------------
  102. cls_feats, reg_feats = self.head(x)
  103. # ---------------- Preds ----------------
  104. outputs = self.pred(cls_feats, reg_feats)
  105. outputs['image_size'] = [x.shape[2], x.shape[3]]
  106. if not self.training:
  107. all_obj_preds = [outputs['pred_obj'],]
  108. all_cls_preds = [outputs['pred_cls'],]
  109. all_box_preds = [outputs['pred_box'],]
  110. # post process
  111. bboxes, scores, labels = self.post_process(
  112. all_obj_preds, all_cls_preds, all_box_preds)
  113. outputs = {
  114. "scores": scores,
  115. "labels": labels,
  116. "bboxes": bboxes
  117. }
  118. return outputs