| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- import json
- import os
- import contextlib
- import torch
- from pycocotools.cocoeval import COCOeval
- from datasets import build_transform
- from datasets.coco import build_coco
- class COCOAPIEvaluator():
- def __init__(self, args, cfg, device):
- # ----------------- Basic parameters -----------------
- self.image_set = 'val2017'
- self.device = device
- # ----------------- Metrics -----------------
- self.map = 0.
- self.ap50_95 = 0.
- self.ap50 = 0.
- # ----------------- Dataset -----------------
- self.transform = build_transform(cfg, is_train=False)
- self.dataset = build_coco(args, self.transform, is_train=False)
- @torch.no_grad()
- def evaluate(self, model):
- ids = []
- coco_results = []
- model.eval()
- model.trainable = False
- # start testing
- for index, (image, target) in enumerate(self.dataset):
- if index % 500 == 0:
- print('[Eval: %d / %d]'%(index, len(self.dataset)))
- # image id
- id_ = int(target['image_id'])
- ids.append(id_)
-
- # inference
- image = image.unsqueeze(0).to(self.device)
- outputs = model(image)
- scores = outputs['scores']
- labels = outputs['labels']
- bboxes = outputs['bboxes']
- # rescale bbox
- orig_h, orig_w = target["orig_size"].tolist()
- bboxes[..., 0::2] *= orig_w
- bboxes[..., 1::2] *= orig_h
-
- # reformat results
- for i, box in enumerate(bboxes):
- x1 = float(box[0])
- y1 = float(box[1])
- x2 = float(box[2])
- y2 = float(box[3])
- label = self.dataset.coco_indexs[int(labels[i])]
-
- # COCO json format
- bbox = [x1, y1, x2 - x1, y2 - y1]
- score = float(scores[i])
- A = {"image_id": id_,
- "category_id": label,
- "bbox": bbox,
- "score": score}
- coco_results.append(A)
- model.train()
- model.trainable = True
- annType = ['segm', 'bbox', 'keypoints']
- # Evaluate the Dt (detection) json comparing with the ground truth
- if len(coco_results) > 0:
- print('evaluating ......')
- cocoGt = self.dataset.coco
- # suppress pycocotools prints
- with open(os.devnull, 'w') as devnull:
- with contextlib.redirect_stdout(devnull):
- cocoDt = cocoGt.loadRes(coco_results)
- cocoEval = COCOeval(self.dataset.coco, cocoDt, annType[1])
- cocoEval.params.imgIds = ids
- cocoEval.evaluate()
- cocoEval.accumulate()
- cocoEval.summarize()
- # update mAP
- ap50_95, ap50 = cocoEval.stats[0], cocoEval.stats[1]
- print('ap50_95 : ', ap50_95)
- print('ap50 : ', ap50)
- self.map = ap50_95
- self.ap50_95 = ap50_95
- self.ap50 = ap50
- del coco_results
- else:
- print('No coco detection results !')
|