transformer.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. import math
  2. import copy
  3. import torch
  4. import torch.nn as nn
  5. import torch.nn.functional as F
  6. from .mlp import FFN
  7. def get_clones(module, N):
  8. if N <= 0:
  9. return None
  10. else:
  11. return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
  12. def inverse_sigmoid(x, eps=1e-5):
  13. x = x.clamp(min=0., max=1.)
  14. return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
  15. # ----------------- Basic Transformer Ops -----------------
  16. def multi_scale_deformable_attn_pytorch(
  17. value: torch.Tensor,
  18. value_spatial_shapes: torch.Tensor,
  19. sampling_locations: torch.Tensor,
  20. attention_weights: torch.Tensor,
  21. ) -> torch.Tensor:
  22. bs, _, num_heads, embed_dims = value.shape
  23. _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
  24. value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
  25. sampling_grids = 2 * sampling_locations - 1
  26. sampling_value_list = []
  27. for level, (H_, W_) in enumerate(value_spatial_shapes):
  28. # bs, H_*W_, num_heads, embed_dims ->
  29. # bs, H_*W_, num_heads*embed_dims ->
  30. # bs, num_heads*embed_dims, H_*W_ ->
  31. # bs*num_heads, embed_dims, H_, W_
  32. value_l_ = (
  33. value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
  34. )
  35. # bs, num_queries, num_heads, num_points, 2 ->
  36. # bs, num_heads, num_queries, num_points, 2 ->
  37. # bs*num_heads, num_queries, num_points, 2
  38. sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
  39. # bs*num_heads, embed_dims, num_queries, num_points
  40. sampling_value_l_ = F.grid_sample(
  41. value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
  42. )
  43. sampling_value_list.append(sampling_value_l_)
  44. # (bs, num_queries, num_heads, num_levels, num_points) ->
  45. # (bs, num_heads, num_queries, num_levels, num_points) ->
  46. # (bs, num_heads, 1, num_queries, num_levels*num_points)
  47. attention_weights = attention_weights.transpose(1, 2).reshape(
  48. bs * num_heads, 1, num_queries, num_levels * num_points
  49. )
  50. output = (
  51. (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
  52. .sum(-1)
  53. .view(bs, num_heads * embed_dims, num_queries)
  54. )
  55. return output.transpose(1, 2).contiguous()
  56. class MSDeformableAttention(nn.Module):
  57. def __init__(self,
  58. embed_dim=256,
  59. num_heads=8,
  60. num_levels=4,
  61. num_points=4):
  62. """
  63. Multi-Scale Deformable Attention Module
  64. """
  65. super(MSDeformableAttention, self).__init__()
  66. self.embed_dim = embed_dim
  67. self.num_heads = num_heads
  68. self.num_levels = num_levels
  69. self.num_points = num_points
  70. self.total_points = num_heads * num_levels * num_points
  71. self.head_dim = embed_dim // num_heads
  72. assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
  73. self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2)
  74. self.attention_weights = nn.Linear(embed_dim, self.total_points)
  75. self.value_proj = nn.Linear(embed_dim, embed_dim)
  76. self.output_proj = nn.Linear(embed_dim, embed_dim)
  77. try:
  78. # use cuda op
  79. from deformable_detr_ops import ms_deformable_attn
  80. self.ms_deformable_attn_core = ms_deformable_attn
  81. except:
  82. # use torch func
  83. self.ms_deformable_attn_core = multi_scale_deformable_attn_pytorch
  84. self._reset_parameters()
  85. def _reset_parameters(self):
  86. """
  87. Default initialization for Parameters of Module.
  88. """
  89. nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
  90. thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
  91. 2.0 * math.pi / self.num_heads
  92. )
  93. grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
  94. grid_init = (
  95. (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
  96. .view(self.num_heads, 1, 1, 2)
  97. .repeat(1, self.num_levels, self.num_points, 1)
  98. )
  99. for i in range(self.num_points):
  100. grid_init[:, :, i, :] *= i + 1
  101. with torch.no_grad():
  102. self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
  103. # attention weight
  104. nn.init.constant_(self.attention_weights.weight, 0.0)
  105. nn.init.constant_(self.attention_weights.bias, 0.0)
  106. # proj
  107. nn.init.xavier_uniform_(self.value_proj.weight)
  108. nn.init.constant_(self.value_proj.bias, 0.0)
  109. nn.init.xavier_uniform_(self.output_proj.weight)
  110. nn.init.constant_(self.output_proj.bias, 0.0)
  111. def forward(self,
  112. query,
  113. reference_points,
  114. value,
  115. value_spatial_shapes,
  116. value_mask=None):
  117. """
  118. Args:
  119. query (Tensor): [bs, query_length, C]
  120. reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
  121. bottom-right (1, 1), including padding area
  122. value (Tensor): [bs, value_length, C]
  123. value_spatial_shapes (Tensor): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
  124. value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
  125. Returns:
  126. output (Tensor): [bs, Length_{query}, C]
  127. """
  128. bs, num_query = query.shape[:2]
  129. num_value = value.shape[1]
  130. assert sum([s[0] * s[1] for s in value_spatial_shapes]) == num_value
  131. # Value projection
  132. value = self.value_proj(value)
  133. # fill "0" for the padding part
  134. if value_mask is not None:
  135. value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
  136. value *= value_mask
  137. # [bs, all_hw, 256] -> [bs, all_hw, num_head, head_dim]
  138. value = value.reshape([bs, num_value, self.num_heads, -1])
  139. # [bs, all_hw, num_head, nun_level, num_sample_point, num_offset]
  140. sampling_offsets = self.sampling_offsets(query).reshape(
  141. [bs, num_query, self.num_heads, self.num_levels, self.num_points, 2])
  142. # [bs, all_hw, num_head, nun_level*num_sample_point]
  143. attention_weights = self.attention_weights(query).reshape(
  144. [bs, num_query, self.num_heads, self.num_levels * self.num_points])
  145. # [bs, all_hw, num_head, nun_level, num_sample_point]
  146. attention_weights = attention_weights.softmax(-1).reshape(
  147. [bs, num_query, self.num_heads, self.num_levels, self.num_points])
  148. # [bs, num_query, num_heads, num_levels, num_points, 2]
  149. if reference_points.shape[-1] == 2:
  150. # reference_points [bs, all_hw, num_sample_point, 2] -> [bs, all_hw, 1, num_sample_point, 1, 2]
  151. # sampling_offsets [bs, all_hw, nun_head, num_level, num_sample_point, 2]
  152. # offset_normalizer [4, 2] -> [1, 1, 1, num_sample_point, 1, 2]
  153. # references_points + sampling_offsets
  154. offset_normalizer = value_spatial_shapes.flip([1]).reshape(
  155. [1, 1, 1, self.num_levels, 1, 2])
  156. sampling_locations = (
  157. reference_points[:, :, None, :, None, :]
  158. + sampling_offsets / offset_normalizer
  159. )
  160. elif reference_points.shape[-1] == 4:
  161. sampling_locations = (
  162. reference_points[:, :, None, :, None, :2]
  163. + sampling_offsets
  164. / self.num_points
  165. * reference_points[:, :, None, :, None, 2:]
  166. * 0.5)
  167. else:
  168. raise ValueError(
  169. "Last dim of reference_points must be 2 or 4, but get {} instead.".
  170. format(reference_points.shape[-1]))
  171. # Multi-scale Deformable attention
  172. output = self.ms_deformable_attn_core(
  173. value, value_spatial_shapes, sampling_locations, attention_weights)
  174. # Output project
  175. output = self.output_proj(output)
  176. return output
  177. # ----------------- Transformer modules -----------------
  178. ## Transformer Encoder layer
  179. class TransformerEncoderLayer(nn.Module):
  180. def __init__(self,
  181. d_model :int = 256,
  182. num_heads :int = 8,
  183. ffn_dim :int = 1024,
  184. dropout :float = 0.1,
  185. act_type :str = "relu",
  186. ):
  187. super().__init__()
  188. # ----------- Basic parameters -----------
  189. self.d_model = d_model
  190. self.num_heads = num_heads
  191. self.ffn_dim = ffn_dim
  192. self.dropout = dropout
  193. self.act_type = act_type
  194. # ----------- Basic parameters -----------
  195. # Multi-head Self-Attn
  196. self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
  197. self.dropout = nn.Dropout(dropout)
  198. self.norm = nn.LayerNorm(d_model)
  199. # Feedforwaed Network
  200. self.ffn = FFN(d_model, ffn_dim, dropout, act_type)
  201. def with_pos_embed(self, tensor, pos):
  202. return tensor if pos is None else tensor + pos
  203. def forward(self, src, pos_embed):
  204. """
  205. Input:
  206. src: [torch.Tensor] -> [B, N, C]
  207. pos_embed: [torch.Tensor] -> [B, N, C]
  208. Output:
  209. src: [torch.Tensor] -> [B, N, C]
  210. """
  211. q = k = self.with_pos_embed(src, pos_embed)
  212. # -------------- MHSA --------------
  213. src2 = self.self_attn(q, k, value=src)[0]
  214. src = src + self.dropout(src2)
  215. src = self.norm(src)
  216. # -------------- FFN --------------
  217. src = self.ffn(src)
  218. return src
  219. ## Transformer Encoder
  220. class TransformerEncoder(nn.Module):
  221. def __init__(self,
  222. d_model :int = 256,
  223. num_heads :int = 8,
  224. num_layers :int = 1,
  225. ffn_dim :int = 1024,
  226. pe_temperature : float = 10000.,
  227. dropout :float = 0.1,
  228. act_type :str = "relu",
  229. ):
  230. super().__init__()
  231. # ----------- Basic parameters -----------
  232. self.d_model = d_model
  233. self.num_heads = num_heads
  234. self.num_layers = num_layers
  235. self.ffn_dim = ffn_dim
  236. self.dropout = dropout
  237. self.act_type = act_type
  238. self.pe_temperature = pe_temperature
  239. self.pos_embed = None
  240. # ----------- Basic parameters -----------
  241. self.encoder_layers = get_clones(
  242. TransformerEncoderLayer(d_model, num_heads, ffn_dim, dropout, act_type), num_layers)
  243. def build_2d_sincos_position_embedding(self, device, w, h, embed_dim=256, temperature=10000.):
  244. assert embed_dim % 4 == 0, \
  245. 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
  246. # ----------- Check cahed pos_embed -----------
  247. if self.pos_embed is not None and \
  248. self.pos_embed.shape[2:] == [h, w]:
  249. return self.pos_embed
  250. # ----------- Generate grid coords -----------
  251. grid_w = torch.arange(int(w), dtype=torch.float32)
  252. grid_h = torch.arange(int(h), dtype=torch.float32)
  253. grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
  254. pos_dim = embed_dim // 4
  255. omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
  256. omega = 1. / (temperature**omega)
  257. out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
  258. out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
  259. # shape: [1, N, C]
  260. pos_embed = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], dim=1)[None, :, :]
  261. pos_embed = pos_embed.to(device)
  262. self.pos_embed = pos_embed
  263. return pos_embed
  264. def forward(self, src):
  265. """
  266. Input:
  267. src: [torch.Tensor] -> [B, C, H, W]
  268. Output:
  269. src: [torch.Tensor] -> [B, C, H, W]
  270. """
  271. # -------- Transformer encoder --------
  272. channels, fmp_h, fmp_w = src.shape[1:]
  273. # [B, C, H, W] -> [B, N, C], N=HxW
  274. src_flatten = src.flatten(2).permute(0, 2, 1).contiguous()
  275. memory = src_flatten
  276. # PosEmbed: [1, N, C]
  277. pos_embed = self.build_2d_sincos_position_embedding(
  278. src.device, fmp_w, fmp_h, channels, self.pe_temperature)
  279. # Transformer Encoder layer
  280. for encoder in self.encoder_layers:
  281. memory = encoder(memory, pos_embed=pos_embed)
  282. # Output: [B, N, C] -> [B, C, N] -> [B, C, H, W]
  283. src = memory.permute(0, 2, 1).contiguous()
  284. src = src.view([-1, channels, fmp_h, fmp_w])
  285. return src
  286. ## Transformer Decoder layer
  287. class DeformableTransformerDecoderLayer(nn.Module):
  288. def __init__(self,
  289. d_model :int = 256,
  290. num_heads :int = 8,
  291. num_levels :int = 3,
  292. num_points :int = 4,
  293. ffn_dim :int = 1024,
  294. dropout :float = 0.1,
  295. act_type :str = "relu",
  296. ):
  297. super().__init__()
  298. # ----------- Basic parameters -----------
  299. self.d_model = d_model
  300. self.num_heads = num_heads
  301. self.num_levels = num_levels
  302. self.num_points = num_points
  303. self.ffn_dim = ffn_dim
  304. self.dropout = dropout
  305. self.act_type = act_type
  306. # ---------------- Network parameters ----------------
  307. ## Multi-head Self-Attn
  308. self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
  309. self.dropout1 = nn.Dropout(dropout)
  310. self.norm1 = nn.LayerNorm(d_model)
  311. ## CrossAttention
  312. self.cross_attn = MSDeformableAttention(d_model, num_heads, num_levels, num_points)
  313. self.dropout2 = nn.Dropout(dropout)
  314. self.norm2 = nn.LayerNorm(d_model)
  315. ## FFN
  316. self.ffn = FFN(d_model, ffn_dim, dropout, act_type)
  317. def with_pos_embed(self, tensor, pos):
  318. return tensor if pos is None else tensor + pos
  319. def forward(self,
  320. tgt,
  321. reference_points,
  322. memory,
  323. memory_spatial_shapes,
  324. attn_mask=None,
  325. memory_mask=None,
  326. query_pos_embed=None):
  327. # ---------------- MSHA for Object Query -----------------
  328. q = k = self.with_pos_embed(tgt, query_pos_embed)
  329. tgt2 = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)[0]
  330. tgt = tgt + self.dropout1(tgt2)
  331. tgt = self.norm1(tgt)
  332. # ---------------- CMHA for Object Query and Image-feature -----------------
  333. tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos_embed),
  334. reference_points,
  335. memory,
  336. memory_spatial_shapes,
  337. memory_mask)
  338. tgt = tgt + self.dropout2(tgt2)
  339. tgt = self.norm2(tgt)
  340. # ---------------- FeedForward Network -----------------
  341. tgt = self.ffn(tgt)
  342. return tgt
  343. ## Transformer Decoder
  344. class DeformableTransformerDecoder(nn.Module):
  345. def __init__(self,
  346. d_model :int = 256,
  347. num_heads :int = 8,
  348. num_layers :int = 1,
  349. num_levels :int = 3,
  350. num_points :int = 4,
  351. ffn_dim :int = 1024,
  352. dropout :float = 0.1,
  353. act_type :str = "relu",
  354. return_intermediate :bool = False,
  355. ):
  356. super().__init__()
  357. # ----------- Basic parameters -----------
  358. self.d_model = d_model
  359. self.num_heads = num_heads
  360. self.num_layers = num_layers
  361. self.ffn_dim = ffn_dim
  362. self.dropout = dropout
  363. self.act_type = act_type
  364. self.pos_embed = None
  365. # ----------- Network parameters -----------
  366. self.decoder_layers = get_clones(
  367. DeformableTransformerDecoderLayer(d_model, num_heads, num_levels, num_points, ffn_dim, dropout, act_type), num_layers)
  368. self.num_layers = num_layers
  369. self.return_intermediate = return_intermediate
  370. def forward(self,
  371. tgt,
  372. ref_points_unact,
  373. memory,
  374. memory_spatial_shapes,
  375. bbox_head,
  376. score_head,
  377. query_pos_head,
  378. attn_mask=None,
  379. memory_mask=None):
  380. output = tgt
  381. dec_out_bboxes = []
  382. dec_out_logits = []
  383. ref_points_detach = F.sigmoid(ref_points_unact)
  384. for i, layer in enumerate(self.decoder_layers):
  385. ref_points_input = ref_points_detach.unsqueeze(2)
  386. query_pos_embed = query_pos_head(ref_points_detach)
  387. output = layer(output, ref_points_input, memory,
  388. memory_spatial_shapes, attn_mask,
  389. memory_mask, query_pos_embed)
  390. inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
  391. dec_out_logits.append(score_head[i](output))
  392. if i == 0:
  393. dec_out_bboxes.append(inter_ref_bbox)
  394. else:
  395. dec_out_bboxes.append(
  396. F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
  397. ref_points = inter_ref_bbox
  398. ref_points_detach = inter_ref_bbox.detach() if self.training else inter_ref_bbox
  399. return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)