yolov7_head.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. import torch
  2. import torch.nn as nn
  3. from .yolov7_basic import BasicConv
  4. # -------------------- Detection Head --------------------
  5. ## Single-level Detection Head
  6. class DetHead(nn.Module):
  7. def __init__(self,
  8. in_dim :int = 256,
  9. cls_head_dim :int = 256,
  10. reg_head_dim :int = 256,
  11. num_cls_head :int = 2,
  12. num_reg_head :int = 2,
  13. act_type :str = "silu",
  14. norm_type :str = "BN",
  15. depthwise :bool = False):
  16. super().__init__()
  17. # --------- Basic Parameters ----------
  18. self.in_dim = in_dim
  19. self.num_cls_head = num_cls_head
  20. self.num_reg_head = num_reg_head
  21. self.act_type = act_type
  22. self.norm_type = norm_type
  23. self.depthwise = depthwise
  24. # --------- Network Parameters ----------
  25. ## cls head
  26. cls_feats = []
  27. self.cls_head_dim = cls_head_dim
  28. for i in range(num_cls_head):
  29. if i == 0:
  30. cls_feats.append(
  31. BasicConv(in_dim, self.cls_head_dim,
  32. kernel_size=3, padding=1, stride=1,
  33. act_type=act_type,
  34. norm_type=norm_type,
  35. depthwise=depthwise)
  36. )
  37. else:
  38. cls_feats.append(
  39. BasicConv(self.cls_head_dim, self.cls_head_dim,
  40. kernel_size=3, padding=1, stride=1,
  41. act_type=act_type,
  42. norm_type=norm_type,
  43. depthwise=depthwise)
  44. )
  45. ## reg head
  46. reg_feats = []
  47. self.reg_head_dim = reg_head_dim
  48. for i in range(num_reg_head):
  49. if i == 0:
  50. reg_feats.append(
  51. BasicConv(in_dim, self.reg_head_dim,
  52. kernel_size=3, padding=1, stride=1,
  53. act_type=act_type,
  54. norm_type=norm_type,
  55. depthwise=depthwise)
  56. )
  57. else:
  58. reg_feats.append(
  59. BasicConv(self.reg_head_dim, self.reg_head_dim,
  60. kernel_size=3, padding=1, stride=1,
  61. act_type=act_type,
  62. norm_type=norm_type,
  63. depthwise=depthwise)
  64. )
  65. self.cls_feats = nn.Sequential(*cls_feats)
  66. self.reg_feats = nn.Sequential(*reg_feats)
  67. self.init_weights()
  68. def init_weights(self):
  69. """Initialize the parameters."""
  70. for m in self.modules():
  71. if isinstance(m, torch.nn.Conv2d):
  72. # In order to be consistent with the source code,
  73. # reset the Conv2d initialization parameters
  74. m.reset_parameters()
  75. def forward(self, x):
  76. """
  77. in_feats: (Tensor) [B, C, H, W]
  78. """
  79. cls_feats = self.cls_feats(x)
  80. reg_feats = self.reg_feats(x)
  81. return cls_feats, reg_feats
  82. ## Multi-level Detection Head
  83. class Yolov7DetHead(nn.Module):
  84. def __init__(self, cfg, in_dims):
  85. super().__init__()
  86. ## ----------- Network Parameters -----------
  87. self.multi_level_heads = nn.ModuleList(
  88. [DetHead(in_dim = in_dims[level],
  89. cls_head_dim = max(in_dims[0], min(cfg.num_classes, 100)),
  90. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  91. num_cls_head = cfg.num_cls_head,
  92. num_reg_head = cfg.num_reg_head,
  93. act_type = cfg.head_act,
  94. norm_type = cfg.head_norm,
  95. depthwise = cfg.head_depthwise)
  96. for level in range(cfg.num_levels)
  97. ])
  98. # --------- Basic Parameters ----------
  99. self.in_dims = in_dims
  100. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  101. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  102. def forward(self, feats):
  103. """
  104. feats: List[(Tensor)] [[B, C, H, W], ...]
  105. """
  106. cls_feats = []
  107. reg_feats = []
  108. for feat, head in zip(feats, self.multi_level_heads):
  109. # ---------------- Pred ----------------
  110. cls_feat, reg_feat = head(feat)
  111. cls_feats.append(cls_feat)
  112. reg_feats.append(reg_feat)
  113. return cls_feats, reg_feats