yolo11_head.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. try:
  5. from .modules import ConvModule
  6. except:
  7. from modules import ConvModule
  8. # -------------------- Detection Head --------------------
  9. ## Single-level Detection Head
  10. class DetHead(nn.Module):
  11. def __init__(self,
  12. in_dim :int = 256,
  13. cls_head_dim :int = 256,
  14. reg_head_dim :int = 256,
  15. num_cls_head :int = 2,
  16. num_reg_head :int = 2,
  17. ):
  18. super().__init__()
  19. # --------- Basic Parameters ----------
  20. self.in_dim = in_dim
  21. self.num_cls_head = num_cls_head
  22. self.num_reg_head = num_reg_head
  23. # --------- Network Parameters ----------
  24. ## classification head
  25. cls_feats = []
  26. self.cls_head_dim = cls_head_dim
  27. for i in range(num_cls_head):
  28. if i == 0:
  29. cls_feats.append(nn.Sequential(
  30. ConvModule(in_dim, in_dim, kernel_size=3, stride=1, groups=in_dim),
  31. ConvModule(in_dim, self.cls_head_dim, kernel_size=1),
  32. ))
  33. else:
  34. cls_feats.append(nn.Sequential(
  35. ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1, groups=self.cls_head_dim),
  36. ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=1),
  37. ))
  38. ## bbox regression head
  39. reg_feats = []
  40. self.reg_head_dim = reg_head_dim
  41. for i in range(num_reg_head):
  42. if i == 0:
  43. reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, stride=1))
  44. else:
  45. reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, stride=1))
  46. self.cls_feats = nn.Sequential(*cls_feats)
  47. self.reg_feats = nn.Sequential(*reg_feats)
  48. self.init_weights()
  49. def init_weights(self):
  50. """Initialize the parameters."""
  51. for m in self.modules():
  52. if isinstance(m, torch.nn.Conv2d):
  53. m.reset_parameters()
  54. def forward(self, x):
  55. """
  56. in_feats: (Tensor) [B, C, H, W]
  57. """
  58. cls_feats = self.cls_feats(x)
  59. reg_feats = self.reg_feats(x)
  60. return cls_feats, reg_feats
  61. ## Multi-level Detection Head
  62. class Yolo11DetHead(nn.Module):
  63. def __init__(self, cfg, in_dims: List = [256, 512, 1024]):
  64. super().__init__()
  65. self.num_levels = len(cfg.out_stride)
  66. ## ----------- Network Parameters -----------
  67. self.multi_level_heads = nn.ModuleList(
  68. [DetHead(in_dim = in_dims[level],
  69. cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
  70. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  71. num_cls_head = cfg.num_cls_head,
  72. num_reg_head = cfg.num_reg_head,
  73. ) for level in range(self.num_levels)])
  74. # --------- Basic Parameters ----------
  75. self.in_dims = in_dims
  76. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  77. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  78. def forward(self, feats):
  79. """
  80. feats: List[(Tensor)] [[B, C, H, W], ...]
  81. """
  82. cls_feats = []
  83. reg_feats = []
  84. for feat, head in zip(feats, self.multi_level_heads):
  85. # ---------------- Pred ----------------
  86. cls_feat, reg_feat = head(feat)
  87. cls_feats.append(cls_feat)
  88. reg_feats.append(reg_feat)
  89. return cls_feats, reg_feats
  90. if __name__=='__main__':
  91. import time
  92. from thop import profile
  93. # YOLO11-Base config
  94. class Yolo11BaseConfig(object):
  95. def __init__(self) -> None:
  96. # ---------------- Model config ----------------
  97. self.width = 0.50
  98. self.depth = 0.34
  99. self.ratio = 2.0
  100. self.reg_max = 16
  101. self.out_stride = [8, 16, 32]
  102. self.max_stride = 32
  103. self.num_levels = 3
  104. ## Head
  105. self.num_cls_head = 2
  106. self.num_reg_head = 2
  107. cfg = Yolo11BaseConfig()
  108. cfg.num_classes = 20
  109. # Build a head
  110. fpn_dims = [128, 256, 512]
  111. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
  112. torch.randn(1, fpn_dims[1], 40, 40),
  113. torch.randn(1, fpn_dims[2], 20, 20)]
  114. head = Yolo11DetHead(cfg, fpn_dims)
  115. # Inference
  116. t0 = time.time()
  117. cls_feats, reg_feats = head(pyramid_feats)
  118. t1 = time.time()
  119. print('Time: ', t1 - t0)
  120. print("====== Yolo11 Head output ======")
  121. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  122. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  123. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  124. print('==============================')
  125. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  126. print('Params : {:.2f} M'.format(params / 1e6))