| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- import os
- import cv2
- import time
- import random
- import numpy as np
- from torch.utils.data import Dataset
- from pycocotools.coco import COCO
- try:
- from .data_augment.strong_augment import MosaicAugment, MixupAugment
- except:
- from data_augment.strong_augment import MosaicAugment, MixupAugment
- customed_class_indexs = [0, 1, 2, 3, 4, 5, 6, 7, 8]
- customed_class_labels = ('bird', 'butterfly', 'cat', 'cow', 'dog', 'lion', 'person', 'pig', 'tiger', )
- class CustomedDataset(Dataset):
- def __init__(self,
- cfg,
- data_dir :str = None,
- image_set :str = 'train2017',
- transform = None,
- is_train :bool =False,
- ):
- # ----------- Basic parameters -----------
- self.image_set = image_set
- self.is_train = is_train
- self.num_classes = len(customed_class_labels)
- # ----------- Path parameters -----------
- self.data_dir = data_dir
- self.json_file = '{}.json'.format(image_set)
- # ----------- Data parameters -----------
- self.coco = COCO(os.path.join(self.data_dir, image_set, 'annotations', self.json_file))
- self.ids = self.coco.getImgIds()
- self.class_ids = sorted(self.coco.getCatIds())
- self.dataset_size = len(self.ids)
- self.class_labels = customed_class_labels
- self.class_indexs = customed_class_indexs
- # ----------- Transform parameters -----------
- self.transform = transform
- if is_train:
- self.mosaic_prob = cfg.mosaic_prob
- self.mixup_prob = cfg.mixup_prob
- self.copy_paste = cfg.copy_paste
- self.mosaic_augment = None if cfg.mosaic_prob == 0. else MosaicAugment(cfg.train_img_size, cfg.affine_params, is_train)
- self.mixup_augment = None if cfg.mixup_prob == 0. and cfg.copy_paste == 0. else MixupAugment(cfg.train_img_size)
- else:
- self.mosaic_prob = 0.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- self.mosaic_augment = None
- self.mixup_augment = None
- print('==============================')
- print('Image Set: {}'.format(image_set))
- print('Json file: {}'.format(self.json_file))
- print('use Mosaic Augmentation: {}'.format(self.mosaic_prob))
- print('use Mixup Augmentation: {}'.format(self.mixup_prob))
- print('use Copy-paste Augmentation: {}'.format(self.copy_paste))
- # ------------ Basic dataset function ------------
- def __len__(self):
- return len(self.ids)
- def __getitem__(self, index):
- return self.pull_item(index)
- # ------------ Mosaic & Mixup ------------
- def load_mosaic(self, index):
- # ------------ Prepare 4 indexes of images ------------
- ## Load 4x mosaic image
- index_list = np.arange(index).tolist() + np.arange(index+1, len(self.ids)).tolist()
- id1 = index
- id2, id3, id4 = random.sample(index_list, 3)
- indexs = [id1, id2, id3, id4]
- ## Load images and targets
- image_list = []
- target_list = []
- for index in indexs:
- img_i, target_i = self.load_image_target(index)
- image_list.append(img_i)
- target_list.append(target_i)
- # ------------ Mosaic augmentation ------------
- image, target = self.mosaic_augment(image_list, target_list)
- return image, target
- def load_mixup(self, origin_image, origin_target, yolox_style=False):
- # ------------ Load a new image & target ------------
- new_index = np.random.randint(0, len(self.ids))
- new_image, new_target = self.load_mosaic(new_index)
-
- # ------------ Mixup augmentation ------------
- image, target = self.mixup_augment(origin_image, origin_target, new_image, new_target, yolox_style)
- return image, target
-
- # ------------ Load data function ------------
- def load_image_target(self, index):
- # load an image
- image, _ = self.pull_image(index)
- height, width, channels = image.shape
- # load a target
- bboxes, labels = self.pull_anno(index)
- target = {
- "boxes": bboxes,
- "labels": labels,
- "orig_size": [height, width]
- }
- return image, target
- def pull_item(self, index):
- if random.random() < self.mosaic_prob:
- # load a mosaic image
- mosaic = True
- image, target = self.load_mosaic(index)
- else:
- mosaic = False
- # load an image and target
- image, target = self.load_image_target(index)
- # Yolov5-MixUp
- mixup = False
- if random.random() < self.mixup_prob:
- mixup = True
- image, target = self.load_mixup(image, target)
- # Copy-paste (use Yolox-Mixup to approximate copy-paste)
- if not mixup and random.random() < self.copy_paste:
- image, target = self.load_mixup(image, target, yolox_style=True)
- # augment
- image, target, deltas = self.transform(image, target, mosaic)
- return image, target, deltas
- def pull_image(self, index):
- id_ = self.ids[index]
- im_ann = self.coco.loadImgs(id_)[0]
- img_file = os.path.join(
- self.data_dir, self.image_set, 'images', im_ann["file_name"])
- image = cv2.imread(img_file)
- return image, id_
- def pull_anno(self, index):
- img_id = self.ids[index]
- im_ann = self.coco.loadImgs(img_id)[0]
- anno_ids = self.coco.getAnnIds(imgIds=[int(img_id)], iscrowd=0)
- annotations = self.coco.loadAnns(anno_ids)
-
- # image infor
- width = im_ann['width']
- height = im_ann['height']
-
- #load a target
- bboxes = []
- labels = []
- for anno in annotations:
- if 'bbox' in anno and anno['area'] > 0:
- # bbox
- x1 = np.max((0, anno['bbox'][0]))
- y1 = np.max((0, anno['bbox'][1]))
- x2 = np.min((width - 1, x1 + np.max((0, anno['bbox'][2] - 1))))
- y2 = np.min((height - 1, y1 + np.max((0, anno['bbox'][3] - 1))))
- if x2 <= x1 or y2 <= y1:
- continue
- # class label
- cls_id = self.class_ids.index(anno['category_id'])
-
- bboxes.append([x1, y1, x2, y2])
- labels.append(cls_id)
- # guard against no boxes via resizing
- bboxes = np.array(bboxes).reshape(-1, 4)
- labels = np.array(labels).reshape(-1)
-
- return bboxes, labels
- if __name__ == "__main__":
- import time
- import argparse
- from build import build_transform
- parser = argparse.ArgumentParser(description='RT-ODLab')
- # opt
- parser.add_argument('--root', default='D:/python_work/dataset/COCO/',
- help='data root')
- parser.add_argument('--is_train', action="store_true", default=False,
- help='mixup augmentation.')
-
- args = parser.parse_args()
- class YoloBaseConfig(object):
- def __init__(self) -> None:
- self.max_stride = 32
- # ---------------- Data process config ----------------
- self.box_format = 'xywh'
- self.normalize_coords = False
- self.mosaic_prob = 1.0
- self.mixup_prob = 0.15
- self.copy_paste = 0.3
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.random_crop_size = [320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
- self.use_ablu = True
- self.aug_type = 'yolo'
- self.affine_params = {
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': [0.1, 2.0],
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- }
- class RTDetrBaseConfig(object):
- def __init__(self) -> None:
- self.max_stride = 32
- # ---------------- Data process config ----------------
- self.box_format = 'xywh'
- self.normalize_coords = False
- self.mosaic_prob = 0.0
- self.mixup_prob = 0.0
- self.copy_paste = 0.0
- ## Pixel mean & std
- self.pixel_mean = [0., 0., 0.]
- self.pixel_std = [255., 255., 255.]
- ## Transforms
- self.train_img_size = 640
- self.test_img_size = 640
- self.aug_type = 'rtdetr'
- if args.aug_type == "yolo":
- cfg = YoloBaseConfig()
- elif args.aug_type == "rtdetr":
- cfg = RTDetrBaseConfig()
- transform = build_transform(cfg, args.is_train)
- dataset = CustomedDataset(cfg, args.root, 'val', transform, args.is_train)
-
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255)) for _ in range(80)]
- print('Data length: ', len(dataset))
- for i in range(1000):
- t0 = time.time()
- image, target = dataset.pull_item(i)
- print("Load data: {} s".format(time.time() - t0))
- # to numpy
- image = image.permute(1, 2, 0).numpy()
-
- # denormalize
- image = image * cfg.pixel_std + cfg.pixel_mean
- # rgb -> bgr
- if transform.color_format == 'rgb':
- image = image[..., (2, 1, 0)]
- # to uint8
- image = image.astype(np.uint8)
- image = image.copy()
- img_h, img_w = image.shape[:2]
- boxes = target["boxes"]
- labels = target["labels"]
- for box, label in zip(boxes, labels):
- if cfg.box_format == 'xyxy':
- x1, y1, x2, y2 = box
- elif cfg.box_format == 'xywh':
- cx, cy, bw, bh = box
- x1 = cx - 0.5 * bw
- y1 = cy - 0.5 * bh
- x2 = cx + 0.5 * bw
- y2 = cy + 0.5 * bh
-
- if cfg.normalize_coords:
- x1 *= img_w
- y1 *= img_h
- x2 *= img_w
- y2 *= img_h
- cls_id = int(label)
- color = class_colors[cls_id]
- # class name
- label = customed_class_labels[cls_id]
- image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
- # put the test on the bbox
- cv2.putText(image, label, (int(x1), int(y1 - 5)), 0, 0.5, color, 1, lineType=cv2.LINE_AA)
- cv2.imshow('gt', image)
- # cv2.imwrite(str(i)+'.jpg', img)
- cv2.waitKey(0)
|