| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- # --------------- Torch components ---------------
- import torch
- import torch.nn as nn
- # --------------- Model components ---------------
- from .yolov1_backbone import Yolov1Backbone
- from .yolov1_neck import SPPF
- from .yolov1_head import Yolov1DetHead
- from .yolov1_pred import Yolov1DetPredLayer
- # --------------- External components ---------------
- from utils.misc import multiclass_nms
- # YOLOv1
- class Yolov1(nn.Module):
- def __init__(self,
- cfg,
- is_val = False,
- ) -> None:
- super(Yolov1, self).__init__()
- # ---------------------- Basic setting ----------------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- ## Post-process parameters
- self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
- self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
- self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
- self.no_multi_labels = False if is_val else True
-
- # ---------------------- Network Parameters ----------------------
- self.backbone = Yolov1Backbone(cfg)
- self.neck = SPPF(cfg, self.backbone.feat_dim, cfg.head_dim)
- self.head = Yolov1DetHead(cfg, self.neck.out_dim)
- self.pred = Yolov1DetPredLayer(cfg, self.num_classes)
- def post_process(self, obj_preds, cls_preds, box_preds):
- """
- We process predictions at each scale hierarchically
- Input:
- obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
- cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
- box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
- Output:
- bboxes: np.array -> [N, 4]
- scores: np.array -> [N,]
- labels: np.array -> [N,]
- """
- all_scores = []
- all_labels = []
- all_bboxes = []
-
- for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
- obj_pred_i = obj_pred_i[0]
- cls_pred_i = cls_pred_i[0]
- box_pred_i = box_pred_i[0]
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(
- torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- labels = labels[topk_idxs]
- bboxes = box_pred_i[topk_idxs]
- else:
- # [M, C] -> [MC,]
- scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, box_pred_i.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores_i.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- bboxes = box_pred_i[anchor_idxs]
- all_scores.append(scores)
- all_labels.append(labels)
- all_bboxes.append(bboxes)
- scores = torch.cat(all_scores, dim=0)
- labels = torch.cat(all_labels, dim=0)
- bboxes = torch.cat(all_bboxes, dim=0)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes)
-
- return bboxes, scores, labels
-
- def forward(self, x):
- # ---------------- Backbone ----------------
- x = self.backbone(x)
- # ---------------- Neck ----------------
- x = self.neck(x)
- # ---------------- Heads ----------------
- cls_feats, reg_feats = self.head(x)
- # ---------------- Preds ----------------
- outputs = self.pred(cls_feats, reg_feats)
- outputs['image_size'] = [x.shape[2], x.shape[3]]
- if not self.training:
- all_obj_preds = [outputs['pred_obj'],]
- all_cls_preds = [outputs['pred_cls'],]
- all_box_preds = [outputs['pred_box'],]
- # post process
- bboxes, scores, labels = self.post_process(
- all_obj_preds, all_cls_preds, all_box_preds)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
-
- return outputs
|