yolov10_head.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. try:
  5. from .modules import ConvModule
  6. except:
  7. from modules import ConvModule
  8. # -------------------- Detection Head --------------------
  9. class DetHead(nn.Module):
  10. def __init__(self,
  11. in_dim :int = 256,
  12. cls_head_dim :int = 256,
  13. reg_head_dim :int = 256,
  14. num_cls_head :int = 2,
  15. num_reg_head :int = 2,
  16. ):
  17. super().__init__()
  18. # --------- Basic Parameters ----------
  19. self.in_dim = in_dim
  20. self.num_cls_head = num_cls_head
  21. self.num_reg_head = num_reg_head
  22. # --------- Network Parameters ----------
  23. ## classification head
  24. cls_feats = []
  25. self.cls_head_dim = cls_head_dim
  26. for i in range(num_cls_head):
  27. if i == 0:
  28. cls_feats.append(ConvModule(in_dim, in_dim, kernel_size=3, stride=1, groups=in_dim))
  29. cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=1))
  30. else:
  31. cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, stride=1, groups=self.cls_head_dim))
  32. cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=1))
  33. ## bbox regression head
  34. reg_feats = []
  35. self.reg_head_dim = reg_head_dim
  36. for i in range(num_reg_head):
  37. if i == 0:
  38. reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, stride=1))
  39. else:
  40. reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, stride=1))
  41. self.cls_feats = nn.Sequential(*cls_feats)
  42. self.reg_feats = nn.Sequential(*reg_feats)
  43. self.init_weights()
  44. def init_weights(self):
  45. """Initialize the parameters."""
  46. for m in self.modules():
  47. if isinstance(m, torch.nn.Conv2d):
  48. m.reset_parameters()
  49. def forward(self, x):
  50. """
  51. in_feats: (Tensor) [B, C, H, W]
  52. """
  53. cls_feats = self.cls_feats(x)
  54. reg_feats = self.reg_feats(x)
  55. return cls_feats, reg_feats
  56. ## Multi-level Detection Head
  57. class Yolov10DetHead(nn.Module):
  58. def __init__(self, cfg, in_dims: List = [256, 512, 1024]):
  59. super().__init__()
  60. self.num_levels = len(cfg.out_stride)
  61. ## ----------- Network Parameters -----------
  62. self.multi_level_heads = nn.ModuleList(
  63. [DetHead(in_dim = in_dims[level],
  64. cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
  65. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  66. num_cls_head = cfg.num_cls_head,
  67. num_reg_head = cfg.num_reg_head,
  68. ) for level in range(self.num_levels)])
  69. # --------- Basic Parameters ----------
  70. self.in_dims = in_dims
  71. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  72. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  73. def forward(self, feats):
  74. """
  75. feats: List[(Tensor)] [[B, C, H, W], ...]
  76. """
  77. cls_feats = []
  78. reg_feats = []
  79. for feat, head in zip(feats, self.multi_level_heads):
  80. # ---------------- Pred ----------------
  81. cls_feat, reg_feat = head(feat)
  82. cls_feats.append(cls_feat)
  83. reg_feats.append(reg_feat)
  84. return cls_feats, reg_feats
  85. if __name__=='__main__':
  86. import time
  87. from thop import profile
  88. # YOLOv10-Base config
  89. class Yolov10BaseConfig(object):
  90. def __init__(self) -> None:
  91. # ---------------- Model config ----------------
  92. self.width = 0.25
  93. self.depth = 0.34
  94. self.ratio = 2.0
  95. self.reg_max = 16
  96. self.out_stride = [8, 16, 32]
  97. self.max_stride = 32
  98. self.num_levels = 3
  99. ## Head
  100. self.num_cls_head = 2
  101. self.num_reg_head = 2
  102. cfg = Yolov10BaseConfig()
  103. cfg.num_classes = 80
  104. # Build a head
  105. fpn_dims = [64, 128, 256]
  106. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
  107. torch.randn(1, fpn_dims[1], 40, 40),
  108. torch.randn(1, fpn_dims[2], 20, 20)]
  109. head = Yolov10DetHead(cfg, fpn_dims)
  110. # Inference
  111. t0 = time.time()
  112. cls_feats, reg_feats = head(pyramid_feats)
  113. t1 = time.time()
  114. print('Time: ', t1 - t0)
  115. print("====== Yolov10 Head output ======")
  116. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  117. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  118. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  119. print('==============================')
  120. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  121. print('Params : {:.2f} M'.format(params / 1e6))