yolov7_config.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. # yolo Config
  2. def build_yolov7_config(args):
  3. if args.model == 'yolov7_t':
  4. return Yolov7AFTConfig()
  5. elif args.model == 'yolov7_l':
  6. return Yolov7AFLConfig()
  7. else:
  8. raise NotImplementedError("No config for model: {}".format(args.model))
  9. # YOLOv7AF-Base config
  10. class Yolov7AFBaseConfig(object):
  11. def __init__(self) -> None:
  12. # ---------------- Model config ----------------
  13. self.width = 1.0
  14. self.out_stride = [8, 16, 32]
  15. self.max_stride = 32
  16. self.model_scale = "b"
  17. ## Backbone
  18. self.use_pretrained = True
  19. ## FPN
  20. self.fpn_expansions = [0.5, 0.5]
  21. self.fpn_block_bw = 4
  22. self.fpn_block_dw = 1
  23. ## Head
  24. self.head_dim = 256
  25. self.num_cls_head = 2
  26. self.num_reg_head = 2
  27. # ---------------- Post-process config ----------------
  28. ## Post process
  29. self.val_topk = 1000
  30. self.val_conf_thresh = 0.001
  31. self.val_nms_thresh = 0.7
  32. self.test_topk = 100
  33. self.test_conf_thresh = 0.4
  34. self.test_nms_thresh = 0.5
  35. # ---------------- Assignment config ----------------
  36. ## Matcher
  37. self.ota_center_sampling_radius = 2.5
  38. self.ota_topk_candidate = 10
  39. ## Loss weight
  40. self.loss_obj = 1.0
  41. self.loss_cls = 1.0
  42. self.loss_box = 5.0
  43. # ---------------- ModelEMA config ----------------
  44. self.use_ema = True
  45. self.ema_decay = 0.9998
  46. self.ema_tau = 2000
  47. # ---------------- Optimizer config ----------------
  48. self.trainer = 'yolo'
  49. self.optimizer = 'adamw'
  50. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  51. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  52. self.batch_size_base = 64
  53. self.momentum = 0.9
  54. self.weight_decay = 0.05
  55. self.clip_max_norm = 35.0
  56. self.warmup_bias_lr = 0.1
  57. self.warmup_momentum = 0.8
  58. # ---------------- Lr Scheduler config ----------------
  59. self.warmup_epoch = 3
  60. self.lr_scheduler = "cosine"
  61. self.max_epoch = 300
  62. self.eval_epoch = 10
  63. self.no_aug_epoch = 20
  64. # ---------------- Data process config ----------------
  65. self.aug_type = 'yolo'
  66. self.mosaic_prob = 1.0
  67. self.mixup_prob = 0.15
  68. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  69. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  70. ## Pixel mean & std
  71. self.pixel_mean = [0., 0., 0.]
  72. self.pixel_std = [255., 255., 255.]
  73. ## Transforms
  74. self.train_img_size = 640
  75. self.test_img_size = 640
  76. self.affine_params = {
  77. 'degrees': 0.0,
  78. 'translate': 0.2,
  79. 'scale': [0.1, 2.0],
  80. 'shear': 0.0,
  81. 'perspective': 0.0,
  82. 'hsv_h': 0.015,
  83. 'hsv_s': 0.7,
  84. 'hsv_v': 0.4,
  85. }
  86. def print_config(self):
  87. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  88. for k, v in config_dict.items():
  89. print("{} : {}".format(k, v))
  90. # YOLOv7-S
  91. class Yolov7AFTConfig(Yolov7AFBaseConfig):
  92. def __init__(self) -> None:
  93. super().__init__()
  94. # ---------------- Model config ----------------
  95. self.width = 0.50
  96. self.model_scale = "t"
  97. self.use_pretrained = True
  98. self.fpn_expansions = [0.5, 0.5]
  99. self.fpn_block_bw = 2
  100. self.fpn_block_dw = 1
  101. # ---------------- Data process config ----------------
  102. self.mosaic_prob = 1.0
  103. self.mixup_prob = 0.0
  104. self.copy_paste = 0.5
  105. # YOLOv7-L
  106. class Yolov7AFLConfig(Yolov7AFBaseConfig):
  107. def __init__(self) -> None:
  108. super().__init__()
  109. # ---------------- Model config ----------------
  110. self.width = 1.0
  111. self.model_scale = "l"
  112. self.fpn_expansions = [0.5, 0.5]
  113. self.fpn_block_bw = 4
  114. self.fpn_block_dw = 1
  115. # ---------------- Data process config ----------------
  116. self.mosaic_prob = 1.0
  117. self.mixup_prob = 0.1
  118. self.copy_paste = 0.5