| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- import random
- import cv2
- import numpy as np
- from .yolo_augment import random_perspective
- # ------------------------- Strong augmentations -------------------------
- ## Mosaic Augmentation
- class MosaicAugment(object):
- def __init__(self,
- img_size,
- affine_params,
- is_train=False,
- ) -> None:
- self.img_size = img_size
- self.is_train = is_train
- self.affine_params = affine_params
- def __call__(self, image_list, target_list):
- assert len(image_list) == 4
- # mosaic center
- yc, xc = [int(random.uniform(-x, 2*self.img_size + x)) for x in [-self.img_size // 2, -self.img_size // 2]]
- mosaic_bboxes = []
- mosaic_labels = []
- mosaic_img = np.zeros([self.img_size*2, self.img_size*2, image_list[0].shape[2]], dtype=np.uint8)
- for i in range(4):
- img_i, target_i = image_list[i], target_list[i]
- bboxes_i = target_i["boxes"]
- labels_i = target_i["labels"]
- orig_h, orig_w, _ = img_i.shape
- # ------------------ Keep ratio Resize ------------------
- r = self.img_size / max(orig_h, orig_w)
- if r != 1:
- interp = cv2.INTER_LINEAR if (self.is_train or r > 1) else cv2.INTER_AREA
- img_i = cv2.resize(img_i, (int(orig_w * r), int(orig_h * r)), interpolation=interp)
- h, w, _ = img_i.shape
- # ------------------ Create mosaic image ------------------
- ## Place image in mosaic image
- if i == 0: # top left
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
- elif i == 1: # top right
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, self.img_size * 2), yc
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
- elif i == 2: # bottom left
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(self.img_size * 2, yc + h)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
- elif i == 3: # bottom right
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, self.img_size * 2), min(self.img_size * 2, yc + h)
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
- mosaic_img[y1a:y2a, x1a:x2a] = img_i[y1b:y2b, x1b:x2b]
- padw = x1a - x1b
- padh = y1a - y1b
- ## Mosaic target
- bboxes_i_ = bboxes_i.copy()
- if len(bboxes_i) > 0:
- # a valid target, and modify it.
- bboxes_i_[:, 0] = (w * bboxes_i[:, 0] / orig_w + padw)
- bboxes_i_[:, 1] = (h * bboxes_i[:, 1] / orig_h + padh)
- bboxes_i_[:, 2] = (w * bboxes_i[:, 2] / orig_w + padw)
- bboxes_i_[:, 3] = (h * bboxes_i[:, 3] / orig_h + padh)
- mosaic_bboxes.append(bboxes_i_)
- mosaic_labels.append(labels_i)
- if len(mosaic_bboxes) == 0:
- mosaic_bboxes = np.array([]).reshape(-1, 4)
- mosaic_labels = np.array([]).reshape(-1)
- else:
- mosaic_bboxes = np.concatenate(mosaic_bboxes)
- mosaic_labels = np.concatenate(mosaic_labels)
- # clip
- mosaic_bboxes = mosaic_bboxes.clip(0, self.img_size * 2)
- # ----------------------- Random perspective -----------------------
- mosaic_targets = np.concatenate([mosaic_labels[..., None], mosaic_bboxes], axis=-1)
- mosaic_img, mosaic_targets = random_perspective(
- mosaic_img,
- mosaic_targets,
- self.affine_params['degrees'],
- translate = self.affine_params['translate'],
- scale = self.affine_params['scale'],
- shear = self.affine_params['shear'],
- perspective = self.affine_params['perspective'],
- border = [-self.img_size//2, -self.img_size//2]
- )
- # target
- mosaic_target = {
- "boxes": mosaic_targets[..., 1:],
- "labels": mosaic_targets[..., 0],
- }
- return mosaic_img, mosaic_target
- ## Mixup Augmentation
- class MixupAugment(object):
- def __init__(self, img_size) -> None:
- self.img_size = img_size
- def yolox_mixup_augment(self, origin_image, origin_target, new_image, new_target):
- jit_factor = random.uniform(0.5, 1.5)
- FLIP = random.uniform(0, 1) > 0.5
- # resize new image
- orig_h, orig_w = new_image.shape[:2]
- cp_scale_ratio = self.img_size / max(orig_h, orig_w)
- if cp_scale_ratio != 1:
- interp = cv2.INTER_LINEAR if cp_scale_ratio > 1 else cv2.INTER_AREA
- resized_new_img = cv2.resize(
- new_image, (int(orig_w * cp_scale_ratio), int(orig_h * cp_scale_ratio)), interpolation=interp)
- else:
- resized_new_img = new_image
- # pad new image
- cp_img = np.ones([self.img_size, self.img_size, new_image.shape[2]], dtype=np.uint8) * 114
- new_shape = (resized_new_img.shape[1], resized_new_img.shape[0])
- cp_img[:new_shape[1], :new_shape[0]] = resized_new_img
- # resize padded new image
- cp_img_h, cp_img_w = cp_img.shape[:2]
- cp_new_shape = (int(cp_img_w * jit_factor),
- int(cp_img_h * jit_factor))
- cp_img = cv2.resize(cp_img, (cp_new_shape[0], cp_new_shape[1]))
- cp_scale_ratio *= jit_factor
- # flip new image
- if FLIP:
- cp_img = cp_img[:, ::-1, :]
- # pad image
- origin_h, origin_w = cp_img.shape[:2]
- target_h, target_w = origin_image.shape[:2]
- padded_img = np.zeros(
- (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8
- )
- padded_img[:origin_h, :origin_w] = cp_img
- # crop padded image
- x_offset, y_offset = 0, 0
- if padded_img.shape[0] > target_h:
- y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
- if padded_img.shape[1] > target_w:
- x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
- padded_cropped_img = padded_img[
- y_offset: y_offset + target_h, x_offset: x_offset + target_w
- ]
- # process target
- new_boxes = new_target["boxes"]
- new_labels = new_target["labels"]
- new_boxes[:, 0::2] = np.clip(new_boxes[:, 0::2] * cp_scale_ratio, 0, origin_w)
- new_boxes[:, 1::2] = np.clip(new_boxes[:, 1::2] * cp_scale_ratio, 0, origin_h)
- if FLIP:
- new_boxes[:, 0::2] = (
- origin_w - new_boxes[:, 0::2][:, ::-1]
- )
- new_boxes[:, 0::2] = np.clip(
- new_boxes[:, 0::2] - x_offset, 0, target_w
- )
- new_boxes[:, 1::2] = np.clip(
- new_boxes[:, 1::2] - y_offset, 0, target_h
- )
- # mixup target
- mixup_boxes = np.concatenate([new_boxes, origin_target['boxes']], axis=0)
- mixup_labels = np.concatenate([new_labels, origin_target['labels']], axis=0)
- mixup_target = {
- 'boxes': mixup_boxes,
- 'labels': mixup_labels
- }
- # mixup images
- origin_image = origin_image.astype(np.float32)
- origin_image = 0.5 * origin_image + 0.5 * padded_cropped_img.astype(np.float32)
- return origin_image.astype(np.uint8), mixup_target
-
- def yolo_mixup_augment(self, origin_image, origin_target, new_image, new_target):
- if origin_image.shape[:2] != new_image.shape[:2]:
- img_size = max(new_image.shape[:2])
- # origin_image is not a mosaic image
- orig_h, orig_w = origin_image.shape[:2]
- scale_ratio = img_size / max(orig_h, orig_w)
- if scale_ratio != 1:
- interp = cv2.INTER_LINEAR if scale_ratio > 1 else cv2.INTER_AREA
- resize_size = (int(orig_w * scale_ratio), int(orig_h * scale_ratio))
- origin_image = cv2.resize(origin_image, resize_size, interpolation=interp)
- # pad new image
- pad_origin_image = np.zeros([img_size, img_size, origin_image.shape[2]], dtype=np.uint8)
- pad_origin_image[:resize_size[1], :resize_size[0]] = origin_image
- origin_image = pad_origin_image.copy()
- del pad_origin_image
- r = np.random.beta(32.0, 32.0)
- mixup_image = r * origin_image.astype(np.float32) + \
- (1.0 - r)* new_image.astype(np.float32)
- mixup_image = mixup_image.astype(np.uint8)
-
- cls_labels = new_target["labels"].copy()
- box_labels = new_target["boxes"].copy()
- mixup_bboxes = np.concatenate([origin_target["boxes"], box_labels], axis=0)
- mixup_labels = np.concatenate([origin_target["labels"], cls_labels], axis=0)
- mixup_target = {
- "boxes": mixup_bboxes,
- "labels": mixup_labels,
- }
-
- return mixup_image, mixup_target
- def __call__(self, origin_image, origin_target, new_image, new_target, yolox_style=False):
- if yolox_style:
- return self.yolox_mixup_augment(origin_image, origin_target, new_image, new_target)
- else:
- return self.yolo_mixup_augment(origin_image, origin_target, new_image, new_target)
|